APPENDIX H

GEOLOGIC EVALUATIONS AND ESTIMATES

H-1 PRELIMINARY STABILITY EVALUATION OF NORTH SLOPE

H-2 EQFAULT'CPCN[UKU

"""J /5""TGXKUGF I GQVGEJ PKECN'GXCWNCVKQP"

APPENDIX H-1

PRELIMINARY STABILITY EVALUATION OF NORTH SLOPE

April 2, 2009

Project 14828.000.0

Mr. Jerry Canfield Howard R. Green Company 2550 University Avenue W., Suite 400N St. Paul, MN 55144

Subject: Preliminary Stability Evaluation of North Slope Sunshine Gas Producers Landfill Gas to Energy Project Sunshine Canyon Landfill Sylmar, California

Dear Mr. Canfield:

At your request, AMEC Geomatrix, Inc. (AMEC) has performed a preliminary stability evaluation of the north slope adjacent to the proposed Landfill Gas to Energy Project (the project) at the Sunshine Canyon Landfill (SCL) in Sylmar, California. The purpose of the preliminary stability evaluation, a summary of known site conditions, and details and results of the evaluation are provided below.

PURPOSE

AMEC is being retained to conduct a geologic and geotechnical investigation for the project. In the process of preparing our original proposal dated February 13, 2009 (and then revised on March 26, 2009), we reviewed available geotechnical reports for the SCL and found that the north-facing slope (down-slope from Flare No. 8, and referred to herein as "the north slope") adjacent to the project site has historically exhibited some slope instability. This could significantly impact the design of the facility layout and the grading required to prepare the site. GeoSyntec (1998) previously evaluated the stability of the north slope as part of their geotechnical report for the construction of Flare No. 8 at the top of the north slope. GeoSyntec indicated the stability of the north slope was slightly below LA County's design criteria and recommended minor grading at the toe of the north slope to increase its stability. Since 1998, two key conditions have changed from those evaluated by GeoSyntec (1998) that impact the stability of the north slope. First, SCL operations re-graded the face and toe of the north slope in 2007-2008. Second, more recent work by A-Mehr (2006, 2008) provides updated geologic and geotechnical models of the SCL site that differ notably from that used by GeoSyntec (1998). The purpose of our preliminary work was to re-evaluate the stability of the north slope using the re-graded condition of the north slope and the updated geologic and geotechnical models by A-Mehr (2006, 2008).

AMEC Geomatrix, Inc. 510 Superior Avenue, Suite 200 Newport Beach, CA USA 92663-3627 Tel (949) 642-0245 Fax (949) 642-4474 www.amecgeomatrixinc.com

CURRENT UNDERSTANDING OF SITE CONDITIONS

AMEC visited the site twice in preparation of our proposal. The first visit was with the Sunshine project team and the second visit was to obtain more site information, including reviewing existing reports in the SCL library and meeting with Ms. Susan Jennings of SCL. With the assistance of Howard R. Green Company, AMEC has obtained relevant information from the following existing reports:

- PRA Group (1991) Geotechnical Study for Proposed Water Tank Pad: This study provided limited subsurface information near and on top of the ridge of the north slope.
- GeoSyntec Consultants (1998) Geotechnical Recommendations for Flare No. 8
 Pad Construction: This primarily evaluated the static and seismic stability of the
 south and north descending slopes of the ridge and provided grading
 recommendations for the ridge top. GeoSyntec indicated a portion of the north slope
 did not meet stability criteria and provided conceptual grading plans for a small soil
 buttress at the toe of the north slope. It is not known whether the buttress was
 constructed. GeoSyntec also mapped an inferred landslide on a portion of the north
 slope.
- GeoSyntec Consultants (2001) Phase II-C Grading Design: This document included the results of a geologic investigation and static and seismic stability evaluation of the proposed base grade slopes in Phase II-C (located directly south and east of the upper site).
- A-Mehr (2006) Geologic Report and Slope Stability Analyses for Phases V-VIII: This revised report (revisions were in response to comments from the Los Angeles County Department of Public Works, California Regional Water Quality Control Board, and California Integrated Waste Management Board) provides results of a geologic investigation and stability analyses for proposed cut slopes along the eastern boundary of the County expansion of the SCL, which is approximately 2400 feet east of our project site.
- A-Mehr (2008) Final Report of Construction Quality Assurance for Phase V-A: This report contains grading information (i.e., overexcavation limits and fill compaction test results) for Phase V-A, which includes a portion of the site.

AMEC has reviewed portions of the above reports and used relevant information in preparing our proposal and completing the preliminary stability evaluation. Based on our current understanding of site conditions, the key issues for re-evaluating the north slope are:

1. The project area and north slope lie within an earthquake-induced landslide zone designated by the California Geological Survey (CGS). As a consequence, LA

County will require our report to address all relevant issues in Special Publication (SP) 117 developed by CGS, including evaluating the stability of the north slope.

- 2. The SCL operations have re-graded the north slope. Some areas of slope appear flatter and a portion of the slope is steeper where landslide material has been removed (as indicated by Susan Jennings of SCL).
- 3. There are two important discrepancies between the GeoSyntec (1998) and A-Mehr (2006, 2008) reports, which are the dip of the bedrock bedding in the north slope and the cross-bedded strength of the bedrock materials at the project site. Both may have a significant impact on the stability of the north slope. A-Mehr (2008) indicates the beds are dipping steeper than reported by GeoSyntec (1998). GeoSyntec used significantly higher bedrock strengths than A-Mehr (2006) for the site. Based on our review, we anticipate the stability results for the north slope by GeoSyntec (1998) may be unconservative. The strengths used by A-Mehr (2006) are those recommended by USGS, are the most recently used at the SCL, and would need to be used by AMEC for the project if no bedrock strength testing was performed. We have included, as an optional scope in our proposal, to specifically evaluate the strength of bedrock in the north slope.

PRELIMINARY STABILITY ANALYSIS

A short summary of the methodology, shear strengths, and results of our preliminary stability analysis of the north slope are provided below.

Methodology

Per the project team's request, AMEC performed preliminary stability analyses on the north slope using the A-Mehr (2006) bedrock strengths and varying the dip of the bedrock bedding to encompass the difference in dips reported by GeoSyntec (1998) and A-Mehr (2008). Two-dimensional limit-equilibrium analyses were performed to evaluate the global stability of the north slope and compute a Factor of Safety (FS) against sliding. The computer program Slope/W (Geo-Slope, 2004) was used to perform Spencer's limit-equilibrium analysis method because it satisfies both force and moment equilibrium, and accounts for inter-slice forces. Slope/W is a commercially available computer program with a comprehensive formulation that makes it possible to analyze complex geometric configurations and loading conditions.

In terms of slope stability, the FS against sliding is defined as the ratio of resulting forces (friction and cohesion along a potential failure surface) to driving forces (gravitational forces pulling downslope). A FS of unity (1.0) indicates a delicate balance between the resisting and driving forces and represents incipient failure. Factors of Safety below unity indicate instability. For the limit-equilibrium analyses, the minimum static FS of slope stability was evaluated. The

calculated static FS was compared to LA County's criterion of a FS \ge 1.5 for long-term static stability.

AMEC preliminarily evaluated the static stability of the north slope at two cross sections for several different conditions. These conditions included:

- variation in dipping of bedding,
- variation in location of potential clay seams within the north slope,
- with and without the presence of clay seams, and
- block- and circular-type failure surfaces.

Shear Strength Parameters

The key shear strengths that control the stability of the north slope are associated with interbedded clay seams and across bedding within the Towsley Formation. The strength of the clay seams at the SCL site has been thoroughly evaluated and reported by several consultants. The shear strength parameters used for the clay seams are a cohesion of 400 pounds per square foot (psf) and a friction angle of 14 degrees. These strengths were obtained by back-calculating pre-existing landslides in the SCL area and have been used in several geotechnical investigations at the SCL. It appears these consultants have assumed in their stability analyses that clay seams can be present anywhere within the slopes analyzed. The regulatory agencies (including LA County) are familiar with the clay seam strengths and have approved consultant reports using these strengths. As such, we used the established clay seam strength in our preliminary stability analyses and plan to use them in subsequent analyses.

As discussed above, at least two different cross-bedded bedrock strengths of the Towsley Formation that have been used to evaluate the stability of existing and cut slopes at SCL: one by GeoSyntec (1998, 2001) and one by A-Mehr (2006). GeoSyntec performed unconfined compression and UU triaxial tests on bedrock samples collected from the sedimentation basins in 1997. Results of these tests provided very high bedrock strengths. A-Mehr (2006) used much lower bedrock strengths provided in USGS Open File Report 98-113 for a small study area that includes the SCL site. The USGS publication compiled results from numerous direct shear strength tests and opinions from many experienced professionals in the area. The USGS bedrock strengths represent a broad agreement from many sources and have been considered and reviewed by LA County. For these reasons, we used the same cross-bedded bedrock strength parameters as used in A-Mehr (2006) which were a cohesion of 550 psf and a friction of 34 degrees. We will use these same strengths in subsequent analyses unless we perform bedrock strength testing specific to the north slope (optional scope in our proposal).

Results

AMEC evaluated approximately 10 stability scenarios for our preliminary analysis, which represent combinations of the different conditions described in the methodology section above. Results of our analysis indicate the north slope has a FS \leq 1.0 for most of the scenarios analyzed, which means portions of the north slope are at incipient failure (as graded) or the current geologic model and/or material strengths may need some small revisions. The landslide on the north slope previously identified by GeoSyntec (1998) supports the instability of this slope. In one scenario, we unconservatively assumed no shallow clay seams exist in the north slope. The FS for this scenario was approximately 1.25, which is also below the design criteria required by LA County. Based on these results, we make the following observations:

- The north slope likely will not meet stability design criteria and will need to be stabilized.
- The lower bedrock strengths by A-Mehr (2006) significantly lower the FS against landsliding.
- The dip of bedding has notable effects on the FS of the slope and the amount of stabilization required. We will use the results of our proposed field exploration program to try to resolve the discrepancy in dip of bedding.
- The presence and locations of clay seams within the north slope can significantly influence the FS and amount of stabilization required. One objective of our field exploration program is to evaluate the quantity and extent of clay seams within the north slope.
- The removal of landslide material by SCL has oversteeped a portion of the north slope and has reduced stability.
- Results of our field exploration program could significantly affect the results of our stability analyses and scope and cost of potential stabilization measures.

As part of our preliminary analysis, we also evaluated a couple of rough-order-magnitude mitigation scenarios to stabilize the north slope using a soil buttress. The soil buttress was configured (in section) to provide sufficient flat area to build the facility as shown in Scheme 6A. These results suggest the existing canyon (where the facility is proposed) may need to be backfilled to near the mid-height of the north slope to achieve adequate FS. These results should be considered preliminary and may change based on the geologic model we develop as part our investigation.

REFERENCES

- A-Mehr, Inc., 2006, Geologic Report and Slope Stability Analyses Sunshine Canyon County Extension Landfill Phases V-VII, Report prepared for Browning-Ferris Industries, November.
- A-Mehr, Inc., 2008, Final Report of Construction Quality Assurance for Sunshine Canyon County Extension Landfill Phase V-A, Report prepared for Browning-Ferris Industries, July.
- Geo-Slope International, Ltd., 2004, Slope/W, GeoStudio 2004: Software for Geotechnical and GeoEnvironmental Modeling, Calgary.
- GeoSyntec Consultants, 1998, Geotechnical Recommendations Flare No. 8 Pad Construction, Report prepared for Browning-Ferris Industries of California, Inc., June.
- GeoSyntec Consultants, 2001, Phase II-C Grading Design Sunshine Canyon County Extension Landfill, Report prepared for Browning-Ferris Industries, February.
- PRA Group Consulting Engineers, 1991, Geotechnical Study Proposed Water Tank Pad Sunshine Canyon Landfill Extension, Report prepared for Browning-Ferris Industries of California, Inc., October 16.

We appreciate the opportunity to provide our services to the project team. If you have any questions regarding the preliminary stability evaluation described herein, please do not hesitate to call the undersigned at (949) 642-0245.

Sincerely, AMEC Geomatrix, Inc.

. C. Kouseler

Timothy C. Keuscher, PE, GE Principal Geotechnical Engineer

APPENDIX H-2

EQFAULT'CPCN[UKU

Fault Distances.txt

DETERMINISTIC ESTIMATION OF PEAK ACCELERATION FROM DIGITIZED FAULTS

JOB NUMBER: 9842-0000

DATE: 04-01-2010

JOB NAME: Test Run

CALCULATION NAME: Test Run Analysis

FAULT-DATA-FILE NAME: C:\Program Files\EQFAULT1\CGSFLTE.DAT

SI TE COORDI NATES: SI TE LATI TUDE: 34. 3300 SI TE LONGI TUDE: 118. 5200

SEARCH RADIUS: 100 mi

ATTENUATION RELATION: 23) Abrahamson & Silva (1995b/1997) Horiz. - Soil UNCERTAINTY (M=Median, S=Sigma): M Number of Sigmas: 0.0 DISTANCE MEASURE: clodis SCOND: 0 Basement Depth: 5.00 km Campbell SSR: Campbell SHR: COMPUTE PEAK HORIZONTAL ACCELERATION

FAULT-DATA FILE USED: C:\Program Files\EQFAULT1\CGSFLTE.DAT

MINIMUM DEPTH VALUE (km): 0.0

Fault Distances.txt

EQFAULT SUMMARY

DETERMINISTIC SITE PARAMETERS

Page 1

		ESTI MATED	MAX. EARTHQU	JAKE EVENT
ABBREVI ATED FAULT NAME	DI STANCE mi (km)	MAXI MUM EARTHQUAKE MAG. (Mw)	PEAK SI TE ACCEL. g	EST. SITE INTENSITY MOD.MERC.
SANTA SUSANA SI ERRA MADRE (San Fernando) NORTHRI DGE (E. Oak Ri dge) SAN GABRI EL HOLSER VERDUGO SI MI - SANTA ROSA OAK RI DGE (Onshore) SI ERRA MADRE SAN CAYETANO HOLLYWOOD SANTA MONI CA UPPER ELYSI AN PARK BLI ND THRUST MALI BU COAST NEWPORT-I NGLEWOOD (L. A. Basi n) RAYMOND ANACAPA-DUME PUENTE HI LLS BLI ND THRUST SAN ANDREAS - Moj ave M-1c-3 SAN ANDREAS - Moj ave M-1c-3 SAN ANDREAS - Noj ave M-1c-3 SAN ANDREAS - 1857 Rupture M-2a SAN ANDREAS - 1857 Rupture M-2a SAN ANDREAS - Carri zo M-1c-2 PALOS VERDES CLAMSHELL-SAWPI T SANTA YNEZ (East) VENTURA - PI TAS POI NT WHI TTI ER M. RI DGE-ARROYO PARI DA-SANTA ANA GARLOCK (West) SAN JOSE PLEI TO THRUST CUCAMONGA OAK RI DGE (BI I nd Thrust Offshore) RED MOUNTAI N OAK RI DGE MI D-CHANNEL STRUCTURE CHANNEL IS. THRUST (Eastern) BI G PI NE CHI NO-CENTRAL AVE. (EI si nore) SAN JOAQUI N HI LLS	$\begin{array}{c} 0. \ 9(\ 1. \ 5)\\ 2. \ 7(\ 4. \ 3)\\ 3. \ 1(\ 5. \ 0)\\ 5. \ 1(\ 8. \ 2)\\ 5. \ 8(\ 9. \ 4)\\ 7. \ 4(\ 11. \ 9)\\ 9. \ 3(\ 15. \ 0)\\ 12. \ 4(\ 20. \ 0)\\ 13. \ 7(\ 22. \ 0)\\ 13. \ 7(\ 22. \ 0)\\ 15. \ 7(\ 25. \ 2)\\ 17. \ 0(\ 27. \ 3)\\ 18. \ 7(\ 30. \ 1)\\ 19. \ 8(\ 31. \ 8)\\ 19. \ 9(\ 32. \ 1)\\ 21. \ 2(\ 34. \ 1)\\ 21. \ 9(\ 35. \ 3)\\ 22. \ 3(\ 35. \ 9)\\ 22. \ 4(\ 36. \ 1)\\ 23. \ 5(\ 37. \ 8)\\ 23. \ 5(\ 57. \ 1)\\ 37. \ 1(\ 59. \ 7)\\ 38. \ 1(\ 61. \ 3)\\ 39. \ 8(\ 64. \ 0)\\ 40. \ 7(\ 65. \ 5)\\ 40. \ 9(\ 65. \ 8)\\ 43. \ 3(\ 69. \ 7)\\ 43. \ 6(\ 70. \ 2)\\ 43. \ 6(\ 70. \ 2)\\ 43. \ 6(\ 70. \ 2)\\ 43. \ 6(\ 70. \ 2)\\ 43. \ 8(\ 70. \ 5)\\ 47. \ 7(\ 76. \ 7)\\ 55. \ 2(\ 88. \ 9)\\ 47. \ 7(\ 76. \ 7)\\ 55. \ 2(\ 88. \ 9)$	$\begin{array}{c}\\ 6.7\\ 6.7\\ 7.0\\ 7.2\\ 6.5\\ 6.9\\ 7.0\\ 7.0\\ 7.0\\ 7.0\\ 7.2\\ 7.0\\ 6.4\\ 6.6\\ 4.6\\ 6.4\\ 6.7\\ 7.1\\ 6.5\\ 7.5\\ 7.1\\ 6.5\\ 7.1\\ 6.5\\ 7.1\\ 6.8\\ 7.8\\ 7.8\\ 7.8\\ 7.4\\ 7.3\\ 6.5\\ 7.1\\ 6.9\\ 7.1\\ 6.9\\ 7.1\\ 7.0\\ 6.6\\ 7.5\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 6.9\\ 7.6\\ 7.6\\ 6.9\\ 7.6\\ 7.5\\ 7.6\\ 7.5\\ 7.6\\ 7.5\\ 7.5\\ 7.5\\ 7.5\\ 7.5\\ 7.5\\ 7.5\\ 7.5$	$\begin{array}{c} 0. \ 622 \\ 0. \ 526 \\ 0. \ 523 \\ 0. \ 353 \\ 0. \ 347 \\ 0. \ 323 \\ 0. \ 282 \\ 0. \ 227 \\ 0. \ 224 \\ 0. \ 190 \\ 0. \ 145 \\ 0. \ 143 \\ 0. \ 127 \\ 0. \ 143 \\ 0. \ 127 \\ 0. \ 143 \\ 0. \ 127 \\ 0. \ 140 \\ 0. \ 125 \\ 0. \ 120 \\ 0. \ 125 \\ 0. \ 120 \\ 0. \ 125 \\ 0. \ 120 \\ 0. \ 125 \\ 0. \ 120 \\ 0. \ 125 \\ 0. \ 120 \\ 0. \ 125 \\ 0. \ 120 \\ 0. \ 125 \\ 0. \ 120 \\ 0. \ 125 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 125 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 120 \\ 0. \ 0. \ 120 \\ 0. \ 0. \ 120 \\ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0$	X X X X X X X X X X X X X X X X X X X

Fault Distances.txt

DETERMINISTIC SITE PARAMETERS

Page 2

ABBREVIATED FAULT NAME DI STANCE MAXI MUM mi (km) EARTHQUA MAG. (Mw	E PEAK KE SI TE D ACCEL. g E E E E E E E E E E E E E E E E E E E	EST. SITE INTENSITY MOD. MERC.
	0. 077	
WHI TE WOLF55. 4(89. 2)7. 3SAN JACI NTO-SAN BERNARDI NO58. 0(93. 4)6. 7SAN ANDREAS - SB-Coach. M-1b-258. 3(93. 9)7. 7SAN ANDREAS - San Bernardi no M-158. 3(93. 9)7. 7SAN ANDREAS - SB-Coach. M-2b58. 3(93. 9)7. 7ELSI NORE (GLEN I VY)60. 1(96. 8)6. 8CLEGHORN60. 3(97. 0)6. 5SANTA CRUZ I SLAND61. 6(99. 2)7. 1NORTH CHANNEL SLOPE64. 3(103. 5)7. 1NORTH FRONTAL FAULT ZONE (West)74. 1(114. 9)7. 2GARLOCK (East)74. 1(119. 2)7. 3LENWOOD-LOCKHART-OLD WOMAN SPRGS75. 2(121. 0)7. 5SAN JACI NTO-SAN JACI NTO VALLEY76. 6(123. 2)6. 9CORONADO BANK80. 8(130. 0)7. 6So. SI ERRA NEVADA88. 2(141. 9)7. 3GRAVEL HI LLS - HARPER LAKE88. 3(142. 1)7. 1LOS ALAMOS-W. BASELI NE90. 5(145. 7)6. 9BLACKWATER97. 1(156. 2)7. 1NORTH FRONTAL FAULT ZONE (East)98. 0(157. 7)6. 7SAN JUAN99. 7160. 5)7. 1	$ \begin{array}{c} 0.\ 043\\ 0.\ 073\\ 0.\ 065\\ 0.\ 073\\ 0.\ 044\\ 0.\ 037\\ 0.\ 060\\ 0.\ 050\\ 0.\ 050\\ 0.\ 056\\ 0.\ 048\\ 0.\ 070\\ 0.\ 055\\ 0.\ 048\\ 0.\ 055\\ 0.\ 048\\ 0.\ 053\\ 0.\ 053\\ 0.\ 049\\ 0.\ 032\\ 0.\ 052\\ 0.\ 036\\ 0.\ 040\\ 0.\ 033\\ 0.\ 032\\ 0.\ 033\\ 0.\ 032\\ 0.\ 033\\ 0.\ 032\\ 0.\ 033\\ 0.\ 0.\ 033\\ 0.\ 0.\ 033\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	VI I VI VI VI VI VI VI VI VI VI VI VI VI VI

-END OF SEARCH- 65 FAULTS FOUND WITHIN THE SPECIFIED SEARCH RADIUS. THE SANTA SUSANA FAULT IS CLOSEST TO THE SITE. IT IS ABOUT 0.9 MILES (1.5 km) AWAY.

