

PERMIT STREAMLINING TASK FORCE SUBCOMMITTEE MEETING December 16, 2020

Permit Streamlining Task Force Subcommittee

December 16, 2020

Agenda

Pending Application Inventory Pending Permit
Application
Status
Dashboard

Online Tools Development Permit Processing Handbook Other Issues
and
Public
Comment

Pending Application Inventory Update

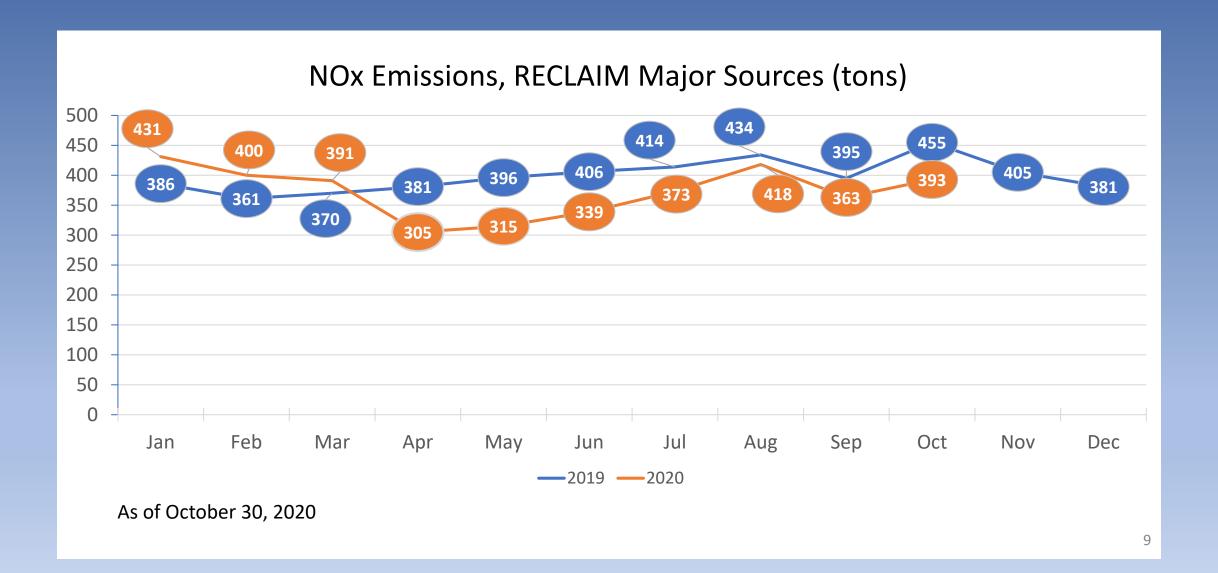
Permit Processing 2016 Inventory Reduction Initiative

Achieved and continue to maintained 50% reduction goal set in 2016

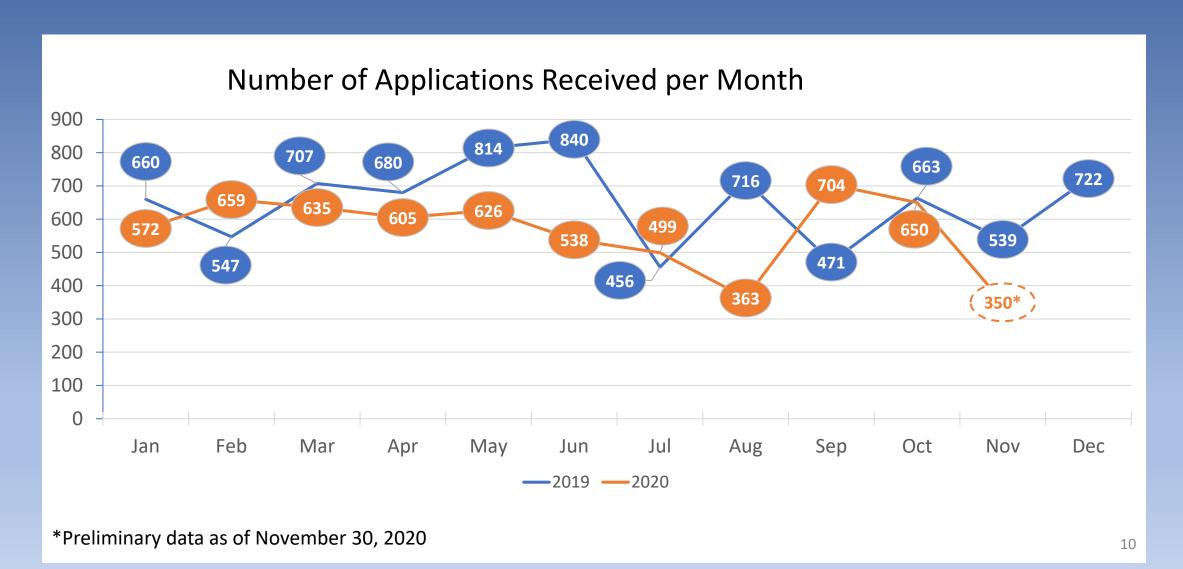
Pending Applications less PCs Issued (2016 - 2020)