LARGEST MAXIMUM-EARTHQUAKE SITE ACCELERATION: 0.6219 g

APPENDIX H-5

TGXKUGF'I GQVGEJ PKECN'GXCNWCVKQP

GEOLOGIC AND GEOTECHNICAL INVESTIGATION REPORT

Sunshine Gas Producers Landfill Gas to Energy Project Sunshine Canyon Landfill

Sylmar, California

Prepared for:

HR Green, Inc. 2550 University Avenue West, Suite 400N St. Paul, Minnesota 55144

Prepared by:

AMEC

510 Superior Avenue, Suite 200 Newport Beach, California 92663 (949) 642-0245

November 15, 2011

Project No. 14828.000.0

GEOLOGIC AND GEOTECHNICAL INVESTIGATION REPORT Sunshine Gas Producers

Landfill Gas to Energy Project Sunshine Canyon Landfill Sylmar, California

November 15, 2011 Project 0148280000

This report was prepared by the staff of AMEC under the supervision of the Engineer(s) and/or Geologist(s) whose seal(s) and signature(s) appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Exp. 6/30/ Timothy C. Keuscher, PE, GE

Principal Geotechnical Engineer

C 66927

No. GE 2534

M. Bora Baturay, PhD, PB

Mark W. McLarty, CEG Associate Engineering Geologist

TABLE OF CONTENTS

Page

1.0	INTRC	DUCTION	1
2.0	PROJE 2.1 2.2 2.3 2.4	ECT DESCRIPTION AND BACKGROUND TOPOGRAPHIC SETTING PREVIOUS DEVELOPMENT PROPOSED DEVELOPMENT PREVIOUS GEOTECHNICAL INVESTIGATIONS	2 2 3 4
3.0	FIELD 3.1 3.2 3.3 3.4	INVESTIGATION AND LABORATORY TESTING PRE-DRILLING ACTIVITIES EXPLORATORY BORINGS	5 6 6 6 7 7
4.0	SUBS 4.1 4.2	JRFACE CONDITIONS REGIONAL GEOLOGY LOCAL GEOLOGIC CONDITIONS 4.2.1 Artificial Fill (Af): 4.2.2 Alluvial Deposits (Qal): 4.2.3 Residual Soil (No Map Symbol): 4.2.4 Colluvium (Qcol): 4.2.5 Shallow Slumps (Qs) and Surficial Failure Scars (Qsf) 4.2.6 Landslide Debris (Qls): 4.2.7 Towsley Formation (Ttos): 4.2.8 Summary of Local Geologic Conditions SOIL ENGINEERING PARAMETERS 4.3.1 Existing Fill 4.3.2 Bedrock 4.3.2.1 Highly Weathered Bedrock 4.3.2.3 UnOxidized Bedrock 4.3.2.4 Proposed Fill	8 9 10 11 11 12 13 14 16 18 18 18 18 19 20
	4.4	GROUNDWATER	21
5.0	SEISM 5.1 5.2 5.3 5.4	IIC CONSIDERATIONS REGIONAL TECTONIC SETTING SEISMIC DESIGN PARAMETERS VERTICAL GROUND MOTION RESPONSE SPECTRA SEISMIC HAZARDS	22 22 22 23 23
6.0	SLOPE 6.1 6.2 6.3	E STABILITY EVALUATION LIMIT-EQUILIBRIUM ANALYSIS INFINITE SLOPE STABILITY ANALYSIS ACCEPTANCE CRITERIA	24 24 25 25

TABLE OF CONTENTS (continued)

	6.4	CROSS SECTIONS AND SLOPE CONFIGURATIONS	26
	6.5	SEISMIC COEFFICIENT FOR PSEUDO-STATIC STABILITY	27
	6.6	SLOPE STABILITY ANALYSIS RESULTS	27
7.0	DESIC	ON RECOMMENDATIONS	28
	7.1	EARTHWORK	29
		7.1.1 Site Preparation	29
		7.1.2 Subgrade Preparation	29
		7.1.3 Fill Materials and Compaction Criteria	29
		7.1.3.1 Open-Graded Crushed Rock	30
		7.1.3.2 Aggregate Base	30
		7.1.3.3 Engineered Fill/Backfill Behind Walls	31
		7.1.3.4 Sand Cement Slurry	31
		7.1.4 Drainage and Debris Control	32
		7.1.5 Reinforcement for Proposed Fill Slope	33
	7.2	SHALLOW FOUNDATIONS	33
	7.3	MOISTURE BARRIER BELOW FLOOR SLABS	34
	7.4	MAT FOUNDATIONS	34
	7.5	RETAINING WALLS AND LATERAL EARTH PRESSURES	35
	7.6	PIPELINES	36
		7.6.1 Nomenclature	36
		7.6.2 Bearing Capacity and Settlement	36
		7.6.3 Bedding Material	37
		7.6.4 Pipe Zone Backfill	37
		7.6.5 Trench Zone Backfill	37
		7.6.6 Backfill Placement and Compaction Requirements	37
	7.7	CORROSION AND CHEMICAL ATTACK RESISTANCE	38
	7.8	CONFORMANCE WITH SECTION 111 OF THE L.A. COUNTY BUILDING CODE	39
80	CONS	TRUCTION CONSIDERATIONS	39
	8.1	EXCAVATION DIFFICULTY	39
	8.2	Dewatering	39
	8.3	CONSTRUCTION SLOPES	39
9.0	CLOS	URE	40
10.0	REFE	RENCES	40

TABLE OF CONTENTS (continued)

TABLES

- Table 1Summary of Laboratory Test Results
- Table 2Shear Strength Parameters Used in Analyses
- Table 3
 Summary of Groundwater Elevation Data
- Table 4
 Summary of Slope Stability Analysis Results
- Table 5
 Crushed Rock Gradation
- Table 6Select Sand Gradation

FIGURES

- Figure 1 Site Location Map
- Figure 2 Proposed Site Layout Scheme 10B
- Figure 3 Boring Location and Geologic Map
- Figure 4 Geologic Cross Sections 1, 2, 3, and 4
- Figure 5 Geologic Cross Sections 5,6,7,8, and 9
- Figure 6 Regional Geology Map
- Figure 7 Shear Strength Envelope Existing Fill
- Figure 8 Shear Strength Envelope Bedrock
- Figure 9 Shear Strength Envelope Proposed Fill
- Figure 10 Seismic Hazard Zones
- Figure 11 Reinforcement Layout and Details
- Figure 12 Typical Benching Details into Existing Slopes

APPENDIXES

- Appendix A Boring Logs
- Appendix B Laboratory Testing
- Appendix C Aerial Photographs
- Appendix D Slope Stability Analysis Results
- Appendix E Infinite Slope Stability Analysis Package

GEOLOGIC AND GEOTECHNICAL INVESTIGATION REPORT

Sunshine Gas Producers Landfill Gas to Energy Project Sunshine Canyon Landfill Sylmar, California

1.0 INTRODUCTION

AMEC Geomatrix, Inc. (AMEC) conducted a geologic and geotechnical investigation for the future Landfill Gas to Energy Project (LGEP) on behalf of HR Green, Inc. (HRGreen) and Sunshine Gas Producers (SGP). The project site is located at the Sunshine Canyon Landfill (SCL) in Sylmar, California. HRGreen is contracted by SGP and is currently designing the LGEP and developing the layout plans. Our investigation incorporated the latest version of the plans (Scheme 10B) available at the time of the investigation. This report presents the results of the geologic and geotechnical investigation performed by AMEC. The location of the site is shown on Figure 1.

AMEC performed this geologic and geotechnical investigation on behalf of HRGreen and SGP and in general accordance with the agreement between AMEC and HRGreen. The key objectives of the geotechnical investigation were to:

- 1. Characterize the geology, soil, and groundwater conditions within the project site;
- 2. Evaluate static and seismic stability of the slopes descending into the project site; and
- 3. Provide geotechnical design recommendations for the proposed facilities.

To accomplish above objectives, AMEC (with the assistance of several subcontractors) performed the following scope of work:

- Compiled and reviewed available geotechnical reports specific to the vicinity of the project site. Reviewed pertinent, available geologic and geotechnical information contained in the files of public agencies such as the California Geological Survey (CGS) and United States Geological Survey (USGS);
- Performed field exploration consisting of geologic mapping of existing bedrock exposures, and logging of bucket auger borings, rock core boring, and hollow-stem auger borings;

- Prepared a geologic map of the project site and surrounding area;
- Performed laboratory testing to characterize the engineering properties of existing and proposed fill materials and of bedrock encountered at the site;
- Performed geologic and geotechnical engineering analyses and developed geotechnical recommendations; and
- Prepared this geologic and geotechnical investigation report.

2.0 PROJECT DESCRIPTION AND BACKGROUND

The proposed project is situated in the northerly portion of the SCL site. SCL is located in the easterly margins of the Santa Susana Mountains immediately north of the community of Granada Hills in Los Angeles County. Primary access to the project site is from the south is by way of the main landfill entrance located at the intersection of San Fernando Road and Sunshine Canyon Road and by an unpaved access road that traverses the perimeter of the active landfill. Northerly access is by unpaved roads that include the Weldon Canyon and Sunshine Motorways, which extend south from Coltrane Avenue and the Golden State Freeway to the north.

2.1 TOPOGRAPHIC SETTING

The SCL is situated within the easterly margins of the Santa Susanna Mountains, a range of roughly east-west trending foothills and mountainous terrain that forms the northerly boundary of the San Fernando Valley. The easterly portion of the mountains is dominated by Oat Mountain, a continuous northwest-southeast trending ridge that descends from elevated terrain to the west within Ventura County to the broad alluvial surface occupied by the community of Sylmar to the east. The proposed project site is at the bottom of a northwest-southeast trending narrow and steep-sided canyon located at the northerly perimeter of the landfill. The ridge immediately to the northeast of the canyon separates the site and the landfill from the Golden State Freeway to the northeast. The south-facing slope of this ridgeline descends into the project area and is designated "the South Slope" in this report. The ridge to the southwest is occupied by Flare Station No.8 and the unpaved access road that descends from the Weldon Canyon-Sunshine Canyon Motorway to the active landfill area. The north-facing slope of this ridge descends into the project area and is designated "the North Slope" in this report. The North and South Slopes are labeled on Figure 2.

2.2 PREVIOUS DEVELOPMENT

Grading operations associated with a previous expansion of the landfill have resulted in cuts and fills within the canyon and on the nose of the ridge line to the southwest that is occupied

by Flare Station No.8. Based on our review of available geotechnical reports, grading within these areas included the following:

- removal of unsuitable earth materials along the bottom and slopes of the canyon (primarily on the North Slope);
- placement of subdrains along the bottom of the canyon;
- placement of compacted fill within the canyon bottom and on a portion of the North Slope;
- placement of compacted fill for construction of an access road (the road fill) on the North Slope that descends from the flare station to the bottom of the canyon.
- Cutting of the nose of the southwesterly ridge for grading of the flare station access road.

Grading for the Flare Station No.8 access road and adjacent shoulder resulted in a filled area at the bottom of the canyon approximately 45 to 125-feet wide. The first 500-feet of the access road inclines to the south at a gradient of approximately 9%. The grading for the access road as it ascends from this area up the North Slope has created fill slopes as much as 125 feet high inclined at gradients typically varying from 1.5H:1V (horizontal:vertical) to 2H:1V.

Associated grading operations within the canyon, for the apparent removal of colluvial debris, have left a series of smaller cut slopes along the South Slope. These slopes are as much as 20-feet high and are inclined at a gradient of approximately 1H:1V.

2.3 PROPOSED DEVELOPMENT

Based on the current proposed layout for the LGEP (Scheme 10B) shown in Figure 2, the facility will be sited at the mouth of the canyon. Planned facilities include blowers, aftercoolers, chillers, screw compressors, a regen flare, a plant air system, siloxane removal skids, turbine chillers, several electrical transformers, pumps, combustion turbine generators, a water storage tank, several control, monitoring, and/or maintenance buildings, and two substations. According to HRGreen, these structures will be lightly loaded and supported on either shallow spread footings or mat foundations with bearing pressures typically 500 pounds per square foot (psf) or less. A few transformers will have bearing pressures of less than 1000 psf and the fire water storage tank will impose the highest bearing pressure of approximately 1700 psf.

The majority of the facility will be situated over a main pad graded to approximate elevation 1900 feet by filing the canyon floor with up to 50 feet of additional engineered fill. The main pad will include one substation and a second substation for Southern California Edison (SCE) will be at the eastern toe of the main pad fill on an existing fill pad. An access road will be constructed by placing 10 to 20 feet of fill over the existing east facing slopes of the southwesterly ridge. Construction of the main pad and access road will create an east-facing fill slope on the east side of the main pad. The fill slope will be from approximately 5 to 55 feet high and approximately 700 feet long. Due to site constraints, the proposed fill slope will be inclined at approximately 1.5H:1V. Construction of the main pad will also create an approximately 25-foot high 3H:1V west-facing fill slope at the west end of the main pad. The proposed fill slopes are shown on Figures 2 and 3.

2.4 PREVIOUS GEOTECHNICAL INVESTIGATIONS

With the assistance of HRGreen, AMEC has obtained relevant information for the general site area from the following existing reports:

- PRA Group (1991) Geotechnical Study for Proposed Water Tank Pad: This study provided limited subsurface information near and on top of the ridge of the North Slope.
- GeoSyntec Consultants (1998) Geotechnical Recommendations for Flare No. 8 Pad Construction: This primarily evaluated the static and seismic stability of the south and north descending slopes (includes North Slope) of the ridge and provided grading recommendations for the ridge top. GeoSyntec indicated a portion of the North Slope did not meet stability criteria and provided conceptual grading plans for stabilizing the North Slope.
- GeoSyntec Consultants (2001) Phase II-C Grading Design: This document included the results of a geologic investigation and static and seismic stability evaluation of the proposed base grade slopes in SCL's Phase II-C (located directly south and east of the project site).
- A-Mehr (2006) Geologic Report and Slope Stability Analyses for Phases V-VIII: This revised report (revisions were in response to comments from the Los Angeles County Department of Public Works, California Regional Water Quality Control Board, and California Integrated Waste Management Board) provides results of a geologic investigation and stability analyses for proposed cut slopes along the eastern boundary of the County expansion of the SCL, which is approximately 2400 feet east of the project site.

• A-Mehr (2008) – Final Report of Construction Quality Assurance for Phase V-A: This report contains grading information (i.e., overexcavation limits and fill compaction test results) for Phase V-A, which includes a portion of the site.

AMEC reviewed the above reports and used relevant information to augment our investigation. From those reports, some key geotechnical issues to be addressed for the project site are:

- 1. The project area lies within an earthquake-induced landslide zone designated by the California Geological Survey (CGS).
- 2. The SCL operations have re-graded the North Slope since the GeoSyntec's (1998) report. Some areas of slope appear flatter and a portion of the slope steeper than before grading. Grading of the North Slope included removal of unsuitable material and placement of fill along portions of the slope to create the current access road to the flare station.
- 3. There are two important discrepancies between the GeoSyntec (1998) and A-Mehr (2006, 2008) reports, which are the dip of the bedrock bedding in the North Slope and the cross-bedded strength of the bedrock materials at the project site. Both significantly influence the stability of the North Slope. A-Mehr (2008) indicates the beds are dipping steeper than reported by GeoSyntec (1998). GeoSyntec used significantly higher bedrock strengths than A-Mehr (2006) for the site.

Based on review of existing information and the proposed plans for the LGEP, AMEC developed a field exploration and laboratory testing program to evaluate the potential for landsliding, the current geologic conditions and stability of the North and South Slopes, and the strength of bedrock at the project site.

3.0 FIELD INVESTIGATION AND LABORATORY TESTING

The field investigation and laboratory testing program consisted of drilling ten exploratory borings, geologic mapping of the terrain in the vicinity of the project area, and laboratory testing of soil samples retrieved during exploratory drilling.

In addition, bulk samples were obtained from stockpiles at the landfill site situated approximately 650 to 1,200 feet south and west of the proposed LGEP. These samples were subsequently tested in the laboratory to evaluate their suitability for use as engineered fill in construction of the proposed main pad and access road.

3.1 PRE-DRILLING ACTIVITIES

Before drilling and geologic field mapping, AMEC staked the proposed locations of the exploratory drilling in the field. AMEC contacted Underground Service Alert (USA) to have member utility companies mark their utilities in the vicinity of the proposed boring locations before commencing the field work. AMEC also requested that the SCL personnel check the exploration locations to confirm that there were no conflicts with any underground utilities or structures owned by the landfill. SCL personnel cleared exploration locations of buried utilities before drilling commenced.

3.2 EXPLORATORY BORINGS

Three bucket-auger borings, six hollow-stem-auger borings, and one rock-core boring were drilled as part of the field exploration. The exploration locations are shown on Figure 3. The details of the exploratory work are described in below subsections.

3.2.1 Bucket Auger Borings

Roy Brothers Drilling of Malibu, California, provided the bucket-auger drilling services. Three borings (BA-1 through BA-3) were drilled on July 12 through July 14, 2010, using an E-Z Bore drill rig equipped with a 24-inch diameter auger. The borings were drilled to depths ranging from 80 to 95 feet below ground surface (bgs). Borings were physically entered and down-hole logged by an AMEC geologist licensed by the State of California as a Professional Geologist and a Certified Engineering Geologist (CEG). The bucket auger borings were drilled near the top of the ridge containing Flare Station No. 8 to further characterize the bedrock lithology and local geologic structure within the North Slope. Upon completion of drilling and sampling, the borings were backfilled and tamped with soil cuttings. Locations of the bucket auger borings are shown on Figure 3 and boring logs are presented in Appendix A.

3.2.2 Hollow Stem Auger Borings

BC² Environmental Corporation of Fullerton, California, provided the hollow stem auger drilling services. Six borings (B-1 through B-6) were drilled on July 21 through July 23, 2010, to depths ranging from 31 to 66 feet bgs. The intent of these borings were to: (1) collect samples of the existing fill placed for the access road on the North Slope and at the bottom of the canyon for laboratory testing to evaluate its engineering properties; (2) evaluate the groundwater depth; and (3) help identify the contact between the fill and bedrock on the North Slope. An AMEC field engineer under the direction of a California-licensed Geotechnical Engineer maintained a record of field activities, classified the soils encountered, and prepared a log of the borings. Locations of the hollow stem auger borings are shown on Figure 3 and boring logs are presented in Appendix A.

Relatively undisturbed soil samples were collected from the boring using driven split spoon samplers. Standard Penetration Tests (SPTs) were conducted and the blow counts required to drive the SPT and California-modified split spoon samplers were recorded. Upon completion of drilling and sampling, the borings were backfilled with soil cuttings. Bulk and relatively undisturbed soil samples were delivered to AMEC's laboratory for testing to assist in characterizing engineering properties of subsurface materials. Samples were tested at AMEC's laboratory in Newport Beach, California and at AP Engineering, Inc. in Pomona, California.

3.2.3 Rock-core Boring

BC² Environmental Corporation of Fullerton, California, provided the rock-core drilling services. One boring (CH01) was drilled on July 13, 2010 to a depth of 59 feet bgs. The intent of the rock-core boring was to collect high quality bedrock samples for laboratory shear strength testing. An AMEC geologist, licensed and certified by the State of California as a Professional Geologist and as an Engineering Geologist (CEG), maintained a record of field activities, classified the materials encountered, and prepared a log of the boring. Location of the rock-core boring is shown on Figure 3 and the boring log is presented in Appendix A.

The bedrock samples were collected using a core barrel and the samples were carefully packaged and then transported to AMEC's laboratory in cardboard core boxes for detailed examination and laboratory shear strength testing. The boring was backfilled with bentonite chips.

3.3 LABORATORY TESTING

The laboratory testing program was designed to characterize the engineering properties of the soil and bedrock materials encountered. Soil samples were collected by different types of samplers during the field exploration program for laboratory testing including split spoon samplers, California modified split spoon samplers, and bulk samples. Laboratory testing of selected samples included:

- In-situ Dry Density and Moisture Content (ASTM D 2937 & D 2216)
- Grain Size Distribution (ASTM D 422)
- Atterberg Limits (ASTM D 4318)
- Expansion Index (ASTM D 4829)
- Compaction Characteristics (ASTM D 1557)

- Consolidation (ASTM D 2435)
- Direct Shear (ASTM D 3080)
- Unconsolidated Undrained (UU) Triaxial Tests (ASTM D 2850)
- Unconfined Compressive (UC) Strength 1633 (ASTM D 1633)
- Corrosion (CTM 643, CTM 422, CTM 417)

Physical tests were performed in our Newport Beach, California laboratory and AP Engineering, Inc.'s laboratory. The chemical tests related to corrosivity were performed at Schiff Associates laboratory. Laboratory data sheets are provided in Appendix B. A summary of the laboratory testing results is provided in Table 1.

3.4 **GEOLOGIC MAPPING**

The site specific geologic conditions that include the type and surface distribution of the bedrock, surficial deposits and the spatial orientation of the rock discontinuities that include bedding planes, and joints, were mapped in the field by a California-licensed Engineering Geologist (CEG). The geologic conditions exposed in the large diameter borings, borings BA-1, BA-2 and BA-3, were down-hole logged by the CEG. The geologic conditions mapped in the field along with the proposed grades based on the current site layout (Scheme 10B) are shown on the geologic map (Figure 3). The mapped geology at the site is discussed in Section 4.0 along with the subsurface conditions encountered in the borings.

A total of six aerial photographs dating from December 2, 2004 through November 15, 2009 were utilized to aid in geologic mapping. These photographs were helpful in depicting the evolution of landfill grading operations within the immediate vicinity of the LGEP, Bedrock outcrop patterns and contacts between cut and fill. Rectified images, at a scale of 1 inch equals 40 feet, of the November 11, 2005, March 16, 2006 and November 9, 2009 air photos were also used to aid in mapping of the surficial failures within the natural ascending slopes as shown on the Geologic Map (Figure 3). All of aerial images were obtained from Google Earth and are included in Appendix C

4.0 SUBSURFACE CONDITIONS

The following sections present our findings based on the field exploration and laboratory testing program, geologic mapping, and review of published information on regional geology.

4.1 REGIONAL GEOLOGY

The SCL and the LGEP lie within the western portion of the Transverse Ranges Geomorphic Province, a relatively large area of Southern California characterized by terrain with similar geomorphic and structural geologic features. The Province is comprised of an east-west trending band of rugged and steep mountain ranges and intervening valleys roughly 80 miles in width that extend from Point Arguello on the west to the easterly end of the San Bernardino Mountains, a distance of roughly 250 miles. The terrain within the Province is unique in that it is oblique to the normal northwest trend of the Coast Ranges, Great Valley and Sierra Nevada Provinces situated to the north and the Peninsular Ranges Province to the south. The Transverse Ranges are the result of the middle Miocene and younger tectonism which includes clockwise rotation and compression of the terrain southwest of the San Andreas Fault principally due to crustal movements associated with the North American and Pacific Plate convergence. As a result, east-west trending faults and folds, deep sediment-filled-structural basins and uplifted terrain dominate the geologic structure as well as the topography of the province.

The SCL is situated at the easterly extension of two large northwest-southeast trending plunging folds, the Oat Mountain Syncline and the Pico Anticline, that dominate the geologic structure of the easterly portion of the Santa Susanna Mountains. The bedrock within folds is comprised principally of marine clastic and biogenic sedimentary rocks that vary from the Middle Miocene Topanga Formation to the Pliocene-Pleistocene Saugus Formation.

In addition to the extensive folding of the bedrock, regional tectonism is evidenced by extensive faulting. The north dipping Santa Susana Fault Zone which is considered to be a western extension of the Sierra Madre Fault Zone is positioned along the southerly margin of the Santa Susanna Mountains and is approximately 6,000 feet southeast of the LGEP. Similar south dipping thrust faults situated along the northerly margin of the Santa Susanna Mountains include the Weldon Canyon and the Bacon faults which are situated approximately 3,000 feet and 5,000 feet north of the LGEP respectively. Portions of the mapped traces of the Santa Susana Fault Zone exhibited evidence of displacement during the 1971 San Fernando Earthquake and as such have been included in Alquist Priolo Special Study Zones. The northerly border of the closest AP Zone is approximately 600 feet south of the LGEP. The mapped trace of the fault within this AP Zone is approximately 1,200 feet south of the LGEP.

Other significant faults in the vicinity of the LGEP include the Oak ridge Fault, the Holser Fault and the San Gabriel Fault. The Oak ridge Fault is a roughly east-west trending thrust that dips shallowly toward the south. Its onshore segment extends from the Oxnard Plain to Piru a distance of roughly 30 miles. Evidence of Holocene surface rupture has been observed

on this fault in the vicinity of Fillmore. To the west the mapped trace of the Oak ridge Fault appears to be overthrust by the Santa Susana Fault Zone becoming a blind thrust. This blind thrust, the Pico Thrust, is thought to be the source of the 1994 Northridge Earthquake.

The Holser Fault is a south dipping reverse fault that appears to branch from the San Gabriel Fault zone roughly 5 miles north of the LGEP. The most recent rupture on this fault appears to be Late Quaternary.

The San Gabriel Fault Zone is a northwest-southeast trending fault that exhibits right-lateral strike slip movement. Holocene surface rupture has been recognized along this fault in the area between Saugus and Castaic. Other segments of this fault appear to have experienced surface rupture during the Late Quaternary and Quaternary. The San Gabriel Fault Zone is approximately 5 miles north of the LGEP.

The bedrock underlying the immediate vicinity of the proposed LGEP location consists of marine clastic sediments that have been assigned to the Towsley Formation of late Miocene to Pliocene age. The bedrock is composed of fine to coarse-grained sandstone and interbedded micaceous and clayey siltstone with minor amounts of pebbly conglomerate. Typically, the siltstone beds are less prone to development of a thick soil profile and when exposed on steep anti dip slopes form relatively resistant outcrop bands that can be mapped for hundreds of feet. The geologic structure of the bedrock is dominated by its position on the northerly limb of the Pico Anticline. The attitude of bedding is relatively consistent striking to northwest and dipping steeply to the northeast.

4.2 LOCAL GEOLOGIC CONDITIONS

The following is a description of the surficial soil and bedrock units in the immediate vicinity of the site based on review of published data, geologic mapping, and subsurface conditions encountered in the borings. The geology map of the site is presented in Figure 3 and the geologic cross sections that depict the subsurface geologic conditions at the site are presented in Figures 4 and 5. The engineering properties of the geologic units are described in Section 4.3. The geologic units in the vicinity of the site are described below in the order of increasing age.

4.2.1 Artificial Fill (Af):

Artificial fill exists at several locations within the vicinity of the site as a consequence of previous expansion of the landfill and construction of the access road leading to Flare Station No. 8.

The fill materials were encountered in exploratory borings B-1 through B-6 and their surface distribution is based on interpretation of aerial photographs, available topographic maps and field mapping. These materials typically consist of mixtures of residual soil, colluvium and weathered bedrock materials derived from relatively shallow cuts associated with previous nearby grading operations. The fill materials are light olive brown to dark grayish brown in color and consist of a mixture of low plasticity silt and clay, sand, and gravel. The fill materials are classified as sandy lean clay with gravel to clayey sand with gravel. The amount of gravel in the fill material generally varies between 5% and 25% and is typically about 15% by weight of the soil mass. The maximum particle size is typically 1 inch and the gravel particles are generally described as fine gravel (i.e., smaller than ³/₄ inch). The engineering properties of the fill materials were evaluated based on the laboratory test results and discussed in Section 4.3.

4.2.2 Alluvial Deposits (Qal):

A minor amount of alluvium remains at the head of the canyon that will be occupied by the gas to energy facilities. These deposits consist predominantly of poorly sorted soil and rock fragments interspersed with boulders up to 2 feet in diameter. The alluvial deposits were derived from erosion of upslope colluvial and residual soil deposits and bedrock outcrops. The thickness of the alluvial deposits is expected to vary from 1 to 3 feet.

The floor of the canyon between the alluvial deposits and the hairpin bend in the access road leading to Flare Station No. 8 is occupied by artificial fill. Reportedly the alluvial materials that existed along the bottom of the canyon before grading of the access road were removed before placement of the existing fill. Alluvium was not encountered in the borings below the existing fill that now occupies the floor of the canyon.

4.2.3 Residual Soil (No Map Symbol):

Residual soil deposits consisting of mixtures of sand, silt and, clay interspersed with fragments of weathered sandstone siltstone, form a relatively thin mantle that locally covers the bedrock underlying the natural slopes. Due to their relative thin and scattered nature the distribution of the residual soil is not shown on the geologic map. These materials are, for the most part, the result of in-place weathering, and decomposition of the underlying bedrock and as such are typically composed of similar materials. In general, the thickness of the residual soil deposits varies based upon the parent rock type, the structural orientation of the underlying bedrock and the configuration of the natural slopes. For example, the residual soil development on the North Slope is relatively thick as this slope is underlain by siltstone bedrock that dips roughly parallel to the slope surface. In contrast the steeper southwesterly facing slopes (includes the South Slope), where the bedding dips into slope, the development of a soil mantle is typically absent and sandstone and siltstone outcrops are more typical. Beneath the North Slope the

residual soil deposits are anticipated to vary from 2 to 3-feet thick, thickening in the down slope direction. On the steep anti dip slopes soil profile development is generally absent and is not expected to be greater than approximately 2-feet thick.

4.2.4 Colluvium (Qcol):

Colluvial deposits cover the lower portions of the natural slopes merging laterally with the alluvial deposits situated along the canyon floor. These deposits are incoherent accumulations of residual soil and weathered rock debris that have migrated down slope by the process of creep, slope wash and shallow surficial failures. Typically these deposits thicken in the down-slope direction forming broad aprons at the base of the slopes. Colluvial soil deposits are exposed in the existing cut slopes situated along the toe of the slope that ascends from the northeasterly side of the canyon and within shallow swales locally positioned near the bottom of the slopes. The vertical thickness of the colluvial materials on the natural slopes is estimated to vary from 6 to 20 feet or more.

4.2.5 Shallow Slumps (Qs) and Surficial Failure Scars (Qsf)

Numerous small shallow slumps, surficial failure scars and resulting debris flow deposits were mapped in the field and noted in the aerial photographs for the South Slope. Generally, these failures are confined to narrow shallow drainage swales on the slopes. Locally, the resulting failure scares have exposed weathered and jointed bedrock that is prone to minor raveling including the lower portion of the slope that ascends west of the SCE substation.

The small slumps appear to be relatively shallow rotational failures comprised predominately of highly weathered bedrock, residual soil and/or colluvium. The thickness of the slump debris is anticipated to vary from typically 3- to 4–foot thick or less for the smaller failures on the South Slope to likely more for the large slump mapped at the head of the canyon approximately 300 feet west of the LGEP site.

Surficial failures have impacted the steep southwest facing slopes where bedding within the sedimentary rocks dips into slope and the surficial soil cover is minimal. Similar surficial failures were not observed on the North Slope where bedding is generaly inclined steeper than the natural ground surface or within the adjacent fill slopes associated with the access road for Flare Station No. 8. The surficial failures are all comprised of debris derived from the poorly developed soil profile and the underlying weathered bedrock. The resulting failure scars are no more than 6-inches to a foot deep and are generally associated with existing shallow swales. In areas where slope gradients are steep and relatively uniform debris flows typically extend from the failure scars to the bottom of the slope. In contrast, surficial debris flows have a tendency to dissipate before reaching the bottom of the slope areas where colluvial deposition has reduced the gradient of the lower portion of the slope.

Based on review of the air photos and previous evaluation of slope instabilities in the Santa Clarita area and Interstate 5 corridor, most of the surficial failures and debris flows are likely the result of the heavy and prolonged rainfall that occurred during the 2004-2005 rainfall season. In most instances these failures appeared to have occurred in areas that were impacted by previous failures.

The rainfall events that occurred during 2004-2005 rainfall season are significant in that the rainfall season totals were at or near record levels and the duration and intensity of individual storm events in some areas was greater than is typical. Review of aerial photographs that depict the surface conditions of the site from December of 2004 through November of 2009 indicate that the area of the initial failure scars that developed during the 2004-2005 rainfall season enlarged with each subsequent rainfall season. The area of the failure scars and debris flows associated with the 2004-2005 rainfall season comprises a relatively small portion of the surface area of the steep southwest facing slopes. By 2009, the areas involved in surficial failures had increased noticably.

4.2.6 Landslide Debris (QIs):

Review of aerial photographs and mapping of topographic anomalies indicate the presence of two relatively small landslides near the head of the canyon on the North Slope west of the proposed project site (in an ungraded area up the canyon from the project site). These landslides are numbered herein as Landslide No. 1 and No. 2 as shown in Figure 3. The surface expression of these landslides is relatively well defined in aerial photographs and topographic maps that depict the existing site conditions. The lateral margins of the slides are characterized by subtle variations in vegetation patterns and topography in the field.

The largest of the landslides, Landslide No. 1, is located on the slope below the flare station access road within the head of the canyon and is approximately 360 feet long and 220 feet wide. Landslide No.2 is approximately 240 feet long and 180 feet wide and is situated in the natural slope that ascends from the hairpin turn of the access road located in the bottom of the canyon. The toe of Landslide No.2 appears to have been buried by compacted fill placed in the bottom of the canyon during grading of the adjacent fill slope and flare station access road. Landslides No. 1 and 2 are situated in terrain that is comprised of relatively massive siltstone that dips toward the northeast at gradients of approximately 40 to 50 degrees.

Based upon the observations, it appears that these landslides originated from the upper part of the slope and moved downslope toward the bottom of the canyon. They likely are within the highly weathered bedrock that mantles some of the canyon slopes above the less oxidized bedrock. The cause(s) of the landslides has not been determined, but is most likely the result of the lower strength of the highly weathered bedrock and to a lesser degree on structural

discontinuities in bedrock (e.g., joints and fractures). The approximate location of the landslides is shown on Figure 3.

4.2.7 Towsley Formation (Ttos):

Sedimentary bedrock in the vicinity of the site has been assigned to the Towsley Formation, a stratigraphically thick sequence of clastic marine sediments of latest Miocene to early Pliocene age. Published references have subdivided the formation into two principal rock units that have broad regional distribution, a thick sequence of light gray to yellow brown, fine to coarse-grained sandstone with minor interbeds of pebbly sandstone and micaceous siltstone (Ttos) and a relatively thin interfingering sequence of dark gray, micaceous, clayey siltstone (Ttoc). Published geologic maps and outcrops mapped in the field indicate the bedrock within the vicinity of the proposed LGEP is comprised of sandstone and siltstone assigned to the (Ttos) unit as shown on Figure 4. Geologic mapping and subsurface exploration for the proposed project have not revealed the presence of rocks assigned to the (Ttoc) unit.

Sandstone (Ttos ss) and Siltstone (Ttos slt),

The southwesterly portion of the project site which includes the ridge beneath Flare Station No.8, the slopes that descend from the ridge to the northeast and southwest, and the narrow canyon to the northeast, where the proposed LGEP facilities will be located, is underlain by a thick sequence of interbedded siltstone and minor sandstone that grades stratigraphically upward to a massive micaceous siltstone with minor thin beds of fine to very fine-grained sandstone. The interbedded sandstone and siltstone segment of this sequence of rocks is locally exposed in the steep natural slope that descends to the southwest from Flare Station No.8 and within cut slopes along the northerly margin of the landfill. These rocks are typically light gray to light brown in color and micaceous and fine grained.

Beneath the flare station ridge and the North Slope and canyon to the northeast, the bedrock is almost entirely composed of internally massive micaceous siltstone with minor thin beds of fine to very fine sandstone. Natural outcrops are limited in this area; however; the bedrock is exposed in the steep cut slopes associated with the flare station access road and was encountered in the 24-inch diameter bucket auger borings B-1 through B-3 and the core boring CH-01. In the vicinity of the core boring CH-01 the bedrock appears to grade laterally becoming fine-grained silty sandstone. Within 18 to 25 feet of the natural ground surface, the bedrock is generally highly weathered. Near the ground surface the highly weathered segment of the bedrock is marked by relatively intense near vertical fractures filled with caliche. Below these depths the bedrock is moderately weathered to light yellowish brown or a dark reddish brown that grades downward to a dark brown. Beneath a depth of 35 to 45 feet, the siltstone bedrock is typically unoxidized varying from greenish gray to dark gray

and finally black. The minor sandstone beds within the unoxidized bedrock are typically blue gray to greenish gray in color.

Bedding within these rocks is typically poorly defined as the contacts between contrasting rock types are generally gradational and the thick siltstone segments are internally massive. Bedding within the massive siltstone is generally defined by micaceous partings. In spite of its poor definition, bedding within the bedrock is relatively uniform, striking to the northwest and dipping toward the northeast at angles varying from 40 to 70 degrees below the horizontal. Minor tectonic deformation within the rock principally associated with regional folding that created the Pico Anticline and the Oat Mountain Syncline is marked by crushed and gouged zones that appear to be roughly parallel bedding. These zones vary from 1-inch to as much as 2-foot thick. Minor clay seams and clayey gouge zones up to 2-inch thick are associated with some of the tectonically crushed bedrock.

Jointing within the bedrock is typically steep and somewhat variable. At most locations, jointing strikes toward the northwest, roughly parallel to the strike of bedding, and dips to the northeast or southwest at angles varying from 40 to 85 degrees. A minor joint set was also noted trending northeast to southwest, roughly perpendicular to the strike of bedding, and dipping steeply to the northwest and southeast.

The bedrock that is exposed in the South Slope that ascends to the northeast from the floor of the canyon is somewhat different than the rock beneath the terrain to the southwest. This slope is comprised of relatively thick beds of sandstone alternating with beds of internally massive siltstone - six beds in total, 3 sandstone beds and 3 siltstone beds have been mapped in the slope. The thick sequence of sandstone and massive siltstone beds strike northwest to southeast and their outcrop patterns roughly parallel the strike of the ridge that separates the landfill from the Golden State Freeway located to the northeast. All of the beds dip into the slope at gradients varying from 35 to 45 degrees. As such, the South Slope has favorable bedding regarding stability and global landsliding. The steep dip of bedding, the continuous outcrop pattern, the mapable contacts between individual rock units over long distances, the lack of deep seated landslide features and the lack or limited development of soil cover suggest the sequence of sandstone and siltstone beneath the South Slope is only moderately weathered, a striking contrast with the highly weathered, soil covered siltstone bedrock situated beneath the portion of North Slope that remains in a natural condition. A brief description of these rock units is provided in the following paragraphs.

The first and lowermost bed in this sequence of rocks, which is positioned roughly 35 to 65 feet above the floor of the canyon, is a massive siltstone that is approximately 40-foot thick. This rock unit forms an outcrop pattern on the slope that can be traced from the road cut in the

access road north of the flare station to the area directly above the location of the LGEP, a distance of roughly 900 feet. For the most part this rock outcrop is barren of soil and vegetation.

Immediately above the massive siltstone is a sandstone bed approximately 60-foot thick comprised of light yellow to brown, thickly to thinly bedded, fine to coarse-grained sandstone with minor interbeds of yellow brown sandy siltstone 1/2 to 18-inches thick. This rock unit is generally covered by a thin poorly developed sandy soil profile that supports a relatively light cover of vegetation.

Above the sandstone is the second massive siltstone bed approximately 45 to 50-foot thick, This bed is very similar to the one situated near the bottom of the canyon but appears to be somewhat sandier. This bed is also barren of soil and vegetation and can be traced along the slope for a least 1,200 feet.

Immediately above the siltstone bed described above is the second sandstone bed which is approximately 60 to 70 feet thick. This bed consists of a white fine to very medium-grained sandstone with minor light brown siltstone interbeds up to 1-foot thick. The outcrop of this sandstone bed is also covered by a poorly developed sandy soil profile that supports a relatively light cover of vegetation providing a striking contrast with the barren siltstone beds above and below.

The third and last of the massive siltstone units is at least 60-foot thick. This bed is positioned along the top of the slope and appears to cap the crest of the ridge northeasterly of the LGEP. Like the massive siltstone units below it, this rock unit forms an outcrop pattern on the slope that is relatively barren of soil and vegetation that can be traced for a distance of at least 800 feet.

The third and last sandstone unit is positioned at the crest of the ridge in the vicinity of the intersection of the flare station access road and the road that provides access to existing SCE electrical lines along the crest of the ridge. It is composed of light brown, very fine grained sandstone that is very friable.

4.2.8 Summary of Local Geologic Conditions

Bedrock beneath the proposed LGEP and the SCE substation is comprised of a sequence of internally massive sandstone and siltstone sedimentary rocks that dip steeply toward the northeast. Bedding planes within the bedrock are generally oriented favorably with respect to the natural terrain, the existing graded slopes, and the proposed LGED and the SCE substation. Beneath the North Slope, bedding is inclined at gradients that are steeper than the

natural slope. Beneath the South Slope, bedding dips steeply into the natural slope. In addition, the exposed bedrock on the South Slope is generally thought to be moderately weathered due to the steep anti-dip configuration of the slope which promotes removal of the highly weathered debris as they develop. The gross stability of both the North and South slope configurations are generally considered relatively stable from a geologic/kinematic perspective.

Clay seams that appear to be related to tectonic deformation of the bedrock were observed at a depth of roughly 45 feet in boring BA-3 and 80 feet in BA-2. They were not observed in the other borings drilled on the North Slope. These features are potential planes of weakness within the bedrock along which slope movements could occur. However, in both instances the potential for instability along the seams appears to be relatively insignificant for the following reasons. In boring BA-3, the clay seam is a discontinuous feature associated with tightly folded and contorted rock mass that is less than two feet in width, and as such, is interpreted not to have any lateral continuity. Also at this location, slope is covered with existing compacted fill material that is approximately 80 feet wide (see cross section 1-1" in Figure 2). The silty clay seam in boring BA-2 is deep in the slope (encountered at depth of 80 feet) and is inclined at an angle of 44 degrees to the north east. This configuration is steeper than the gradient of the natural slope and slope movement along the clay seam would require a deep seated failure path extending across bedding and through compacted fill for a distance more than 120 feet.

The portion of the North Slope that remains in a natural condition (slope west and up canyon from the proposed LGEP site) is mantled by residual soil, landslide debris, and highly weathered bedrock. The low strength of these shallow materials is likely the cause of the shallow sliding that has occurred in the recent geologic past (Landslide Nos. 1 and 2 on Figure 3). Within the previously graded portion of the North Slope, unsuitable materials and the highly weathered portion of the bedrock appear to have been removed and replaced with compacted fill, which results in a significantly more stable configuration (see cross sections 2-2', 3-3' and 5-5'). The proposed LGEP has been located directly adjacent to the graded portion of the North Slope so that the recognized instabilities in the natural, ungraded portion of the North Slope will not adversely impact the development or use of the LGEP.

Surficial failure scars and resulting debris flow deposits are generally confined to existing narrow and shallow drainage swales on the South Slope that ascends from the proposed LGEP and the SCE substation. Locally, the failure scars have exposed moderately weathered and jointed bedrock that is prone to minor raveling, including the lower portion of the slope that ascends west of the SCE substation. The most obvious surficial failures and debris flows are the result of the heavy and prolonged rainfall that occurred during the 2004-2005 rainfall

season and most have enlarged with subsequent rainfall seasons. Surficial failures and resulting debris flows of a similar magnitude should be anticipated during future rainfall events. Future surficial failures are most likely to occur in areas where past events have occurred or where relatively thick surficial debris has accumulated on the ascending slope. The proposed LGEP and the SCE substation should include debris control measures designed to minimize the nuisance of such sumps and minor debris flows. Potential debris control measures are provided in Section 7.1.4.

4.3 SOIL ENGINEERING PARAMETERS

AMEC performed laboratory shear strength tests on relatively undisturbed samples of the existing fill and bedrock materials collected during our field investigation and on remolded samples of potential stockpile materials for use as the proposed engineered fill. The discussion of shear strength evaluation for each material are provided below and the shear strength parameters developed as part of this Study for use in slope stability analyses are presented in Table 2.

4.3.1 Existing Fill

AMEC performed four direct shear strength tests per ASTM D 3080 on relatively undisturbed samples of the existing fill material. The samples were consolidated under various normal loads and saturated before testing. The shear strength test data are included in Appendix B. The shear resistance vs. normal load values at 20% lateral displacement are plotted on Figure 7. Based on the test results, we developed a bilinear shear strength envelope for the existing fill as shown on Figure 7. A bilinear envelope was assigned to better characterize the shear strength characteristics of the fill material at shallow and deeper depths for low and high normal loads, respectively.

4.3.2 Bedrock

AMEC performed unconsolidated uniaxial triaxial (UU) test, unconfined compression (UC) tests and direct shear test on rock core samples collected during field exploration. The shear strength of the Towsley Formation increases with depth with as the level of weathering and oxidation decreases. For the purposes of shear strength evaluation, Towsley Formation was divided into three zones: (i) highly weathered bedrock, (ii) moderately weathered bedrock, and (iii) unoxidized bedrock.

4.3.2.1 Highly Weathered Bedrock

The highly weathered bedrock exhibited shear strength properties similar to a medium stiff clayey soil. AMEC performed one direct shear test and one triaxial UU test on the highly weathered bedrock. The shear strength parameters for this highly weathered material was not used in our stability evaluation of the North and South Slopes because our borings indicate

that the highly weathered bedrock was removed before placement of fill on the North Slope, which was also confirmed with our borings performed across the project site. Moderately weathered rock strengths were also used to model the stability of the South Slope. The use of these strengths appears justified based upon the geologic character of the bedrock exposed on the steep anti-dip South Slope as discussed in section 4.2.7 above. The characteristics suggesting moderate weathering include steeply dipping nearly continuous mapable bedrock rock outcrops, the lack of deep seated landslide features and the lack or limited development of soil cover. The steep anti-dip configuration of the slope also promotes the continuous removal of the highly weathered debris as they develop. The shear strength test results are included in Appendix B and summarized in Table 1.

4.3.2.2 Moderately Weathered Bedrock

AMEC performed two triaxial UU tests and one triaxial UC test on the moderately weathered bedrock samples. The test results are summarized in Table 1. The samples tested were assumed to represent intact rock samples with the failure surfaces occurring across bedding and not influenced by any structural discontinuity. Inspection of samples after testing suggested that some may have failed along pre-existing zones of weakness (e.g., stress relief cracks); therefore, assuming the test results represent intact samples may be conservative (i.e., cross bedded strength may actually be higher than the test results).

AMEC used the computer program RocLab (Rocscience Inc., Version 1.031) to develop equivalent Mohr-Coulomb shear strength parameters for the overall oxidized rock mass. RocLab uses triaxial strength test results, the Hoek-Brown failure criterion as described in detail in Hoek and Carranza-Torres (2002) and Hoek and Diederichs (2006), and structural integrity parameters to develop a strength envelope for the rock mass. By using the structural integrity parameters, RocLab accounts for structural discontinuities with the rock mass.

Based on the observations of the rock core samples and the downhole-logged bucket auger holes, AMEC assigned an average geological strength index of 70 to the moderately weathered bedrock for use in RocLab. An average intact rock parameter, mi, of 7 was assigned to the rock mass based on the suggested typical value in the RocLab software for siltstone. This intact rock parameter is likely conservative considering the Towsley Formation in the North and South Slopes is predominately sandy siltstone with occasional sandstone beds, which would increase the intact rock parameter and the rock mass strength. An average compressive strength of 24 kips per square foot (ksf) based on the triaxial strength test results was used in the RocLab software. The estimated rock mass strength envelope for the highly weathered bedrock is plotted on Figure 8.

As discussed in Section 2.4, AMEC reviewed historical reports prepared for projects in the vicinity of the LGEP site. GeoSyntec (1998) previously evaluated the stability of the southwest slopes descending to the north as part of their geotechnical report for the construction of the Flare No. 8. A-Mehr (2006) performed slope stability analyses for the cut slopes along the eastern boundary of the County expansion of the SCL, which is approximately 2,400 feet east of the LGEP site. GeoSyntec used cross bedding bedrock strengths significantly greater than the strength parameters used by A-Mehr (2006). Geosyntec (1998) parameters were based on their laboratory test results on bedrock samples not collected from the North Slope area. A-Mehr (2006) used shear strength parameters recommended by USGS for landslide studies (DCDMG, 1998). For comparison, the cross bedding shear strength envelopes used by A-Mehr (2006) and GeoSyntec (1998) are plotted in Figure 8 along with the shear strength envelope for the moderately weathered bedrock used in this Study.

4.3.2.3 UnOxidized Bedrock

AMEC performed three triaxial UU tests and two triaxial UC test on the unoxidized bedrock samples. The test results are summarized in Table 1. These specimens were assumed to represent intact rock samples with the failure surfaces occurring across bedding and not influenced by any structural discontinuity. The specimens tested showed similar failures along possible predefined zones of weakness as with the oxidized bedrock samples. AMEC used the computer program RocLab (Rocscience Inc., Version 1.031) to develop equivalent Mohr-Coulomb shear strength parameters for the overall unoxidized rock mass.

Based on the observations of the rock core samples and the downhole-logged bucket auger holes, AMEC assigned an average geological strength index of 80 to the unoxidized bedrock for use in RocLab analysis along with an average compressive strength of 31 ksf based on the triaxial strength test results. As with the oxidized bedrock, an average intact rock parameter, mi, of 7 was assigned to the unoxidized bedrock based on the suggested value in RocLab software for siltstone. The average geological strength index and the compressive strength values from the test results from the samples collected at shallower depths were used in an effort to model the upper portion of the unoxidized bedrock. The estimated rock mass strength envelope for the unoxidized bedrock is plotted on Figure 8.

4.3.2.4 Proposed Fill

At the request of HRGreen and SGP, AMEC collected bulk samples from five different soil stockpiles at the SCL site for laboratory testing. The purpose of the sampling and testing was to evaluate their engineering characteristics and whether they are an appropriate source of engineered fill for the project. The suite of laboratory tests performed on each bulk sample included gradation, shear strength, consolidation, corrosion, and expansion index. Test results are provided in Table 1 and Appendix B. The shear strength test results for the five

stockpile samples are plotted on Figure 9. Based on these results, a typical shear strength envelope was selected to represent proposed engineered fill in slope stability analyses.

4.4 **GROUNDWATER**

Groundwater was encountered in the exploratory borings BA-1 and BA-2 at approximately 80 feet bgs at the time of drilling. These borings penetrated the siltstone bedrock beneath the flare station ridge at or near the crest of the North Slope. Groundwater was not encountered in the remaining borings drilled for this investigation.

Historic depth to groundwater data is available for two landfill monitoring wells located in the LGEP site. Landfill monitoring well, CM-10 was located in the bottom of the canyon adjacent to the exploratory boring B-4 at an elevation of approximately 1874 feet above mean sea level (fmsl) and has subsequently been abandoned (see Figure 3). Depth to groundwater measurement data available to AMEC for CM-10 included the monitoring periods during 2004, 2006, and 2007. Based on that available data, groundwater levels in CM-10 have ranged from approximately 29 to 37 feet bgs (approximate elevations 1844 to 1836 fmsl). Groundwater levels are currently being monitored in the LGEP area in landfill monitoring well CM-10R located adjacent to the flare station access road at an elevation of approximately1940 feet as shown on Figure 3. CM-10R was constructed in May 2008. Depth to groundwater data available to AMEC for CM10R included the 2009 monitoring period. Based on that available data, the groundwater level in CM-10R ranged from approximately 85 and 86 feet bgs in 2009 (approximate elevations 1855 to 1854 fmsl). The available depth to groundwater for wells CM-10 and CM-10R are provided in Table 3.

Past and present water levels from the monitoring wells and the groundwater levels encountered in the current exploratory borings were utilized to construct a hypothetical groundwater surface beneath the vicinity of the proposed LGEP facility and within the North and South Slopes.. The hypothetical groundwater surface is illustrated on the geologic cross sections shown on Figures 4 and 5 and was used in the slope stability analyses. Based on the existing data, the depth to groundwater beneath the proposed LGEP is more than 60 to 80 feet. The depth to groundwater beneath the SCE substation is anticipated to be approximately 50 feet. GeoSyntec Consultants (1998) did not include groundwater in their stability analysis of the North Slope.

5.0 SEISMIC CONSIDERATIONS

5.1 REGIONAL TECTONIC SETTING

The project site is located in Southern California, one of the most seismically active regions in the world. According to the National Seismic Hazard Map source model (USGS, 2002), the closest faults to the project site include the following ones:

- The Sierra Madre fault zone, which is approximately two to five kilometers (km) southeast of the site (including the Santa Susana section and the San Fernando section);
- The Northridge fault, which is approximately 5.1 km southwest of the site;
- The San Gabriel fault, which is approximately 7.6 km northeast of the site;
- The Holser fault, which is approximately 8.9 km northwest of the site; and
- Gridded seismic sources that are used by the USGS to represent background seismicity, special seismic zones, and intraslab events. Gridded seismic sources are located within approximately 5 km of the site.

Seismic design of the project is based on the guidelines in 2010 California Building Code (CBC 2010). CBC 2010 guidelines are based on American Society of Civil Engineers publication ASCE 7-05 and require that ground motions for seismic design be based on a maximum considered earthquake (MCE) ground motion. The MCE ground motion is defined in ASCE-7-05 as the most severe ground motion with a 2 percent probability of exceedance within a 50-year period (a return period of approximately 2,475 years) or deterministically as 150 percent of the largest ground motion for characteristic earthquakes on all known active faults within the region.

5.2 SEISMIC DESIGN PARAMETERS

Based on the CBC (2010) Section 1613.5, the following mapped seismic design parameters for the project were developed:

- Mapped spectral accelerations for short periods S_S: 2.36 g
- Mapped spectral accelerations for a 1-s period S₁: 0.81 g
- Site Class: D

- Site Coefficient Fa: 1.0
- Site Coefficient Fv: 1.5
- Adjusted MCE spectral acceleration for short periods SMS= Fa SS = 2.36 g
- Adjusted MCE spectral acceleration for a 1-s period SM1= FvS1 = 1.21 g
- 5 percent damped design spectral response acceleration at short periods SDS: 1.58 g
- 5 percent damped design spectral response acceleration at 1-second period SD1: 0.81 g

5.3 VERTICAL GROUND MOTION RESPONSE SPECTRA

Vertical response spectra are not required by either CBC 2010 or ASCE-7-05. The effects of vertical seismic load effect may be determined in accordance with Section 12.4.2.2 of ASCE-7-05. According to Section 12.4.2.2 of ASCE-7-05, vertical seismic load is essentially equal to $0.2S_{DS}$ times the dead load for all vertical periods where S_{DS} is horizontal five percent damped design spectral response acceleration at short periods as described in Section 5.2.