Ongoing Goal

Maintain pending applications without PC issued between 2,250 and 2,500


Inventory Management During COVID-19

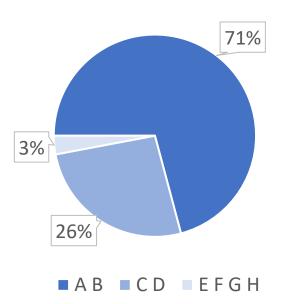
- > 80% Engineering Staff Teleworking
- Increased electronic submittals
 - US Mail routing
 - More electronic payment options
- Closely monitoring incoming applications
- Stay at home impacts:
 - HQ not open to public
 - Field visits
 - Face to face meetings



COVID-19 Permit Application Trends

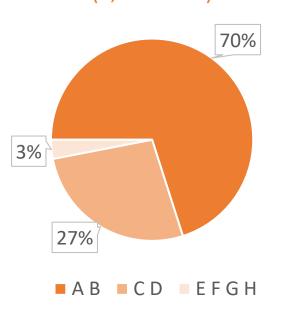
Emission Trends

Permit Activity



Equipment Applications Received

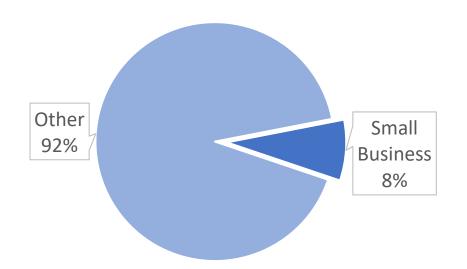
(Percent, by Assigned Fee Schedule)


2019 (Jan-Nov)

(2,929 Total)

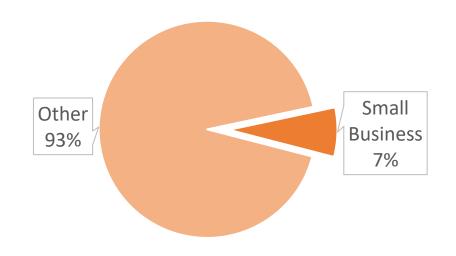
2020 YTD (Jan-Nov*)

(2,135 Total)


^{*}November 2020 numbers preliminary

Equipment Applications Received

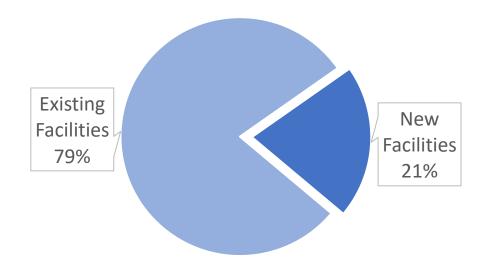
(Percent, Small Business vs. Other)


2019 (Jan-Nov)

(2,929 Total)

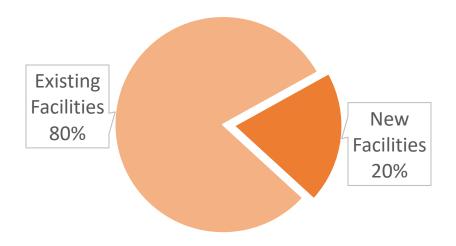
2020 YTD (Jan-Nov*)