5.4 SEISMIC HAZARDS

As discussed in Section 4.1, no faults or shear zones have been mapped within the footprint or the immediate vicinity of the project site. Therefore, the potential for fault rupture within the immediate vicinity of the proposed LGEP is considered to be low.

The project site is not within a liquefaction zone as defined by the Seismic Hazard Zone maps for the Oat Mountain Quadrangle (DCDMG, 1998) (Figure 10). Moreover, because the subsurface materials underlying the LGEP site consist of compacted clayey fill materials that are not susceptible to liquefaction and also because of the lack of shallow groundwater, potential for liquefaction at the site is considered remote.

The project site is within an earthquake-induced landslide zone as defined by the Seismic Hazard Zone maps for the Oat Mountain Quadrangle (DCDMG, 1998) (Figure 10). The landslide features around the site have been mapped and discussed in Section 4.2.6. Based on our study and the latest layout of the proposed LGEP shown on Figure 2, there are no existing landslide features within the slopes immediately descending towards the site. The slope stability analyses were performed as part of this Study and discussed in Section 6.0 below.

Seismically induced settlements occur mostly due to the contractive volumetric strains developed in saturated soils during seismic events. Typically, soils with significant amount of fines similar to the existing fill and potential fill materials to be used for the proposed project, experience significantly less settlement than clean granular soils. Based on the lack of groundwater and the significant amount of fines in the existing compacted fill seismically induced settlements are not considered design factors for the LGEP.

6.0 SLOPE STABILITY EVALUATION

Global stability of the existing slopes descending towards the proposed LGEP (i.e., North and South Slopes) and the slopes of the proposed fill pad as part of the LGEP was evaluated by performing two-dimensional limit-equilibrium analyses and calculating a Factor of Safety (FS) against sliding for both static and seismic conditions. The stability of potential shallow failure surfaces were also evaluated using a typical infinite slope formulation. The analysis methods, acceptance criteria, the cross sections analyzed, and the static and seismic slope stability analysis results are discussed in following sections

6.1 LIMIT-EQUILIBRIUM ANALYSIS

The computer program Slope/W (Geo-Slope, 2004) was used to perform Spencer's limitequilibrium analysis method (Spencer, 1967) because it satisfies both force and moment equilibrium, and accounts for inter-slice forces. Slope/W is a commercially available computer program with a comprehensive formulation that makes it possible to analyze complex geometric configurations and loading conditions.

In terms of slope stability, the FS against sliding is defined as the ratio of resisting forces (friction and cohesion along potential failure surface) to driving forces (gravitational forces pulling downslope). A FS of unity (1.0) indicates a delicate balance between the resisting and driving forces and represents incipient failure. A FS below unity indicates instability. The seismic stability is evaluated using the pseudo-static analysis method within Slope/W. In this method the earthquake forces are represented by a static lateral force equal to the product of the horizontal seismic coefficient (k) and the weight of the slide mass, and a FS is computed using conventional limit-equilibrium analysis.

The North Slope (graded area), South Slope, and the proposed fill slopes were analyzed for shallow and deep circular failures. The existing and proposed fill slopes were also analyzed for surficial instability. The failure scenarios analyzed are as follows:

• global stability of the proposed fill slopes for static and seismic conditions with and without geogrid reinforcement,

- global stability of North and South Slopes for static and seismic conditions, and
- surficial stability of the existing fill slope on the North Slope and the proposed 1.5H:1V fill slopes (with and without geogrid reinforcement) under saturated conditions.

6.2 INFINITE SLOPE STABILITY ANALYSIS

The existing slopes and proposed fill slopes may be susceptible to shallow surficial failures under dry conditions or during periods of heavy rainfall. These surficial failures, which are generally referred to soil slumps or soil slips, are typically less than about 4 feet in depth, and have small thickness to length ratios. Conventional equations can be used to analyze the surficial stability of these slopes, referred to as infinite slope stability analysis. These equations are based on limit equilibrium methods, and are considered to be valid for slopes that extend a relatively long distance and have consistent subsurface profiles.

An infinite slope formulation by Giroud et al. (1995) which allows the contribution of geosynthetic reinforcement, was used to calculate the FS of the proposed 1.5H:1V reinforced fill slope. This method was also used to analyze the proposed 3H:1V unreinforced fill slopes, and existing unreinforced fill and bedrock slopes. The equation provided in Giroud et al. (1995) is as follows:

$$FS = (\gamma'/\gamma_s) * (\tan \phi'/\tan \beta) + (c'/(\gamma_s * t * \sin \beta)) + (T/(\gamma_s * t * h))$$

where:

 $\begin{array}{l} \gamma' = \text{buoyant unit weight (pcf)} \\ \gamma_s = \text{saturated unit weight (pcf)} \\ \varphi' = \text{angle of internal friction (degrees)} \\ \beta = \text{slope angle (degrees)} \\ c' = \text{cohesion (psf)} \\ t = \text{soil thickness measured perpendicular to ground surface (ft);} \\ t = z \cos \beta, \\ z = \text{vertical height of the soil column (ft)} \\ T = \text{tensile strength of geogrid (lb/ft)} \\ h = \text{vertical height between geogrid layers (ft)} \end{array}$

6.3 ACCEPTANCE CRITERIA

AMEC used the stability criteria provided in the County of Los Angeles Department of Public Works Manual of Preparation of Geotechnical Reports (July 2010) to evaluate the static and seismic performance of the project slopes. These criteria as defined by Los Angeles County are as follows:

Long-term static condition: FS greater than or equal to (\geq) 1.5

Pseudo-static: $FS \ge 1.1$

Surficial Stability: $FS \ge 1.5$

For seismic stability, Los Angeles County generally uses the pseudo-static analysis by the Seed (1979) procedure. In this method, slopes wherein a pseudo-static FS \ge 1.1 are computed based on a minimum seismic coefficient of 0.15. The minimum depth of saturation was assumed to be 4 feet vertically for the infinite slope analysis per the Los Angeles County Manual.

6.4 CROSS SECTIONS AND SLOPE CONFIGURATIONS

The proposed LGEP consists of an approximately 200 feet wide and 200 feet long pad at an elevation of approximately 1900 feet. The pad construction will consist of placement of up to approximately 50 feet of fill along the bottom of the existing valley and filling a portion of the area in between the North and South slopes. The access to the pad will be achieved by constructing an access road from the south side of the LGEP as shown on Figure 2. The east facing sideslopes of the fill will be constructed at 1.5H:1V because of the space constraints. The west end of the main pad will have a 3H:1V fillslope descending towards the head of the valley.

AMEC developed nine cross sections that depict the geology underlying the project. Seven sections out of nine were used in slope stability analyses. The area and conditions each of the sections analyzed for stability as follows:

- Section 1'-1" represents the bedrock slopes within the South slope descending towards the proposed pad,
- Section 2-2' represents the existing fill slopes within the North slope descending towards the proposed pad.
- Section 5-5' represents the north side of the 1.5H:1V reinforced fill slopes where the fill slope height and width is the highest and the largest, respectively, within the east fill slope,
- Section 6-6' represents the northwest 3H:1V fill slope,
- Section 7-7' represents the south side of the 1.5H:1V reinforced fill slopes where the fill slope width is limited because of the existing slopes and benching is necessary for the geogrid reinforcement,

- Section 8-8' represents the steepest bedrock slopes within the South slope descending towards the lower pad for the SCE substation, and
- Section 9-9' represents the bedrock slope along an existing ravine with shallow slumps within the South slope descending towards the lower pad for the future SCE substation.

6.5 SEISMIC COEFFICIENT FOR PSEUDO-STATIC STABILITY

The most commonly used values for the seismic coefficient are based on the recommendations from Seed (1979), which was developed for application to earth dams and for up to 1 meter of displacement. A number of the local regulatory agencies use the Seed (1979) procedure for the seismic coefficient, including the Los Angeles County. The Seed (1979) procedure recommends values of k = 0.10 and 0.15 for M = 6.25 and 8.25 earthquakes respectively. Los Angeles County requires a minimum value of k = 0.15 for pseudo-static analysis, therefore, this value is used in this Study.

6.6 SLOPE STABILITY ANALYSIS RESULTS

Results of the static, pseudo-static, and infinite slope stability analyses are summarized in Table 4. Graphical plots of the Slope/W results are presented in Appendix D. The infinite slope stability analysis calculations, as discussed in Section 6.2, are included in Appendix E. The existing fill and existing bedrock slopes possess a minimum static FS greater than 1.5 and a minimum pseudo-static FS greater than 1.1 under proposed conditions.

As summarized in Section 4.2.8, the highly weathered bedrock within the North slope at the east end of the ridge was removed as part of the access road construction and replaced with compacted fill. As noted in our boring logs, the fill is underlain with moderately weathered bedrock, which is significantly more competent (i.e., higher strength) compared to the highly weathered bedrock. In addition to the overexcavation and removal performed in this area, the proposed LGEP fill will also further increase the FS of this slope against slope instability by further buttressing the toe of the North Slope. As a result, the static FS in Section 2-2' is greater than 1.5.

As summarized in Section 4.2.8, the bedding pattern on the South Slope is dipping into the slope and the surficial failure scars and resulting debris flow deposits on the South Slope are observed which are generally confined to existing narrow and shallow drainage swales. Although, a transition from moderately weathered to unoxidized bedrock is anticipated within the South Slope, we modeled the entire South Slope in our stability analysis with the moderately weathered bedrock shear strength parameters and the results indicate the Sections 1'-1" and 8-8' possess minimum static FS of 1.5 and pseudo-static FS of 1.1. This is

likely to be conservative based on the weathering profile observed in the North Slope. We also believe the stability results for the South Slope are conservative because we used bedrock strengths derived from siltstone samples only, while the South Slope is comprised of both relatively thick beds of sandstone and beds of massive siltstone.

The proposed 3H:1V west-facing and 1.5H:1V southeast-facing fill slopes were analyzed. The proposed 3H:1V slopes possess a FS of greater than 1.5, however, the proposed 1.5H:1V fill slopes possess an FS of 1.23 as shown in Appendix D. Consequently, the proposed 1.5H:1V southeast-facing fill slope requires placement of geogrid reinforcement to meet the FS criteria described in Section 6.3. The Slope/W software was used to design a uniaxial geogrid type reinforcement arrangement to efficiently stabilize the proposed fill slope to meet the stability criteria. Recommended reinforcement design is discussed in Section 7.1.5 and shown in section and plan view on Figure 11.

The infinite slope stability analysis results presented in Appendix E indicate the reinforced southeast-facing fill slope should include secondary reinforcement with a minimum length of 11 feet in every 4 feet vertically as shown in Figure 11. The infinite slope stability analysis of the proposed 3H:1V unreinforced slopes indicate these slopes possess adequate FS greater than 1.5. The infinite slope stability analysis of the existing 1.5H:1V fill slopes indicate these slopes possess a FS less than the required 1.5 by Los Angeles County based on the required assumption of minimum saturation of 4 feet vertically. Based on our visual observations, the existing fill slope on the North Slope does not currently show signs of slumping. This may be a result of the erosion control measures that are currently in-place (bonded straw mats), which likely prevents the slope from becoming saturated. Additional erosion control measures that may be considered for the existing fill slope are discussed in Section 7.1.4. The infinite slope stability analysis of the existing moderately weathered bedrock slopes as steep as 1H:1V possess adequate FS significantly greater than 1.5.

Based on the slope stability analysis results, the existing slopes descending towards the proposed LGEP and the proposed fill slopes including geogrid reinforcement, where necessary, possess adequate stability.

7.0 DESIGN RECOMMENDATIONS

Provided that all recommendations presented herein are incorporated into design and construction, the proposed construction of the LGEP is feasible from a geotechnical engineering standpoint.

This section presents the design recommendations for earthwork, foundations, retaining walls, and pipelines.

7.1 EARTHWORK

Earthwork for the project is anticipated to consist primarily of fill placement to create the main pad and access road. Minor clearing and subgrade preparation are also anticipated.

7.1.1 Site Preparation

The project site consists primarily of existing road fill. Colluvial deposits are present at the toe of the South Slope. These colluvial deposits should be removed as part of the site preparation before placement of fill.

All construction areas should be cleared of objectionable materials, including grass, weeds, concrete, pavements and any other material that might interfere with the performance or completion of the work. Grubbing should then be performed to remove all roots and other objectionable material. Any holes created by the grubbing process in areas that will receive fill or are at or near final grade should be backfilled with general fill as described in Section 7.2.3. All objectionable material from clearing and grubbing should be removed from the site and disposed of at a suitable off-site disposal area or landfill.

7.1.2 Subgrade Preparation

Areas to receive fill should be scarified to a depth of 6 to 8 inches, moisture conditioned to between 0 and 3 percent above optimum moisture content, and compacted to 90 percent of the maximum dry density as determined by ASTM Test Method D 1557. If the subgrade soil is soft or disturbed, it should be excavated to expose firm soil, with the resulting subgrade scarified and conditioned as above, and the excavated material replaced with compacted fill. Construction of the project will require placement of fill against existing slopes. Fill placed against these existing slopes should be benched into the slopes as shown on Figure 12.

7.1.3 Fill Materials and Compaction Criteria

It is anticipated that three principal fill types will be used at the site. These are (generally from coarsest to finest):

- Crushed Rock
- Aggregate Base
- Engineered Fill
- Backfill Behind Walls

Relative compaction requirements discussed below refer to the percent of the maximum dry density as determined by ASTM Test Method D 1557 (latest edition), the optimum moisture content is also as determined by the same specification as the maximum dry density.

7.1.3.1 Open-Graded Crushed Rock

Open-graded crushed rock may be used to create a firm working surface in areas to receive fill where wet subgrade or other conditions cause difficulty with compaction (e.g., pumping of compaction equipment) or may be used for drainage material. The crushed rock should be an imported material that consists of durable rock and gravel that is free of deleterious material and free from slaking or decomposition under the action of alternate wetting and drying. If used to construct drainage trenches, this material should be surrounded by a filter fabric selected to prevent the migration of fines into the gravel. To create a firm working surface, it is recommended that the working surface consist of 12 to 24 inch thick crushed rock layer over a geosynthetic geogrid. The geogrid will function as a separator and reduce the penetration of the crushed rock into the wet underlying soils. Crushed rock should meet the following gradation requirements.

Standard Sieve Size	Percentage Passing
1 inch	100
¾ inch	90-100
No. 4	0-10
No. 200	0-2

These materials should have a durability index not less than 40. Crushed rock used for building pads should be moistened thoroughly and compacted with a minimum of three passes of plate- or roller-type vibratory compaction equipment, with lifts not thicker than 8 inches before being compacted. Crushed rock does not have a specified relative compaction.

7.1.3.2 Aggregate Base

Imported aggregate base material may be used for pavements or for retaining wall backfill. This material should meet the requirements in the Caltrans Standard Specifications (2006) Section 26, Class 2 Aggregate Base (³/₄-inch maximum particle size). When placed beneath pavements, aggregate base should be compacted to a relative compaction of at least 95 percent or at 90 percent as backfill adjacent to structures. The moisture content of the material should be between 1 percent below and 3 percent above the optimum moisture content and the material should be placed in horizontal lifts that do not exceed 8 inches before being compacted.

7.1.3.3 Engineered Fill/Backfill Behind Walls

Soil obtained from on-site stock piles and/or excavations may be used as engineered fill/backfill, provided the materials meet the criteria below.

All engineered fill/backfill should be free of organic material, debris, and other deleterious material, contain fragments no larger than 3 inches in maximum dimension, and have an expansion index (EI) less than 40 for general use and an EI less than 20 for backfill behind walls. Engineered fill for general use should also meet the shear strength requirements for Proposed Fill in Table 2. The soils to be used as engineered fill/backfill may be somewhat heterogeneous, therefore, mixing, blending, and moisture conditioning may be required to create a material that can be placed and adequately compacted. All fill/backfill should be scarified, plowed, disked, and/or bladed until it is uniform in consistency and free of large, unbroken clods of soil. The moisture content of the general fill/backfill should be adjusted to between 0 percent and 3 percent above the optimum moisture content.

Before the placement of engineered fill, the subgrade should be prepared in accordance with Section 7.1.2 above. Engineered fill/backfill should be placed in horizontal lifts that do not exceed 8 inches in thickness before compaction, and compacted with suitable equipment to a relative compaction of at least 90 percent. The final surface of the compacted fill/backfill should be graded to promote good surface drainage, as described in Section 7.1.4.

7.1.3.4 Sand Cement Slurry

Sand-cement slurry, also known as controlled density fill (CDF), or controlled low strength material (CLSM), or "Slurry Cement Backfill" in Section 19 of the Caltrans Standard Specifications (July 2002), can be used as an alternative fill/backfill material. Sand-cement slurry consists of a fluid, workable mixture of aggregate, Portland cement, fly ash, and water. Sand-cement slurry can be batched to flow into irregularities in the bottoms and walls of excavations and trenches. It is an ideal backfill material when adequate room is limited or not available for conventional compaction equipment, or when settlement of the backfill must be minimized. No compaction is required to place Sand-cement slurry.

The Caltrans specifications for the gradation of sand-cement slurry aggregate are:

Standard Sieve Size	Percentage Passing
½ inch	100
1 inch	80-100
³¼ inch	60-100
¾ inch	50-100
No. 4	40-80
No. 100	10-40

More restrictive gradation requirements may be desirable to limit the fines content and the size of sand and gravel that may adversely affect (i.e., puncture or tear) the corrosion protection of pipes, for example. We recommend that no more than 15 percent of the aggregate pass through the No. 200 sieve; and the 28-day compressive strength of the CDF be no less than 50 and no more than 110 pounds per square inch (psi).

7.1.4 Drainage and Debris Control

Final site grading should provide surface drainage away from structures and slabs-on-grade. Ponding of surface water should not be allowed adjacent to structures. Where slabs or pavements abut landscaped areas, provisions should be made to protect the base rock layer and subgrade soils against saturation from water in the landscaped areas. If landscape water or surface runoff is allowed to seep into the pavement section, the service life of the pavement may be reduced. Landscape watering adjacent to the structure should be avoided. Where needed, drip irrigation systems should be used.

The proposed grading plan shown on Figure 2 is filling in the northwesterly canyon and creates a basin on the upstream northwest end of the canyon. Proper drainage features should be designed and installed to convey the surface water from the upper parts of the canyon to the east side of the proposed fill.

As discussed in Section 4.2.5, there are existing small slumps and debris flows within drainage swales of the South Slope. It is anticipated that minor slumps and debris flows will continue to occur in these swales in the future during large rainfall events. Consequently, the proposed facilities at the north end of the LGEP and SCE Substation (along the toe of the South Slope) should be protected from these nuisances. Protection could be accomplished by installing debris fencing and/or concrete drainage ditches between the toe of the South Slope and the facilities to contain such slumps and flows if they reached the bottom of the South Slope. Debris fencing and drainage ditches should be consistently monitored after storm events to

check their function and integrity, and debris removed from ditches and behind the fencing as needed.

Results of our infinite slope stability analyses indicate that the proposed 1.5H:1V fill slope and the existing fill slope on the North Slope are susceptible to surficial sliding if the upper 4 feet of their slope surface becomes saturated. The surficial instability of the 1.5H:1V fill slope can be mitigated using the conceptual reinforcement layout provided in Section 7.1.5 below. For the existing fill slope, the SGL has placed bonded straw mats on the fill slope to reduce surface erosion. This matting also reduces the potential for the upper 4 feet of the slope to become saturated, and thus, helps to mitigate the potential surficial instability. The straw mats could continue to be used to address surficial instability in the future; however, the straw mats have a relatively short life and require periodic re-application. There are other erosion control products that could be used for the existing slope that can provide longer term solutions for surficial instability. Such products include many types of erosion control blankets (ECBs) and Bonded Fiber Matrix (BFM). A new ECB that reportedly lasts several years is the Marimesh SG by Tencate Marafi, which is a synthetic grass face mat that is applied to the slope for erosion protection and significantly enhances surface water runoff on slopes. Several spraytype products are also available that provide immediate and longer term protection against water penetration by bonding to the soils (short term) and establishing vegetation cover via hydro-seeding (long term) such as a Flexterra® by Profile Products, LLC.

7.1.5 Reinforcement for Proposed Fill Slope

The conceptual reinforcement layout in the proposed southeast-facing fill slope was designed to achieve the FS criteria. Recommended reinforcement of the slope consists of uniaxial geogrid type reinforcement placed every 4 to 8 feet vertically in section. The reinforcement should be placed along the entire length of the southeast face of the proposed fill and extend into the fill the entire width of fill in section with a maximum width of 45 feet. General dimensions and layout of the geogrids area shown on Figure 11. The uniaxial reinforcement geogrid should have a minimum allowable tensile strength of 1,760 lb/ft (e.g., Tensar UX1400HS or equivalent)..

7.2 SHALLOW FOUNDATIONS

Spread footings are an acceptable foundation for many of the at-grade structures planned for the LGEP. Footings should bear directly on properly compacted engineered fill. Excavation bottoms for footings should be checked before construction of the footing. Any loose or soft materials in the footing excavations should be removed and backfilled with engineered fill compacted to at least 90 percent relative compaction per ASTM D1557. Continuous and isolated spread footings may be designed using an allowable (net) bearing capacity of 2000 pounds per square foot (psf). The allowable bearing capacity values apply to combined

dead and sustained live loads and may be increased by one-third when considering transient live loads, including seismic and wind forces. Footings should have a minimum width of 2 feet and be embedded at least 2 feet below the lowest adjacent finished grade.

Lateral loads on at grade structures are resisted by the foundation using a combination of friction between structural components and the subgrade soils and the passive resistance in front of the footing. Allowable resistance to lateral loads for footings can be estimated using a coefficient of sliding resistance (μ) of 0.25 (FS of 1.5) between the bottom of concrete footings and soil. A frictional μ value of 0.20 is recommended for slabs underlain by a moisture barrier. Additionally, lateral resistance may be provided by passive pressures acting against the vertical sides of the footings. An allowable equivalent fluid pressure of 200 pounds per cubic foot (pcf) (FS of 2) may be used to calculate passive resistance in compacted fill. The upper one foot of soil below lowest adjacent grade should not be used for calculating passive resistance. The allowable passive pressure may be increased by 33 percent for lateral loading due to wind or seismic forces. The friction coefficient and passive pressure may be used concurrently.

Based on a maximum allowable bearing pressure of 2,000 psf, the total settlement beneath the strip/spread foundations is anticipated to be less than $\frac{1}{2}$ inch.

7.3 MOISTURE BARRIER BELOW FLOOR SLABS

It is recommended that a moisture barrier be installed below floor slabs with moisture-sensitive coverings or equipment. The moisture barrier should consist of 10-mil polyvinyl chloride (PVC) plastic sheeting with joints in the sheeting overlapped by a minimum of 12 inches. The PVC sheeting should be covered with a minimum 2-inch thick clean (i.e., no fines passing No. 200 sieve) sand layer to provide working surface and aid in concrete curing.

7.4 MAT FOUNDATIONS

Mat foundations may be designed for an allowable bearing pressure of 2,000 psf (FS of 3) for dead plus live loads and 3,000 psf for load combinations including transient loads.

Allowable resistance to lateral loads can be estimated using a coefficient of sliding resistance (μ) of 0.25 (FS of 1.5) between the bottom of concrete mat foundation and soil. Lateral resistance may be provided by passive pressures acting against the vertical sides of the mat and an allowable equivalent fluid pressure of 200 pounds per cubic foot (pcf) (FS of 2) may be used to calculate passive resistance in compacted fill. The upper one foot of soil below lowest adjacent grade should not be used for calculating passive resistance. The allowable passive pressure may be increased by 33 percent for lateral loading due to wind or seismic forces. The friction coefficient and passive pressure may be used concurrently. If the design of the mat

foundation on fill soils is based on elastic theory, a modulus of subgrade reaction (k) of 100 pounds per cubic inch may used be for design of any size mat supported on compacted fill.

Based on a maximum allowable bearing pressure of 2,000 psf, the total settlement beneath the mat foundations is anticipated to be less than 1 inch.

7.5 RETAINING WALLS AND LATERAL EARTH PRESSURES

Recommendations were developed for design of retaining walls. Retaining walls should be designed to resist both lateral earth pressures (static and seismic) and any additional lateral loads caused by surcharge loads on the adjoining ground surface. The recommended earth pressures for different loading conditions are listed in the following table:

Loading Condition	Equivalent Fluid Weight for Lateral Earth Pressure Calculations
Active Earth Pressure ¹	40 pcf
At-Rest Earth Pressure ¹	60 pcf
Seismic Increment, Active ²	Uniform 30 H in psf (H in feet)
Seismic Increment, At-Rest ²	Uniform 20 H in psf (H in feet)
Passive Earth Pressure ³	400 pcf

Notes:

- 1. Active pressure is typically used where the wall is unrestrained so that the top of the wall is free to laterally deflect. At-rest pressures should be used where the top of the wall is restrained (e.g. basement walls).
- 2. The seismic increment is used only for walls taller than 12 feet per the LA County Manual. When considering the seismic load case, the pressure increment should be distributed uniformly against the back of the wall and added to the static lateral earth pressure for active or at-rest conditions. For calculating overall stability, the resultant of the seismic increment should be applied at a point 50 percent of the wall height above the base of the footing.
- 3. Ignore passive resistance for the upper 12 inches unless pavement or a rigid slab-on-grade covers the ground surface.