(2,135 Total)


*November 2020 numbers preliminary

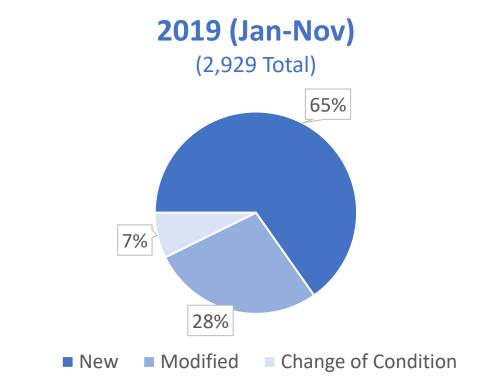
Equipment Applications Submitted

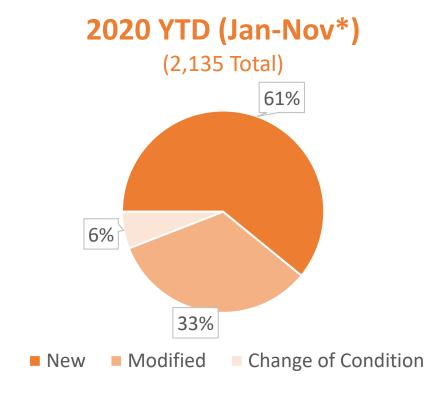
(Percent, New vs. Existing Facilities)


2019 (Jan-Nov)

(2,929 Total)

2020 YTD (Jan-Nov*)


(2,135 Total)

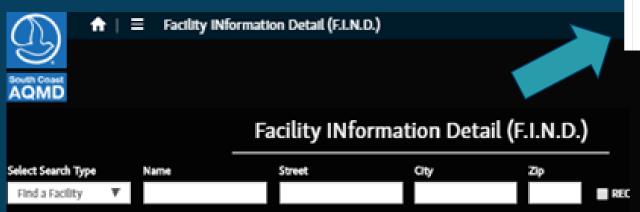


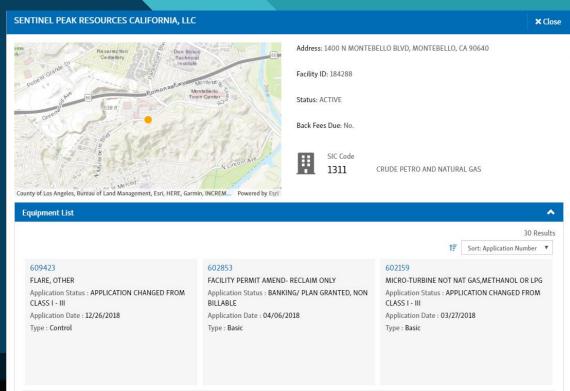
^{*}November 2020 numbers preliminary

Equipment Applications Received

(New / Modified / Change of Condition)

^{*}November 2020 numbers preliminary

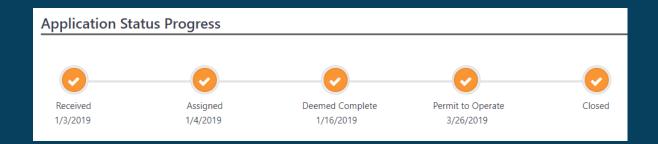

Pending Permit Application Status Dashboard Update



Pending Permit Application Status Dashboard

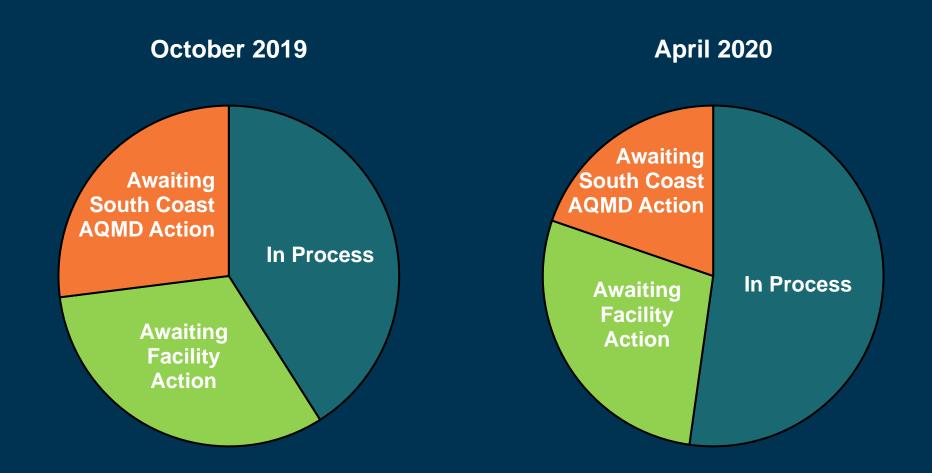
Governing Board initiative to increase transparency

- Online ability to view status of individual applications
- Integrate with existing <u>F.I.N.D.</u> application

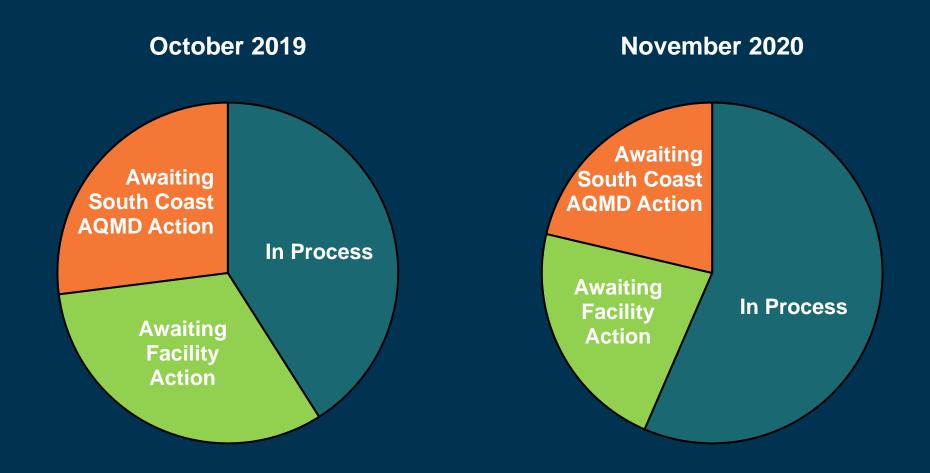


Dashboard Status Indicators

- Two status indicator types:
 - 1. Time elapsed indicator
 - 2. Application status indicators
- Status progress bar:



Public Participation and Development


- Initial Internal Roll-Out Mid-2018
- Multiple Software Enhancements
- Data Verification
- Launched to Public May 2020

F.I.N.D. https://xappprod.aqmd.gov/find

Pending Permit Application Status Dashboard Initial Case Study

Pending Permit Application Status Dashboard November 2020 Snapshot

Pending Application Status Dashboard Initial Observations - Snapshot (October 2019, cont.)

Completeness Determ. (Facility Action)	In Process		Awaiting Facility Action		Awaiting South Coast AQMD Action	
A/I Request Related App A/I Fee Resolution 14% 1% 1%	Evaluation and	41%	Compliance Review Draft Public Notice Distr. Conduct Source Test Awaiting Constr.	5% 1% < 1% 6% 3%	Supv/Mgr Review Related App Proc. Source Test Review Policy Review Field Eval Other Agency Rev. Public Notice HRA / Modeling	7% 5% 4% 3% 3% 1% < 1%

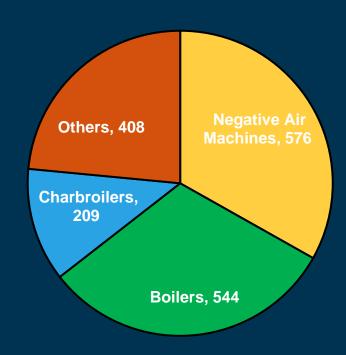
Pending Permit Application Status Dashboard April 21, 2020 Snapshot