If a uniform surcharge load is applied adjacent to the wall, we recommend an additional lateral uniform wall pressure equal to 0.32 times the anticipated vertical surcharge pressure for unrestrained walls and 0.48 times for restrained walls. Transient loads induced, for example, by construction equipment, need not be considered in the design, unless they produce lateral pressures that exceed the pressures produced under earthquake loading conditions.

The above pressures are based on the assumption that sufficient drainage will be provided behind the walls to prevent the build-up of hydrostatic pressures from surface and subsurface water infiltration. Adequate drainage may be provided by a subdrain system consisting of a 4-inch diameter perforated pipe bedded in ³/₄-inch clean, open-graded rock. The entire rock/pipe unit should be wrapped in filter fabric. The rock and fabric placed behind the wall should be at least one foot in width and should extend to within one foot of finished grade. The upper one foot of backfill should consist of on-site, compacted soils. Alternatively, prefabricated drainage panels may be used instead of drain rock, with the drainage panels connected to a 4-inch-diameter perforated pipe at the base of the wall. In either case, the subdrain pipe should be sloped to drain by gravity and be connected to a system of closed pipes that lead to suitable discharge facilities. In addition, the "high" end and all 90 degree bends of the subdrain pipe should be connected to a riser which extends to the surface and acts as a cleanout.

7.6 PIPELINES

Recommendations for the design of buried pipelines are provided in the following sections.

7.6.1 Nomenclature

The following terminology is used in this report for the purpose of presenting design recommendations for pipe trench excavation and backfill.

- 1. <u>Pipe Bedding</u> The pipe bedding includes the full width of the trench from the bottom of the pipe to a horizontal level about 6 inches below the bottom the pipe.
- 2. <u>Pipe Zone</u> The pipe zone includes the full width of the trench from the bottom of pipe to a horizontal level about 12 inches above the top of the pipe.
- 3. <u>Trench Zone</u> The trench zone is the full width of the trench above the pipe zone to ground surface.

7.6.2 Bearing Capacity and Settlement

It is anticipated that all buried pipelines will be installed within the proposed or existing fill. Based on the results of our investigation, properly compacted engineered fill will provide adequate bearing capacity to support buried pipelines. Generally, the pressure imposed by the pipelines will be less than the existing soil overburden pressure at the proposed invert depths. Therefore, properly compacted fill will be suitable to support the pipelines without settlement being a design factor.

7.6.3 Bedding Material

It is recommended that pipes be bedded on a minimum of 6 inches of crushed rock or select sand meeting the gradation requirements presented in Tables 5 and 6. The select sand should also have a minimum sand equivalent (SE) of 30, as determined by California Test Method 217.

Trench excavations along the pipeline alignments will likely expose saturated interbedded silty and clayey soils. Fill soils that become wet and soft could present difficulties for pipe installation. One way to mitigate this condition is to excavate a minimum of 12 inches below the bottom of planned pipe bedding material, and replace the excavated material with ³/₄-inch crushed rock. It may be necessary to line the bottom and sidewalls of the overexcavated trench portion with a filter fabric of the type Mirafi 140N or equivalent to prevent the migration of fines into the crushed rock. The fabric may be folded at the top of the crushed rock to completely encapsulate the crushed rock layer.

7.6.4 Pipe Zone Backfill

Backfill to be placed in the pipe zone should consist of crushed rock or select sand conforming to the gradation requirements recommended in Tables 5 and 6 as described above. In addition to the gradation requirements, the select sand should have a minimum Sand Equivalent (SE) of 30, as determined by the California Test Method 217. Based on the results of the laboratory tests, the on-site soils are not suitable for use as pipe-zone backfill, and import of backfill materials will likely be necessary. Alternatively, CLSM may be used.

Further evaluation of trench spoils for use as pipe-zone backfill may be conducted if it is desired to use the excavated material for this purpose. Import of backfill materials will be necessary where excavated materials are deemed unsuitable.

7.6.5 Trench Zone Backfill

The site subsurface materials generated from trench excavations are considered suitable to be used as backfill in the trench zone, provided that they are free of vegetation, debris, organic materials, deleterious materials, and particles greater than 3 inches in largest dimension. If wet soils are to be reused, they may require an active and diligent drying/mixing operation to reduce the moisture content to a level where adequate compaction can be achieved.

7.6.6 Backfill Placement and Compaction Requirements

Backfill should be compacted by mechanical or vibratory equipment to achieve the required compaction standard. Flooding or jetting should not be used for compaction purposes.

Backfill should be placed on each side of the pipe simultaneously to avoid unbalanced loads on the pipe. All backfill should be moisture-conditioned to, or slightly above, optimum moisture content, placed in lifts not exceeding 8 inches in thickness, and compacted to at least 90 percent of the maximum dry density in the pipe zone and trench zone. In paved areas, the upper 12 inches of subgrade and all overlying aggregate baserock within the trench zone should be compacted to at least 95 percent of maximum dry density. The maximum density and optimum moisture content for each material used should be determined in accordance with ASTM Method D 1557.

7.7 CORROSION AND CHEMICAL ATTACK RESISTANCE

AP Engineering and Testing, Inc. of Pomona, California performed chemical analyses, pH, and minimum resistivity tests on bulk samples of potential fill sources. Corrosion test results are presented in Appendix B.

The soil pH value was determined to range between 6.3 to 7.2, which is considered mildly to severely corrosive. Based on correlations in the Navy Design Manual (NAVFAC DM-5), resistivity results on as-received and saturated soil samples indicate that on-site soils may be heavily to severely corrosive when in contact with ferrous materials. Typical recommendations for mitigation of the corrosive potential of the saturated soil in contact with ferrous materials are the following:

- Below-grade ferrous metals should be given a high quality protective coating, such as an 18-mil plastic tape, extruded polyethylene, coal tar enamel, or Portland cement mortar.
- Below-grade ferrous metals should be electrically insulated (isolated) from above grade ferrous metals and other dissimilar metals, by means of dielectric fittings in utilities and exposed metal structures breaking grade.
- Steel and wire reinforcement within concrete having contact with the site soils should have at least two inches of concrete cover.

If ferrous materials are expected to be placed in contact with site soils, it may be desirable to consult a corrosion specialist regarding chosen construction materials, and/or protection design for the proposed facilities.

The corrosion test results also indicate that potential fill sources have moderate to severe sulfate attack potential on concrete, according to ACI 318-05, Table 4.3.1. Refer to ACI-318

for appropriate concrete mix design. ACI makes no special requirements for cement type or water content when sulfate attack potential is negligible.

7.8 CONFORMANCE WITH SECTION 111 OF THE L.A. COUNTY BUILDING CODE

The proposed grading plan for the LGEP at the SCL has been designed in accordance with generally accepted standards of engineering practice. The design will be safe from the hazards of landslide, settlement, or slippage for structures founded on the main pad. The proposed grading and proposed structure will not adversely impact the property outside the developed area. The design conforms to the requirements of Section 111 of the Los Angeles County Building Code.

8.0 CONSTRUCTION CONSIDERATIONS

The following paragraphs discuss key considerations during construction of the LGEP facility.

8.1 EXCAVATION DIFFICULTY

Based on our field exploration program, earthwork can be performed with conventional construction equipment.

8.2 DEWATERING

Based on current and historical groundwater levels in the vicinity of the site and that minimal excavation is proposed for the project (primarily place of fill), it is anticipated that groundwater will not be encountered during grading. Therefore, the need to dewatering is not anticipated.

8.3 CONSTRUCTION SLOPES

Excavations during construction should be conducted so that slope failure and excessive ground movement will not occur. The short-term stability of excavation depends on many factors, including slope angle, engineering characteristics of the subsoils, height of the excavation and length of time the excavation remains unsupported and exposed to equipment vibrations, rainfall, and desiccation.

If and where spacing permits, and providing that adjacent facilities are adequately supported, open excavations may be considered. In general, unsupported slopes for temporary construction excavations above groundwater should not be expected to stand at an inclination steeper than 1.5H:1V for the proposed and existing fill.

Surcharge loads from vehicle parking and travel lanes or stockpiled materials should be kept away from the top of temporary excavations 10 feet or a horizontal distance equal to at least one-half the depth of excavation, whichever is greater. Surface drainage should be controlled along the top of temporary excavations to preclude wetting of the soils and erosion of the

excavation faces. Even with the implementation of the above recommendations, sloughing of the surface of the temporary excavations may still occur, and workmen should be adequately protected from such sloughing.

8.4 Post Investigation Services

Final project plans and specifications should be reviewed before construction to confirm that the full intent of the recommendations presented herein have been applied to design and construction. Following review of plans and specifications, observation and testing should be performed by the Geotechnical Engineer of Record during soil improvement and grading to document that foundation elements are founded in or penetrate the recommended soils.

9.0 CLOSURE

The conclusions, recommendations, and opinions presented herein are: (1) based upon our evaluation and interpretation of the data obtained from our field and laboratory programs and from previous field explorations; (2) based upon an interpolation of soil conditions between and beyond the borings; (3) are subject to confirmation of the actual conditions encountered during construction; and, (4) are based upon the assumption that sufficient observation and testing will be provided during construction.

If parties other than AMEC are engaged to provide construction geotechnical services, they must be notified that they will be required to assume complete responsibility for the geotechnical phase of the project by concurring with the findings and recommendations in this report or providing alternate recommendations.

If pertinent changes are made in the project plans or conditions are encountered during construction that appear to be different than indicated by this report, please contact this office. Significant variations may necessitate a re-evaluation of the recommendations presented in this report.

10.0 REFERENCES

- A-Mehr, Inc., 2006, Geologic Report and Slope Stability Analyses, Sunshine Canyon County Extension Landfill, Phases V-VII, dated February, 2006 with latest revision November, 2006.
- A-Mehr, Inc., 2008, Final Report of Construction Quality Assurance, Sunshine Canyon County Extension Landfill, Phase V-A, dated July 2008
- American Society of Civil Engineers (ASCE), 2005, Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-05.

California Building Code, 2010.

- California Department of Transportation (Caltrans), 2006, Standard Specifications, State of California Business, Transportation and Housing Agency, May, 2006.
- Caltrans, 2010, Standard Specifications
- County of Los Angeles Department of Public Works, 2010, Manual for Preparation of Geotechnical Reports, July 2010.
- GEO-SLOPE International, Ltd., 2007, Slope/W Software for Computing Factor of Safety of Earth and Rock Slopes, Calgary, Alberta, Canada.
- GeoSyntec Consultants, 1998, Geotechnical Recommendations, Flare No. 8 Pad Construction, Sunshine Canyon Landfill County Extension, dated June, 1998.
- GeoSyntec Consultants, 2001, Phase II-C Grading Design, Sunshine Canyon Landfill, County Extension Landfill, Los Angeles County, California, dated February, 2001.
- Giroud, J.P., Bachus, R.C., and Bonaparte, R., 1995, Influence of Water Flow on the Stability of Geosynthetic-Soil Layered Systems on Slopes, Geosynthetics International, Vol. 2 (6), pp. 1149-1180.
- Hoek, E., Carranza-Torres, C., and Corkum, B., 2002, Hoek-Brown Criterion 2002 Edition, Proc. NARMS-TAC Conference, Toronto, 2002.
- Hoek, E., and Diederichs, M.S., 2006, Empirical Estimation of Rock Mass Modulus, International Journal of Rock Mechanics and Mining Services.
- Seed, H.B., 1979, Considerations in the Earthquake-Resistant Design of Earth and Rockfill Dams, Geotechnique, Vol. 29, No. 3, p. 236.
- Spencer, E., 1967, A Method of Analysis of Embankments Assuming Parallel Interslice Forces, Geotechnique, Vol. 117 (1), pp. 11-26.
- United States Geological Survey, 1998, A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California, Area, Open-File Report 98-113.

United States Geological Survey, 2002, www.earthquake.usgs.gov/hazards/.

TABLES

TABLE 1

SUMMARY OF LABORATORY TEST RESULTS

Landfill Gas to Energy Project Sunshine Canyon Landfill Sylmar, California

Image: Normal problem			Sam De			Unified Soil Classification System (USCS)		Maiatura	_	Sieve Analysis		sis	Hydrometer Test		Expansion	Atterberg	Modified Compaction (ASTM D1557)		Direct Shear Test (ASTM D3020)				Unconsolidated- Undrained Triaxial	Unconfined Compressive
Barby Profit Description Barby and profit Dirac Dirac Dirac Dirac No Dirac No Dirac No Dirac Dira Dira Dirac			(reet	bgs)		Unined Soli Classification System (USCS)	JSCS	Content (ASTM ⁴	Dry Density (ASTM	(A3		2)	(ASTM	0422)	Index (ASTM D4829)	(LL:PL:PI) (ASTM	Optimum Moisture	Maximum Dry	Peak Friction	Peak	Large Displacement ⁷	Large Displacement ⁷	Compressive Strength (ASTM D 2850)	Strength (ASTM D2166) Maximum Deviator
Int 8 10 15 16	Boring No.	Samp Type	¹ (feet)	To (feet)	Formation ³	Soil Description S	Group ymbol	D2216) (%) ⁵	D2937) (pcf) ⁶	% Gravel	% Sand	% Fines	Silt (%)	Clay (%)		D4318)	Content (%)	Density (pcf)	Angle (degree)	Cohesion (psf)	Friction Angle (degree)	Cohesion (psf)	Maximum Deviator Stress (psf)	Stress (psf)
b b b b b c	B-1	R	3.0	3.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Gravel	CL-SC	11.3	97.5	8														
B 50 60 7	B-1	S	5.0	6.0	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave	CL-SC								25									
B 6 15.4 6.5 7 </td <td>B-1</td> <td>R</td> <td>8.0</td> <td>9.0</td> <td>af</td> <td>Sandy Lean Clay with Gravel to Clayey Sand with Grave</td> <td>CL-SC</td> <td>10.5</td> <td>101.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>35</td> <td>641</td> <td>34</td> <td>687</td> <td></td> <td></td>	B-1	R	8.0	9.0	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave	CL-SC	10.5	101.2										35	641	34	687		
B 55. 65. 65. 65. 65. 10. 17. 1 <th1< th=""> <th1< th=""> <th1< th=""> <</th1<></th1<></th1<>	B-1	R	15.5	16.0	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave	CL-SC	11.9	97.4															
B 6 6 6 6 6 6 6 7 $ -$	B-1	R	25.5	26.0	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave 0	CL-SC	13.0	107.2															
B 1 3.5 <i>d</i> 3.50 <i>d</i> 3.50 <i>d</i> 3.50 <i>d</i> 3.50 <i>d</i> 3.50 <i>d</i> 3.50 3.50	B-1	R	50.5	51.0	af	Sandy Lean Clav with Gravel to Clavey Sand with Grave 0	CL-SC	18.4	106.5															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B-2	R	3.0	3.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave C	CL-SC	16.8	103.6															
1 2 3 3 3 3 3 3 5 3 5 3 5 3 5 4 0 1	B-2	R	10.5	11.0	at	Sandy Lean Clay with Gravel to Clayey Sand with Grave	CL-SC	15.1	108.2															
B 0 0 0 def and yies 0 <th< td=""><td>B-3</td><td>R S</td><td>5.0</td><td>3.5</td><td>al</td><td>Sandy Lean Clay with Gravel to Clayey Sand with Grave</td><td>2L-3C</td><td>13.2</td><td>106.6</td><td></td><td></td><td></td><td></td><td></td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	B-3	R S	5.0	3.5	al	Sandy Lean Clay with Gravel to Clayey Sand with Grave	2L-3C	13.2	106.6						20									
B3 B 0.05 11 ad Second Law C	B-3	B	5.0	10.0	af	Sandy Lean Clay	CI			0	38	62					11.6	123.3						
B53 R 203 210 at State field and field field and field field and fie	B-3	R	10.5	11	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave (CL-SC	5.3	118.5															
B3 B 255 210 ad Second Land Carly throw the code to Charge State with Grave Lockey State	B-3	R	20.5	21.0	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave	CL-SC	18.9	96.2															
Best 8 30 35 af Sample Learning wind finding Grand Color Color<	B-3	R	30.5	31.0	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave 0	CL-SC	26.4	95.7															
B 0.6 8.5 a 8.5 b a b< b< c c c c c c c c c c c c	B-4	R	3.0	3.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave 0	CL-SC	15.2	109.0										37	400	37	50		
B4 S 100 115 af Stack Less Car with Care B CL_SC r	B-4	R	8.0	8.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave 0	CL-SC	14.2	111.1															
B K Iso Shop Using 100	<u>B-4</u>	S	10.0	11.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave C	CL-SC									28:21:7								
B B	B-4	R	13.0	13.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave	CL-SC	16.1	105.9															
B R 10.5 1.5	B-4	R	18.0	18.5	ar	Sandy Lean Clay with Gravel to Clayey Sand with Grave	JL-SU	15.4	102.0															
B5 S 150 165 at SampLand Claveth Grave Locavey and with Grave CL-SC a	B-5	R	10.5	11.0	ai	Sandy Lean Clay with Gravel to Clayey Sand with Grave	2L-3C	10.4	102.9															
B 5 B 150 200 at Sandy Land Cluw with Grave to Claws Sand with Grave to Claws CL-SC 118 105 a	B-5	S	15.0	16.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave	CL-SC								24									
B-5 R 20.5 21.0 at Sandy Lean Clay with Gray to Law Sand with Gray CL-5C 11.9 105.3 a	B-5	B	15.0	20.0	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave	CL-SC										10.5	125.0						
Be6 R 3.0 3.5 af Sandy Lean Clay with Grave to Clayery Sand with Grave CL -	B-5	R	20.5	21.0	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave	CL-SC	11.9	106.1															
Be6 B 5 0 10.0 af Sandy Lean Clay Clay $ 0$ 35 65 $ -$ <t< td=""><td>B-6</td><td>R</td><td>3.0</td><td>3.5</td><td>af</td><td>Sandy Lean Clay with Gravel to Clayey Sand with Grave 0</td><td>CL-SC</td><td>11.8</td><td>105.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	B-6	R	3.0	3.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave 0	CL-SC	11.8	105.3															
B-6 R 8.0 8.5 at Sandy Lean Clay with Grave Io Clays Sand with Grave IC-SC 1.6 103.7 a	B-6	В	5.0	10.0	af	Sandy Lean Clay	CL			0	35	65					9.9	126.2						
B6 S 100 11:5 af Sandy Lean Cay with Grave to Clavey Sand with Gravey to Clavey Sand with Grave to Clavey Sand with Gr	B-6	R	8.0	8.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave	CL-SC	11.6	103.7															
B6 R 130	B-6	S	10.0	11.5	at	Sandy Lean Clay with Gravel to Clayey Sand with Grave	CL-SC									28:18:10								
BC R 100<	B-6	R	13.0	13.5	ar	Sandy Lean Clay with Gravel to Clayey Sand with Grave	2L-SC	12.5	106.3															
b R 220 R 200 R <td>B-6</td> <td>P</td> <td>23.5</td> <td>24.0</td> <td>ai</td> <td>Sandy Lean Clay with Gravel to Clayey Sand with Gravel (</td> <td></td> <td>12.4</td> <td>114.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>31</td> <td>931</td> <td>21</td> <td>818</td> <td></td> <td></td>	B-6	P	23.5	24.0	ai	Sandy Lean Clay with Gravel to Clayey Sand with Gravel (12.4	114.5										31	931	21	818		
B6 R 33.0 33.5 af Sind Lean Clay with Gravet to Clayey Sand with Grave to CLSC 11.0 10/3 -	B-6	R	23.3	24.0	ai	Sandy Lean Clay with Gravel to Clayey Sand with Grave	2L-3C	11.7	115.3											031		010		
B-6 R 380 385 at Sandy Lean Clay with Grave to Clayer Sand with Grave CL-SC 12.2 115.9	B-6	R	33.0	33.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave		11.7	104.3															
B-6 R 43.0 43.5 at Sandy Lean Clay with Gravel to Clayey Sand with Grave CL-SC 11.8 107.2 -	B-6	R	38.0	38.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave (CL-SC	12.2	115.9															
B-6 R 48.0 48.0 48.0 48.5 at Sandy Lean Clay with Grave to Clayey Sand with Grave CL-SC 11.5 100.9	B-6	R	43.0	43.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave	CL-SC	12.8	107.2															
CH-01 C 9.7 10.4 Tos Silty Sandstone (highly weathered) 16.8 127.4 u <	B-6	R	48.0	48.5	af	Sandy Lean Clay with Gravel to Clayey Sand with Grave 0	CL-SC	11.5	100.9															
CH-01 C 14.0 15.0 Silty Sandstone (injply weathered) 18.6 105.6 21 1600 177 650 21 1600 177 650 21 1600 177 650	CH-01	С	9.7	10.4	Ttos	Silty Sandstone (highly weathered)		16.8	127.4							37:21:16	20.0	99.0					1588	
CH-01 C 31.4 32.2 Tios Silty Sandstone (moderately weathered) 12.7 118.0	CH-01	С	14.0	15.0	Ttos	Silty Sandstone (highly weathered)		18.6	105.6										21	1600	17	650		
CH-01 C 34.0 34.8 Tios Silty Sandstone (moderately weathered) 14.2 117.5 $ -$ <td>CH-01</td> <td>С</td> <td>31.4</td> <td>32.2</td> <td>Ttos</td> <td>Silty Sandstone (moderately weathered)</td> <td></td> <td>12.7</td> <td>118.0</td> <td></td> <td>35663</td> <td></td>	CH-01	С	31.4	32.2	Ttos	Silty Sandstone (moderately weathered)		12.7	118.0														35663	
CH-01 C 36.0 36.5 Tios Sility Sandstone (moderately weathered) 13.2 116.6	CH-01	C	34.0	34.8	Ttos	Silty Sandstone (moderately weathered)		14.2	117.5														16893	
CH-01 C 38.0 38.5 Tos Silty Sandstone (unoxidized) 13.5 12.4 <t< td=""><td>CH-01</td><td>C</td><td>36.0</td><td>36.5</td><td>Ttos</td><td>Silty Sandstone (moderately weathered)</td><td></td><td>13.2</td><td>116.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20550</td></t<>	CH-01	C	36.0	36.5	Ttos	Silty Sandstone (moderately weathered)		13.2	116.6															20550
CH-01 C 42.0 42.5 Tos Silty Sandstone (unoxidized) 10.7 125.3 $$	CH-01	С	38.0	38.5	Ttos	Silty Sandstone (unoxidized)		13.5	122.4														36733	
CH-01 C 43.4 44.0 Tos Silty Sandstone (unoxidized) 11.4 126.2 $ -$	CH-01	C	42.0	42.5	Ttos	Silty Sandstone (unoxidized)		10.7	125.3															19882
CH-01 C 44.0 44.5 Tos Silty Sandstone (unoxidized) 12.0 12.3.4	CH-01	C	43.4	44.0	Ttos	Silty Sandstone (unoxidized)		11.4	126.2														41819	
CH-01 C 49.8 50.3 I tos Stilly Sandstone (unoxidized) 13.4 123.9	CH-01	C	44.0	44.5	Ttos	Silty Sandstone (unoxidized)		12.0	123.4															26188
BA-2 B 28.8 30.3 10s IFat Clay with Sand CH 28.8 2 19 79 54 25 55:28:27 25 27:198 11.5 121.0 34 130 34 129 20 32:20:12 121.0 121.0 121.0 130 34 130 34 130 34 130 34 130	CH-01	C	49.8	50.3	I tos	Silty Sandstone (unoxidized)	011	13.4	123.9														30018	
Stockpile 2 (S-1) B NA at Usage Sand SC 25 27:19:8 11.5 121.5 34 130 34 129 Stockpile 2 (S-2) B NA NA af Sandy Lean Clay CL 39 32:20:12 12.0 121.0 35 53 35 53 39 32:20:12 12.0 121.0 36 0 36 0 2 23:20:3 10.5 122.0 36 0 36 0 2 23:20:3 10.5 122.0 36 0 36 0 2 23:20:3 10.5 122.0 36 0 36 0 28 11.0	BA-2	B	28.8	30.3	Itos	Fat Clay with Sand	CH	28.8		2	19	79	54	25		55:28:27								
Stockpile 1 IS-2 ID IVA AI Stockpile (lay CL 2 23:20:3 10.5 122.0 36 0 36 0 2 23:20:3 10.5 122.0 36 0 36 0 2 23:20:3 10.5 122.0 36 0 36 0 2 23:20:3 10.5 122.0 36 0 36 0 2 23:20:3 10.5 122.0 36 0 36 0 2 23:20:3 10.5 122	Stockpile 2	(S-1)	P NA 9	NA	at	Clayey Sand	SC								25	27:19:8	11.5	121.5	34	130	34	129		
Subscript 13-57 IVA at Sandy Silt Sandy 2 23/2/3 10.5 122.0 3b 0 3b 0 2 23/2/3 10.5 122.0 3b 0 3b 0 2 23/2/3 10.5 122.0 3b 0 3b 0 2 23/2/3 10.5 122.0 3b 0 3b 0 2 23/2/3 10.5 122.0 3b 0 3b 0 2 23/2/3 10.5 122.0 3b 0 3b 0 2 23/2/3 10.5 122.0 3b 0 3d 106 3d 100 3d 10.6 10.6 </td <td>Stockpile 2</td> <td>(8-2)</td> <td>D NA</td> <td>INA NA</td> <td>at</td> <td>Sanuy Lean Clay</td> <td>CL SM</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>39</td> <td>32:20:12</td> <td>12.0</td> <td>122.0</td> <td>35</td> <td>53</td> <td>35</td> <td>53</td> <td></td> <td></td>	Stockpile 2	(8-2)	D NA	INA NA	at	Sanuy Lean Clay	CL SM								39	32:20:12	12.0	122.0	35	53	35	53		
C-1 D IV IV IV al Dallay Dill IVIL	Stockbile 1	(S-3)		NA NA	ar	Sandy Silt	SIVI								28	23:20:3	10.5	110.0	30	106	30	106		
	C-2	B	NA	NA	af	Sandy Lean Clay	CI								41		13.5	118.0	34	161	30	101		

 Notes:
 I B = bulk, C = core, R = ring, S = SPT.