Completeness Determ. (Facility Action)	In Process		Awaiting Facility Action		Awaiting South Coast AQMD Action	
Add. Info. (A/I) Req. 12% Related App A/I < 1% Fee Resolution < 1%	Engineering Evaluation and Administrative Processing	52%	Compliance Review Draft Public Notice Distr. Conduct Source Test Awaiting Constr.	1% 1% < 1% 5% 6%	Supv/Mgr Review Related App Proc. Source Test Review Policy Review Field Eval Other Agency Rev. Public Notice HRA / Modeling	8% 3% 1% 1% 1% < 1% < 1%

Pending Permit Application Status Dashboard November 20, 2020 Snapshot

Completeness Deter (Facility Action)		In Process		Awaiting Facility Action		Awaiting South Coast AQMD Action	
Related App A/I <	8% < 1% < 1%	Engineering Evaluation and Administrative Processing	57%	Compliance Review Draft CEQA Conduct Source Test Awaiting Constr.	< 1% < 1% 1% 4% 6%	Supv/Mgr Review Related App Proc. Source Test Review Policy Review Field Eval Other Agency Rev. Public Notice	10% 3% 3% 2% < 1% < 1%

Discussion / Improvement suggestions


Online Filing Update

Online Rule 222 Registration

- Three main registered equipment types
 - 222-A, Negative Air Machines (Asbestos)
 - 222-B, Boilers (1-2 mmbtu/hr)
 - 222-C, Commercial Charbroilers
- Represents ~ 80% of R222 Registrations
- Online Filing and Issuance

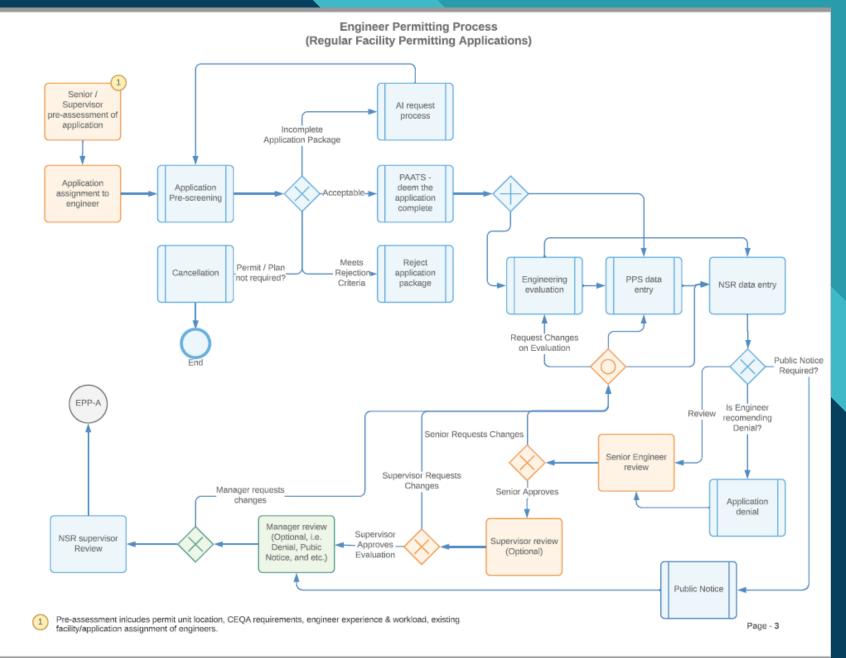
Average Annual Registrations (2016-19)



■ Negative Air Machines
■ Boilers
■ Charbroilers
■ Others

Online Filing Activity

- Good utilization of Negative Air Machine module
- Extended outreach to asbestos contractors
- Other modules limited activity due to recent current events
- Planned additional outreach to dry cleaners



Development

- New software releases for data cleanup
- Incorporate public notice guideline
- Emergency IC Engine registration in review
- Workflow updates
 - "As is" process review complete
 - Lessons learned in expanded teleworking environment

Workflow "As-Is" Process Flow

Permit Processing Handbook Update

Updating Permit Processing Handbook

Goals:

- Update handbook to reflect current requirements and practices
- Ensure consistent evaluation of similar equipment and resultant permit requirements
- Primary purpose for internal use for training new staff
 and to promote efficient permit processing and best practices
- Provide public and permit applicants insights to data needs and permit evaluation criteria

Table of Contents

- A. Introduction
- B. Permitting Authority
- C. Permit Processing Overview
- D. Permit Application Types and Completeness Considerations
- E. Emissions Characterization
- F. Regulatory Requirements- Overview
 - a. Federal and State Requirements
 - b. South Coast AQMD Rules
 - c. Regulatory Considerations
 - d. General Rules
 - e. Source-Specific Rules (Reg XI)

- G. Regulatory Requirements Detailed Review
 - a. Rule 212 Public Notice
 - b. Reg XIII: New Source Review
 - c. Reg XIV: Toxics and Other Non-Criteria Pollutants
- H. Permit Writing Guiding Principles
- I. Permit Evaluation Template

EMISSION SOURCE CHAPTERS

Equipment and Process Categories

Control Equipment

Progress

Commitment

- Overview sections
- Five equipment chapters:
 - ✓ Abrasive Blasting
 - ✓ Dry Cleaners
 - √ Emergency IC Engines
 - ✓ Gasoline Refueling
 - √Spray Booths

Progress

- Overview sections
- Equipment chapters:
 - ✓ Unconfined Abrasive Blasting
 - ✓ Dry Cleaners
 - ✓ Gasoline Service Stations
 - √ Spray Enclosure Fundamentals
 - ✓ Spray Enclosure Special Cases

Sample chapters (Gasoline Service Stations)

Gasoline Service Stations	2020
Table of Contents	
1.1 General Description	1
1.2 Process and Control Equipment	2
1.2.1 Equipment Description	6
1.3 Emission Factors	8
1.4 Calculations	9
1.4.1 Operational Data	9
1.4.2 Emissions Calculations	10
1.4.3 Rule 1401 Calculations	10
1.5 Rules Evaluation	13
1.6 Policy Documents	16
1.7 Permit Operating Conditions	16
1.8 References	48
Sample Evaluation	49

Gasoline Service Stations	2020
List of Tables Table 1-1. Gasoline Service Station Emission Factors	9
Table 1-2. Sample Emissions (Throughput = 300,000 gallons/month) List of Figures	10
Figure 1-1. Phase I and Phase II Fuel Transfer	3
Figure 1-2. Phase II EVR and ORVR Control	5
Figure 1-3. Sample MICR Calculation (Throughput = 300,000 gallons/month)	
Figure 1-4. Example MICR ₇₀ Table in Cancer Burden Tool	
Figure 1-5. Cancer Burden Tool	12
Figure 1-6. Cancer Burden Tool	13

Sample chapters (Gasoline Service Stations, cont.)

EMISSION FACTORS:

The hydrocarbon and benzene emissions from storage tank filling and motor vehicle refueling operations are estimated by using appropriate emission factors summarized in the following table. These emission factors were developed by District's Planning staff.

I. Emission Factors and Control Efficiencies

The following table summarizes the uncontrolled ROG emission factors in pounds per 1,000 gallons of gasoline throughput, benzene, ethylbenzene, and naphthalene content of gasoline and control efficiencies.

Emission Factors and Control Efficiencies for Underground Tanks

	Loading	Breathing	Refueling	Hose Permeation	Spillage (a)
		ROG (k)		
Uncontrolled ROG Emission Factors (lbs/1000 gallons)	7.70	0.76	8.4	0.009	0.24 (a)
Control Efficiency	98%	96.8%	96.2%	0%	0%
Controlled ROG Emission Factors (lbs/1000 gallons)	0.15	0.024	0.32	0.009	0.24
	Toxic Air C	Contaminants (TACs), weight	% (c)	
Benzene Emission Factors (lbs/1000 gallons)	0.455% 0.000683	0.455% 0.000109	0.455% 0.00146	0.455% 0.000041	0.707% 0.0017
Ethylbenzene Emission Factors	0.107% 0.000161	0.107% 0.0000257	0.107% 0.000342	0.107% 0.00000963	1.29% 0.0031

PROCESS DESCRIPTION:

The gasoline storage and dispensing facility is used to store and dispense three different grades of gasoline. This facility is equipped with CARB certified Phase I and Phase II vapor controls, which complies with Rule 461. Furthermore, these vapor controls are considered to be T-BACT, which complies with Rule 1401. Finally, the project will not result in a net emission increase and thus will comply with Reg. XIII.