 2. feet bgs = feet below ground surface.

 3. af = artificial fill, Ttos = Towsley.

 4. ASTM = American Society for Testing of Materials International.

 5. % = percent.

 6. pcf = pounds per cubic foot.

 7. Large displacement results correspond to the final shear stress at the end of the test which is typically 20% lateral displacement unless otherwise noted.

 8. "--" = denotes laboratory test not performed for this sample.

 9. NA = not applicable.

SHEAR STRENGTH PARAMETERS USED IN ANALYSES

Landfill Gas to Energy Project Sunshine Canyon Landfill Sylmar, California

	Soil / Bedrock	AMEC (this Study)			
	Soil	Effective Stress Parameters ²			
Material	Description	Symbol ¹	γ_t (pcf) ³	ϕ^{\prime} (degrees) 4	c' (psf) ⁵
1	Existing Fill	CL-SC	120	bilinear ⁶	bilinear ⁶
2	Proposed Fill	SC-SM	125	31	100
3	Moderately Weathered Bedrock	NA ⁷	133	30	1,900
4	Unoxidized Bedrock	NA	140	33	2,900

Notes:

1. Group symbol based upon the Unified Soil Classification System.

2. Shear strength parameters based on direct shear test results at large deformations.

3. γ_t = total unit weight; pcf = pounds per cubic foot.

4. ϕ = angle of friction.

5. c = cohesion.

6. Bilinear strength function is used as shown in Figure 7.

7. NA = not applicable.

SUMMARY OF GROUNDWATER ELEVATION DATA

Landfill Gas to Energy Project Sunshine Canyon Landfill Sylmar, California

Well ID ¹	Reference Elevation (ft msl) ²	Date	Depth to Groundwater (ft)	Groundwater Elevation (ft msl)
		3/16/2004 4	29.18	1844.39
		5/4/2004 ⁴	31.97	1841.60
		8/16/2004 ⁴	37.36	1836.21
	1873 57	11/17/2004 ⁴	29.57	1844.00
$CM 10^{3}$	1075.57	9/21/2006 ⁵	32.32	1841.25
CIVI-TU		10/4/2006 ⁵	33.40	1840.17
		12/5/2006 ⁵	33.93	1839.64
		12/15/2006 ⁵	34.98	1838.59
	1874 74	9/12/2007 ⁶	37.88	1836.86
	1074.74	9/25/2007 ⁶	37.95	1836.79
		3/30/2009 7	84.67	1854.88
	1939.55	4/1/2009 ⁷	84.69	1854.86
		6/27/2009 ⁷	85.32	1854.23
CIVI-TUR		8/28/2009 ⁷	85.84	1853.71
		9/28/2009 ⁷	85.83	1853.72
		11/20/2009 ⁷	85.98	1853.57

Notes:

1. ID = Identification.

2. ft msl = feet above mean sea level.

3. Well CM-10 was abandoned.

4. Reference: "Combined Groundwater Monitoring Report, Second Semi-Annual Monitoring Period of 2004, Sunshine Canyon City and County Landfills" by A-Mehr, Inc. dated February 15, 2005.

5. Reference: "Combined Groundwater Monitoring Report, Second Semi-Annual Monitoring Period of 2006, Sunshine Canyon City and County Landfills" by A-Mehr, Inc. dated February, 2007.

6. Reference: "Combined Groundwater Monitoring Report, Second Semi-Annual Monitoring Period of 2007, Sunshine Canyon City and County Landfills" by A-Mehr, Inc. dated February, 2008.

7. Reference: "Combined Groundwater Monitoring Report, Second Semi-Annual Monitoring Period of 2009, Sunshine Canyon City and County Landfills" by A-Mehr, Inc. dated February 15, 2010.

SUMMARY OF SLOPE STABILITY ANALYSIS RESULTS

Landfill Gas to Energy Project Sunshine Canyon Landfill Sylmar, California

CROSS SECTION	CASE	CONDITION ANALYZED	FACTOR OF SAFETY
1'-1" South Slope	1	Static - Global	1.61
Rock	2	Pseudostatic ¹ - Global	1.29
	3	Static ² - Surficial with no groundwater seepage	1.50
	4	Static ² - Surficial with full groundwater seepage	0.72 ³
2-2' North Slope	5a	Static - Global (shallow)	1.54
Existing Fill	5b	Static - Global (deep)	1.57
	6a	Pseudostatic ¹ - Global (shallow)	1.14
	6b	Pseudostatic ¹ - Global (deep)	1.18
5-5'	7	Static ² - Surficial with full groundwater seepage and with geogrid	1.94
Proposed Fill (East)	8	Static with geogrid - Global	1.54
Reinforced 1.5:1	9	Pseudostatic ¹ with geogrid - Global	1.12
6-6'	10	Static ² - Surficial with full groundwater seepage	1.57
Proposed Fill (West)	11	Static - Global	2.40
3:1	12	Pseudostatic ¹ - Global	1.60
7-7'	7	Static ² - Surficial with full groundwater seepage and with geogrid	1.94
Proposed Fill (East)	13	Static with geogrid - Global	1.58
Reinforced 1.5:1	14	Pseudostatic ¹ with geogrid - Global	1.15
8-8'	15	Static - Global	1.50
0-0	16	Pseudostatic ¹ - Global	1.18
QQ'	17	Static - Global	1.65
9-9	18	Pseudostatic ¹ - Global	1.29

Notes:

1. Based on the County of Los Angeles (2010) requirement of a "k" coefficient = 0.15 and required Factor of Safety = 1.10.

2. Analysis based on infinite slope equations for the upper 4 feet of soil presented in Appendix E.

3. Factor of safety less than acceptable criterion.

CRUSHED ROCK GRADATION

Landfill Gas to Energy Project Sunshine Canyon Landfill Sylmar, California

U.S. Standard Sieve (ASTM E 11) ¹	Percent Passing by Weight (¾-inch max.)	Percent Passing by Weight (1-inch max.)
1 inch	100	90-100
3/4 inch	90-100	30-60
1/2 inch	30-60	0-20
3/8 inch	0-20	0-20
No. 4	0-5	0-5
No. 8	0	0

Note:

1. ASTM = ASTM International.

SELECT SAND GRADATION

Landfill Gas to Energy Project Sunshine Canyon Landfill Sylmar, California

U.S. Standard Sieve (ASTM E 11) ¹	Percent Passing by Weight (1-inch max.)
3/8 inch	100
No. 4	75 to 100
No. 40	10 to 50
No. 100	5 to 20
No. 200	0 to 15

Note:

1. ASTM = ASTM International.

FIGURES

Plot Date: 11/11/11 - 2:35pm, Plotted by: pat.herring Drawing Path: C:NDocuments and Settings/pat.herring\local settings\temp\AcPublish_1632\, Drawing Name: _TB-002_Site Location.dwg

PICO FORMATION

Pli

PICO FORMATION miner details("mostly Plocene age Tops south of Santa Susana fault Pico sandicione (included in Saugus Formation by Kow 1924; Pico Formation by Buth 1977; Lunt 1977; Yosta 1987; Pico and Saugus Formation by Even and Miller 1978) mostly light gray to navyly while, soft thiable sandistone, locally pabbly, contains abundant whole and fragmented biaway shells west of Browne Caryon; deposited under marine to lagoosal conditions; grades upward into terrestrial Saugus Formation; unconformable on Micone formation. Top conglomerate in lower Limskin Caryon; gray massive conglomerate of cobbies of granities and metavolcanic rocks in sandisone matrice, nonmarine (?), unconformable on Montervey Shale (Tml), overlain by Saugus Formation 1968, 1962; Tps mostly light gray semi-fiable sandistone, locally pebby, upper bade contain sitistone-cleystone, bedded to massive, includes few thin sandetone layers and the source of the same strain.

TOWSLEY FORMATION

TOWSLEY FORMATION marine clastic early Phiceme age (Repetian Stage) and possibly latest Miocene ("Delmontian Stage") Tos light gray to tan coheren to semi-frable sandtaton, medium grainade lo locally grity and pebby, bedded; includes minor micaseous silistone; grades laterally northward into Saugus Formation (Ta) in San Fermando Paes area Tibo gray micaceous silly claystone and silistone; minor sandistone

SISQUOC SHALE (included in Modelo Formation by Kew 1924; Winterer and Durham 1958, 1962; Saul 1979; same lithologic unit as Sisquoc Formation in northern Ventura basin) Taq dark share clastic; late Miocene age (Mohnian to "Delmontian" Sisge) play fracture, gozilenous in fractures, some layers contign large an doornlik concesions; includes some this interbodded sami silocous layers; about 1000 ft (300m) thick Taqs gark gray coherent to sami-friable sandstone

SYMBOLS FORMATION CONTACT MEMBER CONTACT CONTACT BETWEEN dashed where inferred or indefinite between units of a formation SURFICIAL SEDIMENT SURFICIAL SEDIMENTS FAULT: Dashed where indefinite or inferred, dotted where co

Plot Date: 11/11/2011 2:31:24 PM , Plotted by: patherring Drawing Path: Y:14828.000.0\ACAD_TB-002_SEISMIC HAZARD.DWG , Seismic

Plot Date: 11/15/2011 5:37:09 PM, Plotted by: pat herring Drawing Path: Y1/14828.000.01ACAD_TB-002_BENCHING_DETAIL.DWG , Figure 12-Typical Bench. Detail

APPENDIX A

Boring Logs

EXPLANATION OF BORING LOGS

SUNSHINE CANYON LANDFILL

MAJOR DIVISIONS LTR		LTR	DESCRIPTION	MAJOR D	VISIONS	LTR	DESCRIPTION
COARSE GRAINED SOILS		GW	Well-graded gravels or gravel-sand mixtures, little or no fines	-		ML	Inorganic silts and very fine sand, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity
		GP	Poorly-graded gravels or gravel-sand mixture, little or no fines		SILTS AND CLAYS LL<50	CI	Inorganic clays of low to medium
	GIVAVEL	GM	Silty gravels, gravel-sand-silt mixtures				silty clays, lean clays
		GC	Clayey gravels, gravel-sand-clay mixtures	FINE GRAINED SOILS		OL	Organic silts and organic silt-clays of low plasticity
		sw	Well-graded sands or sand with gravel, little or no fines		SILTS AND CLAYS LL>50	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils,
	SAND	SP	Poorly-graded sands or sand with gravel, little or no fines			СН	Inorganic clays of hogh plasticity, fat
	0,110	SM	Silty sands, sand-silt mixtures			ОН	Organic clays of medium to high plasticity
		SC	Clayey sands, sand-clay mixtures	HIGHLY (SO	ORGANIC ILS	PT	Peat and other highly organic soils
		-	SAMPLE COLI	JMN SYN	BOLS		
S	tandard pen	etratior	test (SPT)	Addified Califo	ornia split sj	ooon	P Piston sample
Shelby tube sample Image: Shelby tube sample						Continuous soil or rock core	
\ SI	lieiby lube s	ample		litcher tube sa	ampie		Continuous son or rock core
S	neiby tube s	ampie		vitcher tube sa	ampie		NR No recovery
		Sum	eation of blow counts for doopost 12 inch				NR No recovery
BLC RQI	DWS/FOOT	- Sumn - Rock	nation of blow counts for deepest 12 inch quality designation in percent	es is sampling	g interval		NR No recovery
BLC RQI	DWS/FOOT	- Sumn - Rock	nation of blow counts for deepest 12 inch quality designation in percent DESCRIPTION C	es is sampling	g interval	LS	NR No recovery
BLC RQI	DWS/FOOT D% — Dashed may be	- Sumn - Rock lines se	nation of blow counts for deepest 12 inch quality designation in percent DESCRIPTION C eparating soil strata represent inferred bor or gradual transitions	es is sampling DLUMN \$	g interval SYMBO reen sample	L S ed interv	VR No recovery
BLC RQI	DWS/FOOT D% — Dashed may be — Solid line	- Sumn - Rock lines se distinct es repre	nation of blow counts for deepest 12 inch quality designation in percent DESCRIPTION C eparating soil strata represent inferred bor or gradual transitions esent distinct or gradual boundaries observed	Pitcher tube sa es is sampling OLUMN S undaries betw rved within sa	g interval SYMBOI reen sample mpled inter	L S ed interv	VR No recovery
	 WS/FOOT Dashed may be may	- Sumn - Rock lines se distinct es repre	nation of blow counts for deepest 12 inch quality designation in percent DESCRIPTION C aparating soil strata represent inferred bor or gradual transitions esent distinct or gradual boundaries observed t of bracket symbol represents soil conditioned	Pitcher tube sa es is sampling DLUMN S undaries betw rved within sa ions within the	g interval SYMBOI reen sample mpled inter e depth inte	L S ed interv vals	Vals or no recovery intervals and
	 DWS/FOOT Dashed may be ma	- Sumn - Rock lines se distinct es repre ion righ	nation of blow counts for deepest 12 inch quality designation in percent DESCRIPTION C aparating soil strata represent inferred bor or gradual transitions esent distinct or gradual boundaries obser t of bracket symbol represents soil condition t of arrow symbol represents soil condition	Pitcher tube sa es is sampling OLUMN S undaries betw rved within sa ions within the ns to the next	g interval SYMBO een sample mpled inter e depth inte	L S ed interv vals rval de undary	Vals or no recovery intervals and fined by the bracket length line unless otherwise noted
	 DWS/FOOT Dashed may be a may b	- Sumn - Rock lines se distinct es repre ion righ ion righ	Anation of blow counts for deepest 12 inch quality designation in percent DESCRIPTION C aparating soil strata represent inferred bor or gradual transitions esent distinct or gradual boundaries obset t of bracket symbol represents soil condition t of arrow symbol represents soil condition me of drilling	Pitcher tube sa es is sampling OLUMN S undaries betw rved within sa ions within the ns to the next	g interval SYMBO reen sample mpled inter e depth inte : deeper boo	L S d interv vals rval de undary	Vals or no recovery intervals and fined by the bracket length line unless otherwise noted
	 DWS/FOOT Dashed may be a may b	- Sumn - Rock lines se distinct es repre ion righ ion righ vel at ti	Anation of blow counts for deepest 12 inch quality designation in percent DESCRIPTION C aparating soil strata represent inferred boo or gradual transitions esent distinct or gradual boundaries obser at of bracket symbol represents soil condition at of arrow symbol represents soil condition and of drilling r at least 12 hours from time of drilling	Pitcher tube sa es is sampling OLUMN S undaries betw rved within sa ions within the ns to the next	g interval SYMBO een sample mpled inter e depth inte	L S ed interv vals rval de undary	Vals or no recovery intervals and fined by the bracket length line unless otherwise noted
	 WS/FOOT Dashed may be a may be	- Sumn - Rock lines se distinct es repre ion righ ion righ vel at ti	Anation of blow counts for deepest 12 inch quality designation in percent DESCRIPTION C aparating soil strata represent inferred boo or gradual transitions esent distinct or gradual boundaries obset t of bracket symbol represents soil condition at of arrow symbol represents soil condition the of drilling r at least 12 hours from time of drilling LABORATORY TE	Pitcher tube sa es is sampling OLUMN S undaries betw rved within sa ions within the ns to the next ST ABBF	g interval SYMBO een sample mpled inter e depth inte : deeper bou	LS vals rval de undary ONS	vals or no recovery intervals and fined by the bracket length line unless otherwise noted
	WS/FOOT Dashed may be Solid line Descript Descript Descript Water le Water le COLL C COMP C CON C R F	- Sumn - Rock lines se distinct es repre ion righ ion righ vel at ti vel afte Atterber Collaps Compac Consolio R-Value	Anation of blow counts for deepest 12 inch quality designation in percent DESCRIPTION Co aparating soil strata represent inferred boo or gradual transitions esent distinct or gradual boundaries observed t of bracket symbol represents soil condition at of arrow symbol represents soil condition of drilling r at least 12 hours from time of drilling LABORATORY TE g Limits DS Direct 1 tion Anation S Grain 3 PERM Perme	on Sice analysis ability	g interval SYMBO een sample mpled inter e depth inte : deeper bou	LS d interv vals rval de undary ONS SE SG TX UC #20	VR No recovery vals or no recovery intervals and fined by the bracket length line unless otherwise noted Sand Equivalent Specific Gravity Triaxial Test Unconfined Compression Test 0 No. 200 Wash Sieve Analysis

	O
AMEC	Geomatrix
	•••••

Project No. 14828.000.0

EXPLANATION OF BORING LOGS

SUNSHINE CANYON LANDFILL

Sandy Clay and Clayey Sand

Silty Sandstone

AMEC Geomatrix
PROJECT: SUNS Sylma	HINE CANYON LANDFILL r, California		Downho Boring	ble Log of No. BA-1
BORING LOCATION	N: 4234600.7 E: 4130287.2	ELEVATION	AND DATUM:	, .
DRILLING CONTRA	CTOR: Roy Bros. Drilling	2049' abov DATE START 7/14/10	r <u>e mean sea</u> TED:	DATE FINISHED:
DRILLING METHOD	24" Bucket Auger	TOTAL DEPT 80.0	°H (ft.);	MEASURING POINT: Ground Surface
DRILLING EQUIPME	NT: E-Z Bore	DEPTH TO WATER	FIRST 79	COMPL. 24 HRS. 79 NA
SAMPLING METHO	D: NA	LOGGED BY		
HAMMER WEIGHT:	NA DROP: NA	M. McLarty	LE PROFESSIO /	ONAL: REG, NO. CEG 110
DEPTH (feet) (feet) mple ows/ ows/	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, struc cementation, react. w/HCl, geo. inter.	cture,	RAPHIC LOG	GEOLOGIC DATA
υ Sa Sa D	Surface Elevation: 2049' above mean sea level		5	<u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u>
1_ 2_	TOWSLEY FORMATION (Ttos) SILTSTONE: brown (10YR 6/6) to yellowish brown (5YR 5/4), micaceous, weathered, jointed and fractured	nish yellow highly		
3	@3.0' massive, micaceous, less weathered			
4			- · -	Bedding at 4
5				N/0*, 45"NE
			-	
8				
9-				
	@10.0' becomes brownish yellow (10YR 6/6) to light	gray		
12	(7.5TR 7/1)		- 4	
15-				
16				
17-				
18				
19-	@10.01 becomes your band balance (2) and the			Attitude of joints at 78' N80°E, 80°SW
20	wrs.o becomes very hard below 19', massive			
21				
22				Bedding at 22'
23-				N70°W, 47°, NE
24				
25	@25.0' becomes predominantly light gray (7.5YR 7/1	1)		
26				
20				
27			1 ~ x	
27- 28-			-	
27 - 28 - 29 -	@29.0' crushed siltstone, 1" to 2" wide, reddish brow 5/4) to dark gray (5YR 4/1)	/n (5YR		Attitude of crushed zone at 29° v70°W, 55°NE

PROJ	ECT:	SL Sy	JNSH Imar,	INE CANYON LANDFILL California	Downhol Boring N (con	e Log of io. BA-1 t'd)
DEPTH (feet)	Sample No.	Sample 3	Blows/	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.	GRAPHIC LOG	GEOLOGIC DATA
67-	-			TOWSLEY FORMATION (Ttos) SILTSTONE: continued		
68-						
69-	-					
70-	-					
71-	-				-	
72-	-					
73-	-			@72.0' crushed siltstone 6" to 7" thick		tude of crushed siltstone at 72' 5°W, 75°NE
74-	-					
75-					$\neg k_{r}$	
76-						
77-						
78-						
79-	-				<i>−</i> / ×	
80-			-	Pottom of boying at 80 feat bag. Conjunduates and when	- · ·	
81-				79 feet bgs.		
82-						
83-						
84-						
85-					-	
86						
87-	-					
88-						
89-	-					
90-						
91-						
92-						
93-	-					
94-						
95-						
96-						
97-						
90- 90-						
99-		Í				
100						
102-			-			
- 102						·
	-	$\mathbf{\hat{\mathbf{v}}}$				
am	ec	τος P ^r			Project No. 14828.00	0.0 Page 3 of 3

PROJ	ECT:	SL Sy	JNSH Imar,	INE CANYON California	LANDFILL			Dov Bo	vnhc rina	ole Log (No. BA-	of 2
BORIN	NG LC	CAT	FION:	N: 4234442.9	E: 4130568.9	9993-88979999999999999999999999999999999	ELEVATI	ON AND DA	TUM:		gy ag annan an ann an ann ann ann ann ann
DRILL	ING C	ON.	TRAC	FOR: Roy Bros.	Drilling		DATE ST 7/13/10	ARTED:	in sea	DATE FIN 7/13/10	ISHED:
DRILL	ING N	1ETI	HOD:	24" Bucket Aug	ger		TOTAL D 95.0	EPTH (ft.):		MEASURI Ground	NG POINT: Surface
DRILL	ING E	QUI	PMEN	T: E-Z Bore			DEPTH T WATER	0 FIRS 85	т	91	24 HRS. NA
SAMP	LING	ME	THOD:	NA			LOGGED M. McL	BY: arty			
HAMN	IER W	/EIG	HT:	NA	DROP: NA		M. McL	ISIBLE PRO arty	-ESSI	ONAL:	REG. NO. CEG 1107
JEPTH (feet)	No.	MPle	ows/ B	NAME (USC	DESCRIPTION CS): color, moist, % by wt., plast cementation, react. w/HCl, geo	t. density, structu . inter.	re,	SAPHIC	LOG	GEOI	OGIC DATA
	Sa Sa	Sa	8 6	Surface Elevation	n: 2014' above mean sea level		0115704#045051015-004-004-0-004-0-004-0-0-0	Ŭ			
- 1-				ARTIFICIAL (CL) to CLA	<u>FILL (afu)</u> SANDY LEAN CI YEY SAND with GRAVEL (S	AY with GRAV	/EL 1 (10YR				
2-	_			5(5)					1		
3-											
4-	-										
5-				@4.5' mois	t, becomes black			-			
6-											
7-											
8-	7										
- 9-											
10-											
11-											
12-			ĺ								
12	-					•					
				TOWSLEY	FORMATION (Ttos) SANDS	TONE: weathe	ered,			Contact with undi horizontal at 13'	erlying bedrock nearly
14				interbedded	with dark reddish brown (5Y	R 3/3) siltstone	R 6/4)		~		
10~				predominan	tly massive, near vertical joir	nts 1/2" to 2" on	center			Bedding at 15' N40°W, 35°NE	
10-	-								\leq	Joint at 16' N35°E, 75°NW	
17-									and and	Bedding at 17 N62°W 34°NE	
18-										.,	
19-											
20-									、		
21-									بمبغ		
22-											
23-								1			
24-				@24.0' SAI	NDSTONE: silty, dark browr	(10YR 3/3)			×.,	Bedding at 24'	
25_				interbedded	with some very fine grained	sand, brown (1	0YR		×.	N55"W, 40"NE	
26-				4/3), upper a @25.0' SIL	and lower contacts are grada TSTONE: micaceous, dark l	luonai brown (10YR 3/	/3) to			Bedding at 28'	
27-				(10YR 4/3)	•	•			~	N65°W, 40°NE	200tact NIGA9M
28-									- 'n (44°NE	ANTREDI NOU YY,
29											
30-								<u> </u>	<u> </u>	. <u> </u>	
am	eć	3			wwwt.gummmit			Project No.	14828.	.000.0	Page 1 of 3

PROJ	ECT:	SL Sy	INSHI Imar,	NE CANYON LANDFILL California		Downhole Log of Boring No. BA-2 (cont'd)
DEPTH (feet)	Sample Sample S	Sample	Blows/ B	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.		GEOLOGIC DATA 001 201 201 201 201
67-				TOWSLEY FORMATION (Ttos) SANDSTONE: continued	งสมารณาสุขารสมารณาและสมารณา	
68- 69- 70- 71-	مناهر المسلب المسلم المسلم المرابع			@70.0' minor seepage along bedding		Bedding at 70'
72- 73- 74- 75- 75-				@74.5' crushed siltstone, roughly parallel to bedding, 6" to thick	5 8"	Attitude of crushed zone at 74.5' N55'W, 41'NE
77-77-78-779-				@78.0-80.0' crushed siltstone with 2" thick silty clay seam base	ı at	Attitude at base of crushed rock
80- 81- 82- 83-						
. 84-				@83.0° crushed and broken siltstone from 83-85°, abunda seepage and "belling" of the boring to roughly 3' in diamete	nt er	N55°W, 35°NE
86- 87- 88-	A number of the second s		10	@85.0' SILSTONE: less massive, micaceous to bottom o boring, dark gray (5Y 3/1) to black (5Y 2.5/1), seepage	ıf	
89- 90- 91-						
92- 93- 94- 95-			a the second			
96- 97- 98-				Bottom of boring at 95 feet bgs. Down-hole logged to 85 f bgs. Groundwater 91 feet bgs at completion. Seepage at feet bgs.	eet 85	
100- 101- 101- 102-	محمد ما معمله المستال المستال المستالة المستقد و		990/2012-01-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-			
am	ec	0			Pa	oject No. 14828.000.0 Page 3 of 3