EMISSION FACTORS:

The hydrocarbon and benzene emissions from storage tank filling and motor vehicle refueling operations are estimated by using appropriate emission factors summarized in the following table. These emission factors were developed by District's Planning staff.

I. Emission Factors and Control Efficiencies

The following table summarizes the uncontrolled ROG emission factors in pounds per 1,000 gallons of gasoline throughput, benzene, ethylbenzene, and naphthalene content of gasoline and control efficiencies.

Emission Factors and Control Efficiencies for Underground Tanks

	Loading	Breathing	Refueling	Hose Permeation	Spillage (a)	
	ROG (b)					
Uncontrolled ROG Emission Factors (lbs/1000 gallons)	7.70	0.76	8.4	0.009	0.24 (a)	
Control Efficiency	98%	96.8%	96.2%	0%	0%	
Controlled ROG Emission Factors (lbs/1000 gallons)	0.15	0.024	0.32	0.009	0.24	

Toxic Air Contaminants (TACs) weight % (c)

Sample chapters (Spray Booth, Fundamentals)

Table of Contents	
J(E).1 Introduction	
J(E).2.1 Fully-enclosed Spray Booths (Cross Draft, Semi-downdraft, Side-down	
Downdraft)	
J(E).2.1.1 Cross Draft	5
J(E).2.1.2 Semi-downdraft	6
J(E).2.1.3 Side-downdraft	6
J(E).2.1.4 Downdraft	7
J(E).2.2 Prep Stations (Cross draft, Semi-Downdraft, Downdraft, Portable)	8
J(E).2.3 Floor Type	8
J(E).2.4 Bench Type	9
J(E).2.5 Spray Machine	10
J(E).2.6 Inflatable Spray Booth/Membrane Spray Enclosure	10
J(E).3 Permit Boundaries	11
J(E).4 Emission Control Techniques	13
J(E).4.1 Particulate Matter (PM) Control Techniques	13
J(E).4.2 Volatile Organic Compound (VOC) Control Techniques	14
J(E).4.3 Control Equipment Efficiencies	14
J(E).5 Exhaust Airflow	15
J(E).5.1 To the outside atmosphere via exhaust stack	15
J(E).5.1.1 Stack Height	15
J(E).5.1.2 Orientation	16
J(E).5.1.3 Weather Hoods	16
J(E).5.2 To a non-integral control device	18
J(E).5.3 Back into the building	18
J(E).6 Safety Data Sheets (SDS), Environmental Data Sheets (EDS), and Tec Data Sheets (TDS)	
J(E).7 Toxics Evaluation Considerations	19
J(E).7.1 Materials used	19
J(E).7.2 Emission control techniques	20
J(E).8 Operating Schedules	21
J(E).9 Engineering Evaluation Methodology	21

Spray Enclosures Part 1- Fundamentals	2020
J(E).9.1 Equipment Description	21
J(E).9.2 Process Description	22
J(E).9.3 Permit Limits	23
J(E).9.4 Emission Calculations and Analysis	24
J(E).9.4.1 Emissions from the use of Liquid Coatings	24
J(E).9.4.2 VOC and PM Emissions Calculations	26
J(E).9.4.3 Toxic PM and VOC Emissions Calculations	28
J(E).9.4.4 Combustion Emissions (from Heated Spray Enclosures)	33
J(E).9.4.5 Ventilation Calculations	38
J(E).9.5 Applicable Rules	40
J(E).9.6 Permit Conditions	41
J(E).10 References	50
J(E).11 Sample Evaluation	51

Spray Enclosures Part 1- Fundamentals	2020
List of Tables	
Table J(E)-1. Summary of control equipment efficiencies	15
Table J(E)-2. Expected transfer efficiencies for different spray application meth	
relatively flat surfaces; may be significantly less for other part geometries)	25
Table J(E)-3. Emission factors for natural-gas fired combustion equipment	
Table J(E)-4. Sample exhaust fan performance chart.	39
List of Figures	
Figure J(E)-1. Cross Draft Spray Booth (top view with roof cut out)	5
Figure J(E)-2. Semi-downdraft Spray Booth (side view)	
Figure J(E)-3. Side-downdraft Spray Booth (side view)	
Figure J(E)-4. Downdraft Spray Booth (side view)	
Figure J(E)-5. Cross Draft Prep Station (top view with roof cut out)	
Figure J(E)-6. Floor Type Spray Booth (front view)	9
Figure J(E)-7. Bench Type Spray Booth (front view)	
Figure J(E)-8. Example permit boundary determinations. Dashed lines represer	nt
temporary partitions (e.g. curtains). Solid lines represent permanent partitions (e.g. walls).
Figure J(E)-9. Diverted exhaust stack with vertical discharge	
Figure J(E)-10. Exhaust Stack with Butterfly Damper	
Figure J(E)-11. Conical rain cap	
Figure J(E)-12 LNB 500 Gas Train Assembly	
Figure J(E)-13. LNB 1000 Gas Train Assembly	36

Sample chapters (Spray Booth, Fundamentals, cont.)

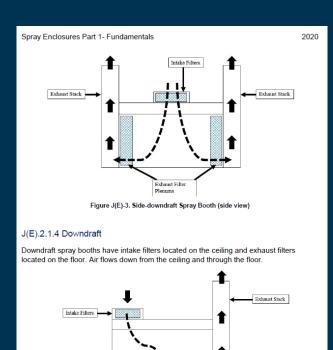
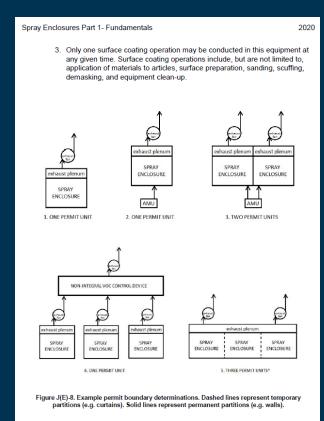



Figure J(E)-4. Downdraft Spray Booth (side view)

Exhaust Filter

Spray Enclosures Part 1- Fundamentals

020

Table J(E)-1. Summary of control equipment efficiencies

Control Method	Type of Emissions Controlled	Control Efficiency
Fiberglass, Panel, GFS Wave, Paint Pockets, Accordion Filters (Andreae), Pocket	РМ	90%
Water-wash Curtains	PM	90%
Baghouse	PM	99%
Cartridge	PM	99%
HEPA	PM	minimum of 99.97% at 0.3 microns
ULPA	PM	minimum of 99.999% at 0.12 microns
Scrubber	PM	determined via source test
Thermal Oxidizer	VOC	minimum efficiency required per Regulation XI, determined via source test
Carbon Adsorber	VOC	determined via source test

J(E).5 Exhaust Airflow

There are three ways that air is exhausted from a spray enclosure: (1) vented to the outside atmosphere; (2) vented to a non-integral control device; or, (3) vented back into the building. The direction of the exhaust air is important because it will affect dispersion of the exhaust constituents and, therefore, how the health risk from toxic materials is calculated.

J(E).5.1 To the outside atmosphere via exhaust stack

The exhaust stack height, orientation, and weather hood type will affect how emissions are discharged and dispersed. This equipment is treated as a point source for health risk assessment calculations.

J(E).5.1.1 Stack Height

Stack height is measured from the ground elevation to the top of the stack. If the stack is above a roof, the discharge point must be at least 6 feet above the roof surface (per fire code). If stack height is not provided, it is permissible to assume stack height = building

Next Steps

Early 2021

- Confined Abrasive Blasting
- Dry Particulate Controls
- Crematories
- Emergency IC Engines

Additional Chapters

- Boilers, SCRs
- Petroleum Storage Tanks
- Asphalt, Concrete Batch Plants
- Lead Melting
- IC Engines
- Printing Operations
- RTOs, Refinery Flares, Bulk Loading/Unloading
- Carbon Adsorbers

Feedback

- Volunteers to review and provide feedback on:
 - Gasoline dispensing facilities
 - Spray booth
- Type of feedback
 - Level of detail
 - Format / readability
 - Clarification points
 - Additional supporting references / citations

Other Business

Public Comment