PROJE	CT:	SU Sy	INSH Imar,	INE CANYON L California	ANDFILL			Ì	Downho Boring	ble Log o No. BA-3	of 3	
BORING	3 LO	CAT	ION:	N: 4234396.2	E: 4130752.4		ELEVATIO	ON AND	DATUM:		******	
DRILLIN	IG C	ON	FRAC	TOR: Roy Bros.	Drilling	·····	DATE ST/ 7/12/10	ARTED		DATE FINI	SHED:	
DRILLIN	IG N	IETH	HOD:	24" Bucket Aug	er		TOTAL DE	EPTH (I	it.):	MEASURII Ground	NG POINT Surface	Γ:
DRILLIN	NG E	QUI	PMEN	IT: E-Z Bore			DEPTH TO WATER	0	FIRST NA	COMPL. NA	24 HF NA	RS.
SAMPL	ING	MEI	THOD:	NA			LOGGED M. McLa	BY: arty				
HAMME	R N	/EIG	iHT:	NA	DROP: NA		RESPONS M. McLa	SIBLE F arty	PROFESSI	ONAL:		g. no . <u>3 1107</u>
)EPTH (feet)	SA Vo.	mple MPI	ows/ H	NAME (USC	DESCRIPTION S): color, moist, % by wt., plast. de cementation, react. w/HCl, geo. int	ensity, structu	re,		RAPHIC LOG	GEOL	.OGIC DA	ТА
	s S	S	а Б	Surface Elevation	1960.9' above mean sea level			<u> </u>	ច			
1234567890112345678901123456789011233456789011233456789011233456789011233456789011233456789011233333333333333333333333333333333333				ARTIFICIAL to CLAYEY cobbies and grayish brow @22.0' bec brown (7.5Y	FILL (af) SANDY LEAN CLAY SAND with GRAVEL (SC): wea angular to subangular rock frag n (10YR 5/2), dry to 5', moist be omes predominantly brown (7.5 R 3/3)	with GRAVE athered subr gments 1/4" elow 5'	EL (CL) ounded to 8",					
34 35 36 37 38 39 40 41 42 42 43				@35.0' bec (7.5YR 3/3), sand @40.0' bec 2.5/1), very angular rock	omes mottled and crudly layere silt with pinkish gray (7.5YR 7/8 omes greenish brown (5YR 3/3) fine sand, silty with some clay c	d dark brow 8) very fine s) to black (5 contains 1/2" ous siltston	n silty RYR ' to 2" e		R-Jakin			
				TOWSLEY silty, very fir fractures, br crushed, da at 44.9' @45.0' bec greenish gra micaceous	FORMATION (Ttos) SANDSTO FORMATION (Ttos) SANDSTO e grained streaked with caliche own to reddish brown (5YR 5/4) rk brown (7.5YR 3/2) to black cl omes unoxidized massive siltst ay (GLEY2 3/1) to greenish blac	ous smston DNE: weathe along vertic), folded and ay seam 1/4 one, very da k (2.5/ 5BG	ered, cal t thick ark),			Clay seam at 44, N56°W, 59°S Joint at 45' N45°W, 70°NE Clayey joint at 56 N50°W, 75°NE Bedding at 57' N66°W, 58°N	9' 3.5'	
am	ec	0						Projec	t No. 14828	9.000.0	Page 1 c	of 2

PROJECT	: SL Sy	JNSHI Imar,	INE CANYON LANDFILL California	Downho Boring (co	le Log of No. BA-3 nt'd)
(feet) Sample 0	Sample Sample	6 inches	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure cementation, react. w/HCl, geo. inter.	, a GRAPHIC LOG	GEOLOGIC DATA
66666666666666666677777777777777777777			<u>TOWSLEY FORMATION (Ttos)</u> SANDSTONE: continue @60.6' paper thin polished bedding?, dark gray (7.5YR black siltstone, micaceous, massive, near vertical joints to 1/8" wide streaked with caliche	ed 3/1) to 1/16"	3edding at 60.6° 170°₩, 44°N
7808223456678888999121			Bottom of boring at 80 feet bgs. Groundwater was not encountered.		
956777777777777777777777777777777777777					
11111111111111111111111111111111111111			*******		
20 27 28 29 30 31 32 32					
<u>eme(</u>	-V-			Project No. 14828.	000.0 Page 2 of 2

PROJE	ECT: S S	UNS ylma	SHIN ar, C	IE CAI aliforn	NYON LA ia	NDFILL			Log of E	Borin	g N	o. B-1		
BORIN			N: N	N: 423	34400.0	E: 4131142.9		1						
DATE	STARTE	ED:	7/2	2/10		DATE FINISHED:	7/22/10		NOTES:		a ² -			
DRILLI	ING ME	THO	D:	Hollov	w Stem A	Auger			Drilling Contrac	ctor: B nent: C	CÉEn CME-7	vironme '5	ental Co	orp.
HAMM	ER WEI	GHT	: 1	40 lb		DROP: 30 in			Logged By: E.	Forcie	er	•		
SAMPI	ler: C	A N	lodi	fied &	SPT									
5.00	ΞΩ	S	AMPI	LES							b_	LABORA	ATORY T	ESTS
(fee	EP]		mple	oot		MATERI	IAL DESCRIP	TION			PID (ppm	Moisture Content	Dry Density	Other Tests
ELEY				Shows/ 2 3 2 3 2 2 4 4 4 2 2 2 2 2 2	ARI (CL) (2.5 fine fines frag	Surface E <u>Surface E</u> <u>FIFICIAL FILL (af)</u>) to CLAYEY SAN Y 4/4), dry to moi to coarse sand, ~ (s, ~35% fine to coments	INCLOSECRIF Ilevation: 18) SANDY L ND with GR st, ~55% Ic ~15% fine g	moist, ~50%	an sea level with GRAVEL olive brown fines, ~30% one fragments			Moisture Content (%) 11.3 10.9	97.5 95.8	Other Tests CON EI DS
	12- 13- 14- 									-	-			
Project	t No. 148	328.0	0.00				AME	C Geoma	trix				Page	e 1 of 4

PROJE	ECT: S S	UNS ylma	SHIN ar, C	IE CAN aliforn	NYON LANDFILL ia		Log of Borin	g No	o. B-2	2	
BORIN	IG LOC	ATIO	N: N	N: 423							
DATE	STARTE	ED:	7/2	3/10	DATE FINISHED: 7/23/10		NOTES:	-2-			
DRILL	ING ME	тноі	D:	Hollo	w Stem Auger		Drilling Contractor: B	CÉEn :ME-7	vironme 5	ental Co	orp.
HAMM	ER WEI	GHT	: 1	40 lb	DROP: 30 in		Logged By: E. Forcie	r	•		
SAMP	LER: C	A N	lodi	fied &	SPT			-			
	E₽	S/	AMPI مە	LES				DE C	LABORA	TORY T	ESTS
ELE))EP ⁻		mple.	oot/	MATERIAL DESCRI	FIION		PID (ppr	Content	Dry Density	Other Tests
				14 16 20 8 10 10 10 10 13	Surface Elevation: 16 <u>ARTIFICIAL FILL (af)</u> SANDY L (CL) to CLAYEY SAND with GR brown (10YR 4/2), moist, ~45% low plasticity fines, ~20% fine to fragments dark grayish brown (10YR 4/2) medium sand, ~35% low plastic dark grayish brown (2.5Y 4/4) a (2.5Y 4/2), moist, ~40% fine to co plasticity fines, ~25% fine to coa fragments	AVEL (SC): fine to coarse o coarse grav o, moist, ~60° ity fines, ~5% and dark gray coarse sand, arse gravel, s	ean sea level with GRAVEL dark grayish se sand, ~35% vel, siltstone % fine to % fine gravel 		(%)	(pcf) 108.2	CON
Project	15- t No. 14	828.0	0.000		AME	C Geoma	trix			Page	e 1 of 2

PROJI	ECT: S	SUNS Sylma	SHIN ar, C	IE CAI aliforn	NYON LANDFILL iia		Log of Bo	orin	g N	o. B-3	}	
BORIN	IG LOC	ATIO	N: 1	N: 423	34577.4 E: 4130901.3							
DATE	START	ED:	7/2	3/10	DATE FINISHED: 7/23/10		NOTES:	_	-2-	_		
DRILL	ING ME	тно	D:	Hollo	w Stem Auger		Drilling Contracto	or: B nt: C	CÉEn :ME-7	vironme '5	ental Co	orp.
HAMM	ER WE	IGHT	: 1	140 lb	DROP: 30 in		Logged By: E. Fo	orcie	r	•		
SAMP	LER: (CA N	1odi [.]	fied &	SPT				-			
5.5	ΞΩ	S/	AMP a	LES		DTION			Б.	LABORA	ATORY T	ESTS
(fee	(fee		mple	oot		PTION			PID (ppm	Moisture Content	Dry Density	Other Tests
	1- - - - - - - - - - - - - - - - - - -			9 18 21 11 24	Surface Elevation: 11 ARTIFICIAL FILL (af) SANDY L (CL) to CLAYEY SAND with GF (2.5Y 4/4), moist, ~45% fine to plasticity fines, ~15% fine grave dark greenish gray (GLEY1 4/1 dark greenish gray (GLEY1 4/1) mottled olive brown (2.5Y 4/4) a (2.5Y 3/2) dark yellowish brown (10YR 4/6) fragments up to ~1 1/2"	B61.8' above m EAN CLAY N RAVEL (SC): coarse sand, el, siltstone fr 5G)	ean sea level with GRAVEL olive brown ~40% low agments				(pcf)	EI
Projec	15- t No. 14	828.0	0.000	 ,	AME	EC Geoma	trix				Page	e 1 of 3

Project No. 14828.000.0

PRO	OJECT	: SI Sy	UNS /Ima	HIN r, C	E CAI	NYON LANDFILL ia	Log of E (30 (cc	orir ont	ng No :'d)	. B-3	
	_		S	AMF	PLES				_	LABORA	TORY T	ESTS
ELEV.	(teet) DEPTH	(feet)	Sample No.	Sample	Blows/ Foot	MATERIAL DESCRIPTION	I	DId	Reading (ppm)	Moisture Content (%)	Dry Density (pcf)	Other Tests
						TOWSLEY FORMATION (Ttos) SILTSTONE	E: continued					
		_						-				
		33-										
		_						1				
		34 -						-				
		_										
		35-			50/3"	dark greenish grav (GLEY4/1 5G), massive.	slightly	1				
		_	8		50/5	micaceous, unoxidized		-				
		- 92				Bottom of boring at 35 75 feet bas Groundw	vater not					
		50				encountered at time of drilling. Boring backfi	lled with					
		_				soil/rock cuttings.		-				
		37 -				-		_				
		38-						-				
		_						_				
		~										
		39-						1				
		_						-				
		40-						_				
		_						1				
	4	41-						-				
		_						_				
	4	42-						1				
		_						-				
		13-										
		10										
		_										
	4	44 –						-				
		_										
	4	45-						1				
		_						-				
		16-										
		10										
		-						1				
	4	47 –						-				
	4	48-					· · ·	1				
		_						-				
		1a_										
	•	.0										
입 Proj	ject No	. 148	28.0	0.00		AMEC Geon	natrix				Page	e 3 of 3

PROJE	ECT: S S	UNS	SHIN ar, C	IE CAI aliforn	NYON LANDFILL ia		Log of Bor	ing N	o. B-4	ŀ	
BORIN	IG LOC	ATIO	N: N	N: 423	34633.6 E: 4130733.0						
DATE	START	ED:	7/2	1/10	DATE FINISHED: 7/21/10		NOTES:	2 _			
DRILLI	ING ME	тно	D:	Hollov	w Stem Auger		Drilling Contractor: Drilling Equipment	BC ⁺ Er CME-	ivironme 75	ental Co	orp.
HAMM	IER WE	IGHT	: 1	40 lb	DROP: 30 in		Logged By: E. For	cier	•		
SAMPI	LER: C	X N	lodi	fied &	SPT						
	H	S	AMP	LES				BC	LABOR	ATORY T	ESTS
ELE' (feet	DEP1 (feel	Sample	sample	slows/ Foot	Surface Elevation: 18	76 7' abovo m		PID Readii (pom	Moisture Content (%)	Dry Density (pcf)	Other Tests
		0,	0,		~3 1/2" asphalt (no aggregate ba	aserock)					
	1- 1- 2-	-			ARTIFICIAL FILL (af) SANDY L (CL) to CLAYEY SAND with GR gray (GLEY1 4/15G), moist, ~40 ~40% low plasticity fines, ~20% fragments	EAN CLAY v AVEL (SC): 0% fine to co fine gravel,	with GRAVEL dark greenish arse sand, siltstone	-			
	3-	1		6 9 12				-	15.2	109.0	DS
	5- - 6- -	2		5 8 8	dark greenish gray (GLEY1 4/1 plasticity fines, ~30% fine sand, fragments	5G), moist, ~10% fine g	~60% low ravel, siltstone	-			
	7- 8- - 9-	3		4 7 9	dark gray (2.5Y 4/1), moist, ~5 ∼35% fine to coarse sand, ~15% fragments	0% low plast 6 fine gravel,	ticity fines, , siltstone	-	14.2	111.1	CON
	10- - 11- - 12-	4		7 10 14				-			ATT
	13- - 14-	5		9 14 17	fine to coarse gravel, coarse silt ▼ 1/2"	stone fragme	ent up to ~2	-			
Project	15- t No. 14	828.0	0.00		AME	C Geoma	trix			Page	e 1 of 3

BORING LOCATION: N: 4234505.0 E: 4130827.2 DATE STATED: 7/22/10 DATE FINISHED: 7/22/10 DOTIES: DRILING METHOD: Hollow Stern Auger HAMGER WEICHT: 14.0 Ib DROP: 30 in SAMPLER: CA Modified & SPT SAMPLER: CA Modified & SPT Sample: CA Modified & SPT	PROJE	ECT: S S	UNS ylma	SHIN ar, C	E CAN aliforn	NYON LANDFILL ia		Log of Borin	ng N	o. B-5	5	
DATE STARTED. 7/22/10 DATE FINISHED: 7/22/10 DRILLING Contractor: BC ² Environmental Corp. DRILLING METHOD: Hollow Stem Auger DAMMER WEIGHT: 140 Ib DROP: 30 in DAMER WEIGHT: 140 Ib OROP: 30 in DATE FINISHED: 7/22/10 DROP: 30 in Date Finished: 140 Ib OROP: 30 in DATE FINISHED: 7/22/10 DROP: 30 in DATE FINISHED	BORIN	IG LOCA	ATIO	N: N	1: 423	34505.0 E: 4130827.2						
DRILING METHOD. Hollow Stem Auger Drilling Contractor: BC Environmental Corp. HAMMER WEIGHT: 140 lb InROP: 30 in Drilling Contractor: BC Environmental Corp. Sampler: CA Modified & SPT Drilling Contractor: BC Environmental Corp. Drilling Contractor: BC Environmental Corp. Sampler: CA Modified & SPT Drilling Contractor: BC Environmental Corp. Drilling Contractor: BC Environmental Corp. Sampler: CA Modified & SPT Sampler: MATERIAL DESCRIPTION Drilling Contractor: CME. Sampler: Sampler: Anternal Description Drilling Contractor: CME. Drilling Contractor: CME. Sampler: Sampler: Sampler: Sampler: Sampler: Drilling Contractor: CME. Sampler: Sampler: Sampler: Sampler: Sampler: Drilling Contractor: CME. Sampler: Sampler: Sampler: Sampler: Sampler: Sampler: Sampler: Sampler: Sampler: Sampler: Sampler: Sampler: <tr< td=""><td>DATE</td><td>STARTE</td><td>ED:</td><td>7/2</td><td>2/10</td><td>DATE FINISHED: 7/22/10</td><td></td><td>NOTES:</td><td>0</td><td></td><td></td><td></td></tr<>	DATE	STARTE	ED:	7/2	2/10	DATE FINISHED: 7/22/10		NOTES:	0			
HAMMER WEIGHT 140 Ib DROP 30 in Logged By: E. Forcier SAMPLER: CA Modified & SFT Samples: Ca Modified & SFT Surface Elevation: 1889.97 above mean sea level 1	DRILLI	NG ME	тно	D:	Hollov	w Stem Auger		Drilling Contractor: E	BC ² En	vironme	ental Co	orp.
SAMPLER: CA Modified & SPT Image: Same set and the set of the s	HAMM	ER WEI	GHT	: 1	40 lb	DROP: 30 in		Logged By: E. Forci	er	0		
The second se	SAMPL	LER: C	A N	lodif	ied &	SPT						
Ling Easy	<u>.</u>	Ц	SA	AMPL	ES				D	LABORA	ATORY T	ESTS
of 6 m ² Surface Elevation: 1889 above mean sea level - (N) (U-7)	ELE\ (feet	DEPT (feet	ample	ample	lows/ ⁻ oot	MATERIAL DESCRIF	PTION			Moisture Content	Dry Density	Other Tests
ATTIFICIAL FILL (af) SANDY LEAN CLAY with GRAVEL - 1- ATTIFICIAL FILL (af) SANDY LEAN CLAY with GRAVEL - 1- General State (CL): data follow - 2- medium plasticity fines; ~30% fine to coarse sand, ~15% - 3- 1 6 - 3- 1 6 - 4- 3E 18 - 5- 6 7 - 6- 7 - - 7- 8 - - 8- 8 - - 9- 11 - - 10- 3 11 - 11- 3 11 - 11- 3 11 - 11- 3 11 - 11- 3 11 - - 11- 18 - - - 11- - - - - 11- - - - - 11- - - - -			õ	ű	<u> </u>	Surface Elevation: 18	89.9' above m	ean sea level	-	(70)	(pci)	
3 1			-			ARTIFICIAL FILL (af) SANDY LI (CL) to CLAYEY SAND with GR brown (2.5Y 3/3) with gray mottli medium plasticity fines, ~30% fin fine to coarse gravel, siltstone fr	EAN CLAY v AVEL (SC): ing (2.5Y 5/1 ne to coarse agments	with GRAVEL dark olive 1), moist, ~55% e sand, ~15%				
5 6 7 6 7 9 dark greenish gray (GLEY1 4/1 5G), moist, ~50% low plasticity fines, ~25% fine to coarse sand, ~25% fine to coarse gravel, silistone fragments up to ~2" 8 8 9 11 10 11 11 14 12 18 13 14 14 14 15 15		3- - 4- -	1		6 12 18				_	17.2	102.9	DS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5- - 6- - 7-	2		6 7 9	dark greenish gray (GLEY1 4/1 ↓ plasticity fines, ~25% fine to coa coarse gravel, siltstone fragmen	l 5G), moist, arse sand, ~2 ts up to ~2"	~50% low 25% fine to				
$ \begin{bmatrix} 10 \\ 11 \\ 11 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 15 \\ 15 \end{bmatrix} \begin{bmatrix} 10 \\ 11 \\ 14 \\ 14 \\ 15 \end{bmatrix} \begin{bmatrix} 10 \\ 11 \\ 14 \\ 14 \\ 16 \\ 11 \\ 14 \\ 16 \\ 11 \\ 11 \\ $		8- - 9- -	-	В					_			
		10- - 11- - 12-	3		11 14 18				_			
		- 13- - 14-							_			
		15-										

Project No. 14828.000.0

AMEC Geomatrix

PRC	DJECT:	SI Sy	JNS /Ima	SHIN ar, C	IE CAN aliforni	NYON LANDFILL ia		Log of Borin	ng N	o. B-6	5	
BOF	RING LO	CA	TIOI	N: N	N: 423	34392.4 E: 4130905.1						
DAT	E STA	RTE	D:	7/2	1/10	DATE FINISHED: 7/21/10		NOTES:	2			
DRI	LLING I	MET	BC ⁻ Environmental Corp. CME-75									
HAN	MER V	VEI	GHT	: 1	40 lb	DROP: 30 in		Logged By: E. Forci	er	0		
SAM	/IPLER:	С	۹M	lodi	fied &	SPT						
	. 문	b _c	LABORA	ATORY T	ESTS							
	EP'	(fee	npe Nope	mple	ows/ oot		TION		PID (ppm (ppm	Content	Dry Density	Other Tests
		_		0,		ARTIFICIAL FILL (af) SANDY LI (CL) to CLAYEY SAND with GR	EAN CLAY v AVEL (SC):	with GRAVEL moist, ~55%	_			
		1-				low to medium plasticity fines, ~ ~ ~15% fine gravel, fragments of s	30% fine to siltstone [FIL	medium sand, L]	_			
		2-										
		_ 3-		\square	6				_			
			1	\wedge	8							
		-							_			
		5-	0		5	(bulk sample at 5' to 10')			-			COMP
		6-	2		9							S
		7-							_			
		-8	3	\bigvee	10 12				_			
		_ 9-	Ū	\square	18				_			
	1	-0-							_			
	1	- 1-	4		5 8 8				_			ATT
	1	2-										
	1	- 3- - 4-	5		4 10 12				_			
2		- - 5.										
ی ع Proj	ect No.	148	28.0	00.0		AME	C Geoma	trix			Page	e 1 of 4

PROJECT: SUNSHINE CANYON LANDFILL Sylmar, California

Log of Boring No. B-6 (cont'd)

							(•	<u></u>	<u> </u>		
		-	5	SAMF	PLES			5	LABORA	TORY T	ESTS
	ELEV. (feet)	DEPTH (feet)	Sample No.	Sample	Blows/ Foot	MATERIAL DESCRIPTION		PID (ppm)	Moisture Content (%)	Dry Density (pcf)	Other Tests
		- 33- - 34-	13		8 14 22	ARTIFICIAL FILL (af) SANDY LEAN CLAY with G (CL) to CLAYEY SAND with GRAVEL (SC): contin @32.5' ~45% low to medium plasticity fines, ~35' coarse sand, ~20% fine to coarse gravel, siltstone fragments up to ~1"	GRAVEL Inued – % fine to e –				
		- 35- -	- 14		9 12	dark gray (2.5Y 4/1), moist, ~55% low to medium fines, ~30% fine to coarse sand, ~15% gravel, silt fragments	n plasticity				
		36-			15		-				
		37-	-		12		_				
		38-	15	X	17 23	trace root fragment in sample	-				
		40-	-				-				
		41-	16		9 14 10		-				
		- 42-	-		13		_				
		43-	17	\mathbb{N}	14 22	iron oxide staining	-				
		44-		\square	26		-				
		45-	18		5		-				
		46-	-	NR	6		-				
		47- - 19-			7		-				
0		40 ⁻ - 49-	19	$\left \right\rangle$	9 11	coarse gravel-sized fragment of siltstone up to ~2	2"				
GEO3 PII	Project	: No. 14	828.0	00.0		AMEC Geomat	rix			Page	e 3 of 4

PROJECT: SUNSHINE CANYON I Sylmar, California	LANDFILL	Log of Boring No. CH01						
BORING LOCATION: N: 423452								
DRILLING CONTRACTOR: BC2 Drillin	DATE STARTED: 7/13/2010	DATE FINISHED: 7/13/2010						
DRILLING EQUIPMENT: CME 850		TOTAL DEPTH (feet): 59	MEASURING POINT: ground surface					
DRILLING METHOD: Mud Rotar	у	DEPTH TO FREE WATER FI	RST ENCOUNTERED:					
SAMPLING METHOD: HQ Core B	DEPTH TO FREE WATER AT NA	COMPLETION:						
BOREHOLE/CORE DIAMETER:		LOGGED BY: D. Collins	CHECKED BY: D. Collins					
ELEVATION (feet) DEPTH (feet) RUN TIME (min) RUN No RECOVERY (%) (%) FRACTURING HARDNESS	LITHOLOGIC DESCRIPTION		NUITY REMARKS					
	ARTIFICIAL FILL (af) SANDY LEAN (with GRAVEL (CL) to CLAYEY SAND GRAVEL (SC): with cobbles, road fill	CLAY with	7:43, begin drilling using tricone bit to g'					
2-	TOWSLEY FORMATION (Ttos) SILT	STONE						
3-								
4								
5-	@5.0' cuttings in mud tank indicates siltstone, olive brown (2.5Y 5/4)							
6- - - 7-								
8-								
9 CI So V	We Se- Mo @9.0' SILTY SANDSTONE: gray (2. with disseminated and joint controlled oxide weathering, strong brown (7.5Y)	5Y 6/1) Jo, 80°, Fi (iron ox Jo, 45°, Fi (iron ox R 4/6) Stron Jo, 20°, Fi (iron ox	ides), PI Drilled using ides), PI impregnated ides), PI diamond bit for HQ core recovery					
	sand and fines, joint surfaces coated iron oxides and some joints filled with cemented brittle fines	with	LL = 37, PI = 16 TX w = 16.8% dd = 109.0 pcf					
	We	- Jo, 45°, Fi (iron ox	ides), PI, SI					
13-								
	We Se- Mo		DS w = 18.6% dd = 105.6 pcf					
FRACTURING: VC-Very Close (<0.01'), CI-Close	e (0.1'-0.3'), Mo-Moderate (0.3'-1'), Wi-Wide (1'-3'), and V	+ + + + + + + + W-Very Wide (3'-10'). HARDNESS: S Strang and Ext Educate Oter (1)	o-Soft, Project No.					
WEATHERING: Fr-Fresh, SI-Slight, Mo-Moderat Me-Mechanical Break, and Ve-Vein), Dip Angle,	te, and Se-Severe. DISCONTINUITY: Type (Be-Bedding, Aperture (Ti-Tight, Op-Open, He-Healed, and Fi-Filled), St.	Jo-Joint, Fo-Foliation, Sh-Shear, Jurface Shape (Ir-Irregular, PI-Planar,	and Figure					

PRC	JEC	т: 5 5	SUN Sylm	SHII ar, C	NE C Califo	AN) ornia	(ON	LAI	NDF	Log of	Log of Boring No. CH01 cont.						
ELEVATION (feet)	DEPTH (feet)	RUN TIME (min)	RUN NO.	RECOVERY (%)	RQD (%)	FRACTURING	HARDNESS	STRENGTH	NEATHERING	LITHOLOGIC DESCRIPTION	A SRAPHIC LOG	DISCONTINUITY DESCRIPTION	REMARKS				
	16 17 18	<u>8:39</u> 8:49	2	95	28	Мо	So	We	Se- Mo	TOWSLEY FORMATION (Ttos) SIL SANDSTONE: continued soft, black carbon commonly dissen throughout, massive, rare faint layer reaction to HCI	TY ninated ing, no	Be?, 15° to 25°, Ti, Pl Jo, 55°, Ti, Pl Jo, 45°, Fi, Pl, Sl Jo, 55°, Ti, Pl Jo, 80° to 90°, Fi (brittle, cemented fines), Wa, Sl					
-	19- 20-	-				-				@19.0' 1/16" diameter root in joint	plane						
	21- 22- 23-	<u>9:04</u> 9:11	3	100	28		Lo- Mo					Jo, 60°, Op, PI, SI Jo, 80° to 90°, Fi (cemented fines), Wa, St Jo, 75°, Fi (cemented fines), PI, SI					
-	24-					-				@24.0' color changing to brown (10 over very broad interval, silty sands abundant thin wisps of reddish iron and yellowish oxide (2.5Y 8/8)	IYR 5/3) one has oxides	Be?, 80°, Ti, Pl Jo, 60°, Op, Pl, Mo Jo, 70°, Op, Pl, iron oxide coated					
	26- 27-	<u>9:24</u> 9:31	4	100	30				Мо			Jo, 70°, Ti, Wa, iron oxide coated					
-	28-	-										Jo, 60°, Op, PI, Mo					
-	29- 30-	-				Мо	Lo- Mo	We	Мо			4xJo, 70°, Op, Pl, Mo, iron oxide coated					
	31- 32- 33-	<u>9:42</u> 9:49	5	100	27							Jo, 70°, Fi, Pl, iron oxide and cemented fines filling	TX w = 12.7% dd = 118.0 pcf				
FR/ Lo-l WF	FRACTURING: VC-Very Close (<0.01'), CI-Close (0.1'-0.3'), Mo-Moderate (0.3'-1'), Wi-Wide (1'-3'), and VW-Very Wide (3'-10'). HARDNESS: So-Soft, Lo-Low, Mo-Moderate, Ha-Hard, and VH-Very Hard. STRENGTH: Fr-Friable, We-Weak, Mo-Moderate, St-Strong, and Ex-Extremely Strong. WEATHERING: Fr-Fresh SLSlight Mo-Moderate and Se-Severe DISCONTINUITY Type (Re-Bedding, Us-Loint Ex-Ediation, Sh-Shaar 14828.000.0																
Me- Wa	Lo-Low, Wo-Wooderate, Ha-Hard, and VH-Very Hard. ST KENGTH: H-Frable, We-Weak, Mo-Moderate, St-Strong, and Ex-Extremely Strong. WEATHERING: Fr-Fresh, SI-Slight, Mo-Moderate, and Se-Severe. DISCONTINUITY: Type (Be-Bedding, Jo-Joint, Fo-Foliation, Sh-Shear, Me-Mechanical Break, and Ve-Vein), Dip Angle, Aperture (Ti-Tight, Op-Open, He-Healed, and Fi-Filled), Surface Shape (Ir-Irregular, PI-Planar, and Wa-Wavy), Roughness (St-Stepped, Ro-Rough, Mo-Moderately Rough, SI-Slightly Rough, Sm-Smooth, and Po-Polished). Figure Cont.																

PRC	JEC	T: S	SUN Sylm	SHII ar, C	NE C Califo	AN) ornia	YON	LAI	NDF	ILL	Log of Boring No. CH01 cont.					
ELEVATION (feet)	DEPTH (feet)	RUN TIME (min)	RUN NO.	RECOVERY (%)	RQD (%)	FRACTURING	HARDNESS	STRENGTH	NEATHERING	LITHOLOGIC E	ESCRIPTION	SRAPHIC LOG	DISCONTINUITY DESCRIPTION	REMARKS		
	34-					CI			Se	TOWSLEY FORMATIC SANDSTONE: continu	<u>DN (Ttos)</u> SILTY Jed		Jo, 60°, Ti, Wa, SI, iron oxide coated	TX w = 14.2% dd = 117.5 pcf UC w = 13.2% dd = 116.6 pcf		
-	37-	9:59 10:05	6	100	72	Wi	Мо	Мо	SI	@36.5' silty sandston gray (2.5Y 5/1) and da weak reaction to HCI	e, color changes to rk gray (2.5Y 4/1),					
-	38-										-		Jo, 75°, Ti, Fi (1/8" iron oxide cemented fines), PI	TX w = 13.5% dd = 122.4 pcf		
-	39-										-		Jo, 75°, Fi (iron oxide), Pl			
-	40-										-		Jo, 65°, Fi (iron oxide, cemented fines), Pl			
-	41-	10:14	7	100	100								Jo, 50° to 80°, Fi, St			
-	42-	10:20	1	100	100					@42.5' 2" pocket of lig fine sand, friable to loc	ght gray (2.5Y 7/1), se			UC w = 10.7% dd = 125.3 pcf TX w = 11.4% dd = 126.2 pcf		
-	44-					Vw	-		Fr	@44.0' very dark gray	(2.5Y 3/1)			Run 8 lacks joints and bedding UC		
-	45										-			w = 12.0% dd = 123.4 pcf		
-	46- 47-	<u>10:30</u> 10:36	8	95	95						-					
-	48-										-					
-	49-					Vw	Мо	Мо	Fr	@49.0' abundant diss (1 to 2%)	eminated black carbon			TX w = 13.4% dd = 123.9 pcf		
-	51	<u>10:44</u> 10:50	9	100	100					@50.4' black carbon ?	l/2" in diameter					
FR/	ACTU	RING: Mo-Mo	VC-V	'ery Clo e, Ha-l	ose (<0 Hard, a	.01'), nd VH	CI-Clo I-Very	se (0. ² Hard.	1'-0.3') STRE	, Mo-Moderate (0.3'-1'), Wi-V NGTH: Fr-Friable, We-Weak	Vide (1'-3'), and VW-Very Wi , Mo-Moderate, St-Strong, ar	ide (3' nd Ex-	-10'). HARDNESS: So-Soft, Extremely Strong.	Project No. 14828.000.0		
w⊨ Me- Wa	Mech Wav	anical y), Roi	Breal	k, and ss (St-	Ve-Vei Steppe	, 100-1 n), Dip ed, Ro	o Angle -Roug	ate, ar e, Apei n, Mo-	nu Se- rture (Moder	Ti-Tight, Op-Open, He-Heale ately Rough, SI-Slightly Rough	d, and Fi-Filled), Surface Sha h, Sm-Smooth, and Po-Polis	ape (Ir shed).	-Irregular, PI-Planar, and	Figure Cont.		

PROJE	ECT	: S S	UN ylm	SHII ar, (NE C Califo	AN) ornia	′ON	LAI	NDF	ILL	Log of Bori	ng No	. CH01 cont.	
ELEVATION (feet) DEPTH	(feet)	RUN TIME (min)	RUN NO.	RECOVERY (%)	RQD (%)	FRACTURING	HARDNESS	STRENGTH	WEATHERING		ESCRIPTION	GRAPHIC LOG	DISCONTINUITY DESCRIPTION	REMARKS
- 5:	3-									SANDSTONE: continu	Jed	- · · · · · B	e, 60°, Ti, Pl	
- 54	4-	-				-				@54.0' dark gray (2.5'	Y 4/1)			@54-56' mechanical breaks caused by drilling
- 5	5													(254' driller reports loss of circulation
- 5	7-	<u>NM</u> NM	10	97	97									
- - - - - - - - - 5	- - 8- - - -													
- 5	9-									Boring terminated at 5	9.0 feet bgs			Boring was destroyed after drilling by pouring medium chip
	1-													bentonite from the surface
- 63	2-													
- 6	3-													
- 6	4-													
- 6	6													
6	7-													
6	8-													
- 6! - 7!	9-													
	-											1		
FRACI Lo-Low WEAT	TUR v, M	ING: o-Mo RING:	VC-V derate	ery Cle e, Ha-l resh, S	ose (<0 Hard, a SI-Slight	0.01'), nd VH t, Mo-I	CI-Clo -Very Voder	se (0. ⁻ Hard. ate, ar	1'-0.3') STRE nd Se-	, Mo-Moderate (0.3'-1'), Wi-V NGTH: Fr-Friable, We-Weak Severe. DISCONTINUITY: Tv	Vide (1'-3'), and VW-Very , Mo-Moderate, St-Strong, /pe (Be-Bedding, Jo-Joint	Wide (3'-10' , and Ex-Extr , Fo-Foliatior). HARDNESS: So-Soft, emely Strong. n, Sh-Shear,	Project No. 14828.000.0
Me-Me Wa-Wa	echa	nical Roi	Break	, and	Ve-Vei	n), Dip		e, Ape	rture (Ti-Tight, Op-Open, He-Heale	d, and Fi-Filled), Surface S	Shape (Ir-Irre	gular, PI-Planar, and	Figure Cont.

APPENDIX B

Laboratory Testing

MOISTURE CONTENT AND DRY DENSITY TEST

				- -									
Q			Soil Description	at Clay with Sand (CH									
014828000			Dry Density (pcf)									 	
	VC, LT		Moisture Content (%)	28.8									
Task No.:	y:		Tare Weight (gr)	96.89									
Project -	Tested B		Tare No.	6									
			Dry Soil and Tare (gr)	189.82									
			Wet Soil and Tare (gr)	216.58									
			Wet Density (pcf)	ļ									
ty		A	Volume of Sample (cc)										
GTE Facili			Weight of Rings (gr)	e e									1.000
Canyon LF	0		Number of Rings	1									(in.) =
Suanshine (7/27-7/28/1		Wet Soil and Rings (gr)	ļ									Ring Height ::
			Depth (ft)	28.8-30.3	-								2.416 1 ring (gr.)
Vame:			Sample No.										(in.) = weight of
Project	Date:		Boring No.	BA-2									Ring I.D. Average

Page 1 of 1

MOISTURE CONTENT AND DRY DENSITY TEST

Sedrock Core-Very Dark Grayish Brown 3edrock Core~Olive Gray (5Y, 4/2) Soil Description Sedrock Core-Dark Gray (5Y, 4/1) Brown (2.5Y, 3/2) Sendy Sill (ML) Sedrock Core: Very Dark Grayish Fat Clay with Sand (CH) sedrock Core-Dark Grayish Bro (2.5Y, 3/2) Silt with Sand (ML) edrock Core: Very Dark Gray Bedrock Core-Very Dark Gray (2.5Y, 3/1) Silt with Sand (ML) Sandy Lean Clay (CL) (2.5Y, 4/2) Sandy Silt (ML) (2.5Y, 4/1) Sandy Silt (ML) Sedrock Core-Dark Gray edrock Core: Dark Gray Clayey Sand (SC) Sandy Lean Clay (CL) Sandy Silt (ML) Silt with Sand (ML) (5Y, 4/1) Silt (ML) (5Y, 3/1) Silt (ML) 0148280000 111.50 127.40 Density 102.9 118.0 122.4 95.8 117.5 126.2 123,9 116.6 125.3 123.4 (bcf) DŊ Content Moisture 10.9 17.2 12.4 28.8 16.8 13.5 12.7 14.2 4 13.4 13.2 12.0 (%) 10.7 VC, LT Project - Task No.: Weight 96.89 Tare (gr) 1 I ł 1 ł Į ĺ l ł ł Tested By: and Tare Tare No. -I ŀ -----1 တ ļ I ł Dry Soil 189.82 (gr) 1 l 1 I ł 1 1 ļ Ì l and Tare Wet Soil 216.58 (gr) Ì ļ ţ Į 1 Ì 1 1 ł ļ ł ļ Density Wet (bcf) [l l l 1 ļ ł 1 ļ Î 1 Sample (cc) Volume of I l 42.0-42.5 See Unconfined Compression Test 9.7-10.4 See UU Triaxial Compression Test 38.0-38.5 See UU Triaxial Compression Test 43.3-44.0 See UU Triaxial Compression Test 36.0-36.5 See Unconfined Compression Test Suanshine Canyon LFGTE Facility 31.4-32.2 See UU Triaxial Compression Test 34.0-34.8 See UU Triaxial Compression Test 49.8-50.3 See UU Triaxial Compression Test 44.0-44.5 See Unconfined Compression Test Weight of 1.000 Rings (gr) 1 of Rings Number See Direct Shear Test 3.5-4.0 See Direct Shear Test 23.5-24.0 See Direct Shear Test 2.416 Ring Height (in.) = 7/27-7/28/10 and Rings Wet Soil (gr) ł Depth (ft) 8.5-9.0 28.8-30.3 Sample No. Ring I.D. (in.) = Project Name: ო ი က ~ . \sim e Q . 4 2 ω တ Boring CH-01 CH-01 CH-01 CH-01 CH-01 CH-01 CH-01 CH-01 CH-01 BA-2 No. ц, 8-9 9-0 Н Date:

Page 1 of 1

Average weight of 1 ring (gr.):

AP Engineering & Testing, Inc.

MOISTURE AND DENSITY TEST RESULTS

Client:

AMEC Geomatrix Project Name: Sunshine Canyon LFGTE Facility Project Number: 0148280000

Laboratory No .: Date:

10-0802 08/03/10

Boring No.	Sample No	Sample Depth (feet)	Moisture	Dry Density
B-1		7 5-9	10.5	101.2
B-1		15-16.5	11.9	97 4
B-1		25-26 5	13.0	107.2
B-1		50-51 5	18.4	106.5
B-2	nea-turi) 	2 5-4	16.8	103.6
B-3		2 5-4	13.2	106.8
B-3		10-11 5	5.3	118.5
B-3		20-21 5	18.9	96.2
B-3		30-31 5	26.4	95.7
B-4	**************************************	2 5-4	15.2	108.6
B-4		12 5-14	16.1	105.9
B-4	an ann an Anna	17.5-19	15.4	110.3
B-5		2.5-4	16.7	105.2
B-5		10-11.5	10.4	101.5
B-5	₩7.717.017.517.717.717.217.828.84.800.000.000.000.000.000.000.000.000	20-21.5	11.9	106.1
B-6		2.5-4	11.8	105.3
B-6		7.5-9	11.6	103.7
B-6	<u>· · · · · · · · · · · · · · · · · · · </u>	12.5-14	12.5	106.3
B-6		17.5-19	10.6	114.9
B-6		22.5-24	14.8	110.3
B-6	-	27.5-29	11.7	115.3
B-6		32.5-34	11.0	104.3
B-6		37.5-39	12.2	115.9
B-6		42.5-44	12.8	107.2
B-6	60°	47.5-49	11.5	100.9
PARTICLE SIZE ANALYSIS ASTM-D422

Project Name:	Sunshine Can	yon LFGTE Facility	1	Project No.:	0148280000	Date:	7/27-7/30/10
Boring No.:	BA-2	Sample No.:	1	Depth:	28.8-30.3 Ft	Tested By:	LT, VC
Soil Description:	Fat Clay with S	Sand (CH)					0

SIEVE ANALYSIS

Sieve Size		Weight Re	etained	Percent	Retained	Percent Passing	
Standard	Other	Individual	Cumulative	Individual	Cumulative	(Cumulative)	
3"					·		
2"							
1.5"							
1*							
3/4"			0.00		0.0	100.0	
3/8"			1.95	an a	2.1	97.9	
#4		·····	2.14		2.3	97.7	
#10			6.16		6.6	93.4	
#20			9.58		10.3	89.7	
#40			11.56		12.4	87.6	
#60			12.75		13.7	86.3	
#140			15.82		17.0	83.0	
#200			19.91		21.4	78.6	

Tare No.:	9
Dry wt. and tare, gr.:	189.82
Tare weight, gr.:	96.89
Total dry weight, gr.:	92.93
Tare No., Hydromtr.:	13
Tare No., Hygroscp.:	MC-58
Soaking Container:	H-7
Jar No.:	1

Notes:

HYDROMETER ANALYSIS (152H)

Composite Correction (C _C) =	6 @ 18°C Hygroscopic Moisture:			
Composite Correction $(C_C) =$	5 @ 20°C Air-dry Mass, gr.:	25.63	Air-dry Mass in Test (W1), gr.:	63.21
Composite Correction (C _C) =	3 @ 25°C Oven-dry Mass, gr.:	24.38	Oven-dry Mass in Test (W ₂),gr.:	60.13
Composite Correction (C _C) =	@ ° ⁱ Correction Factor (F _c):	0.951		(W ₁ ×F _c)

Specific G	Gravity:	2.70	Total Mass Represented by the Mass Used in the Hydrometer Test (W), gr.: 64							64.40
Correction	n Factor a	0.99	(W ₂ /Percent <#1							#10)
Date	Time	Elapsed Time,min. (T)	Temp. (°C)	remp. Actual Composite (°C) Reading Correction Re (R1) (C _c) Re		Hydrometer Reading (R)	Percent Passing (P) ¹	Value of K	Effective Depth (L)	Diameter of Particle, mm (D) ²
7/29/10	10:00:58	0.00								
7/29/10	10:01:58	1.00	23	39	4	35	53.8	0.01297	9.9	0.04081
7/29/10	10:02:58	2.00	23	34	4	30	46,1	0.01297	10.7	0.03000
7/29/10	10:05:58	5.00	23	31	4	27	41.5	0.01297	11.2	0.01941
7/29/10	10:15:58	15.00	23	27	4	23	35.4	0.01297	11.9	0.01155
7/29/10	10:30:58	30.00	23	24	4	20	30.7	0.01297	12.4	0.00834
7/29/10	11:00:58	60.00	23	21	4	17	26.1	0.01297	12.9	0.00601
7/29/10	14:10:58	250.00	23	17	4	13	20.0	0.01297	13.5	0.00301
7/30/10	10:00:58	1440.00	23	14	4	10	15.4	0.01297	14.0	0.00128

⁴ D = K*SQRT(L/T)

GRAIN SIZE DISTRIBUTION CURVE ASTM D 422

Symbol	Boring No.	Sample	Sample		Perce	Atterberg Limits	Soil Symbol	
		140.	(feet)	Gravel	Sand	Fines	LL:PL:PI	ASTM D 2487
0	B-3	-	5-10	0	38	62	N/A	ML
								annan an the second
-							*******	79.79.99.99.99.99.99.99.99.99.99.99.99.9
	L			L	<u>i</u>			

GRAIN SIZE DISTRIBUTION CURVE ASTM D 422

PLASTICITY INDEX ASTM-D 4318

Project Name: Sunshi		Sunshine	unshine Canyon LFGTE Facility							0148280000		
B	oring I	No.:	BA-2	Samp	le No.:			1	Depth: 28.	8-30.3 Ft	Date: 7/27-7/	29/10
S	oil De	scription:	Fat Clay v	with Sar	id (CH)					****	Tested by:	VC, LT
D	RYIN	G PAN No.:	6		SC	Daking E	DISH	No.: IMIT (I I)	A-12	9 9		ne di konstanta di mana mangana persekan di kana kana kana kana kana kana kana kan
						lon I 427 4	ar I kar kas					
			TARE No.	.:				C-58	C-40	C-8		
			NUMBER	OF BL	SWC		,	23	25	34	A40000-	
			WEIGHT OF WET SOIL + TARE, gr.:					32.75	34.03	33.56		
			WEIGHT OF DRY SOIL + TARE, gr.:					26.62	27.30	27.45	Anner	
			WEIGHT OF TARE, gr.:					15.64	15.06	15.95		
			MOISTUF	RE CON	TENT, 9	%:		55.8	55.0	53.1	445.00	
		60		SH NGSINGA, O Jakob National Association				and an and a second		ng sepanghadi najipur ng jun najipur sepangi samanan	**************************************	
		erifialissen edesseare our										
		55					esn so					
	_	(Additional de Decembra de Dec										
	(%)	50		Machine Contraction						F F		
	nts	**************************************	****									
	ntei	4.5	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			******						
	õ	45		50.55385(00055000900;00090) *****								
	nre											
	oisti	40	1999 1999 1999 1999 1997 1997 1997 1997	9466790 (9489-999)								
	Mc			*****								
		35										
						Lander (Mathematical Array						
		30	and the state of the	07/2								
		10			15			20	25	30) 35	40
						N	lumb	er of Blows	>			1
				MIT =	30 d Farai dimenan	55	10000000000000000000000000000000000000					
						PLAS	TIC L	.IMIT (PL)				
TARE No.:					C-48	C-38						
			WEIGHT	OF WE	F SOIL +	· TARE, g	ır.:	24.06	23.88			
			WEIGHT	OF DRY	' SOIL +	TARE, g	r.:	22.12	22.11			
			WEIGHT	OF TAR	E, gr.:		~	15.07	15.75			
			MOISTUR	RE CON	TENT, %	6:		27.5	27.8			
			PLASTIC	LIMIT =	P-0-0-11-0-00000	28	darek designi (jeje oranač					

PLASTICITY INDEX (PI) = LL - PL =

27

PLASTICITY INDEX ASTM-D 4318

Project Name:		Name:	Sunshine Cany	on LFGTE Facility		Project No).:	0148280000		
B	oring N	Vo.:	CH-01 Sar	npie No.:	1	Depth:	9.7-10.4 Ft	Date: 7/27-7/	29/10	
S	oil Des	scription:	Bedrock Core-(Olive Gray (5Y, 4/2)	Sandy Lean C	lay (CL)		Tested by:	VC, LT	
D	RYING	6 PAN No.:	7	SOAKING D	DISH No.:	A-1				
				LIQU	JID LIMIT (LL)					
			TARE No.:		C-1	C-78	C-2			
			NUMBER OF E	BLOWS	20	23	32	~		
			WEIGHT OF W	/ET SOIL + TARE, g	jr.: 33.87	37.77	40.14	66		
			WEIGHT OF D	RY SOIL + TARE, g	r.: 28.91	31.74	33.54	<u>«</u>		
			WEIGHT OF T	ARE, gr.:	15.83	15.56	15.69	ee		
			MOISTURE CO	DNTENT, %:	37.9	37.3	37.0	er		
	ļ	60								
	55									
	_							┉┟┉┉╎┉┉╎╸╻╟╺┉		
	%)	50								
	nts									
	onte	45								
	Ŭ		1999 - Constantino a Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constanti							
	loisture	40								
		+0								
	2	And and a second se								
		35							attained to end	
		30 ²	- I	15	20	25	30	35	40	
				N	lumber of Blov	VS				
			LIQUID LIMIT =	= 37				and a state of the		
				PLAS	TIC LIMIT (PL)				
			TARE No.:		C-70	C-49				
			WEIGHT OF W	ET SOIL + TARE, g	r <i>.</i> : 25.72	25.01	-			
			WEIGHT OF DI	RY SOIL + TARE, g	r.: 23.89	23.25	-			
			WEIGHT OF TA	ARE, gr.:	15.38	14.96				
			MOISTURE CC	NTENT, %:	21.5	21.2	•			
			PLASTIC LIMIT	⁻ = 21	164101-144-04-141111199					
			PLASTICITY IN	IDEX (PI) = LL - PL		16	-			

EXPANSION INDEX TEST RESULTS ASTM D 4829

Client Name: Project No.:

Project Name: Sunshine Canyon LFGTE Facility 0148280000

AMEC Geomatrix

AP Job No.: 10-0802 Date: 08/06/10

Boring No.	Sample No.	Depth (ft)	Soil Description	Molded Dry Density (pcf)	Molded Moisture Content (%)	Init. Degree Saturation (%)	Measured Expansion Index	Corrected Expansion Index
B-1		5-6.5	Silty Sand	102.6	10.7	45.1	28	25
B-3	-	5-6.5	Silty Sand	104.4	10.7	47.2	22	20
B-5	151	15-16.5	Silty Sand	109.8	9.7	49.1	24	24
							(*************************************	Ханданыналын алын алын алын алын алын алын а
			· · · · · · · · · · · · · · · · · · ·					

ASTM EXPANSION CLASSIFICATION

Expansion Index	Classification
 0-20	V. Low
 21-50	Low
51-90	Medium
91-130	High
>130	V. High

	AP	Engineering & Test	ing, Inc.					
and the second		######################################	COMP	ACTION	TEST			NH-FE-71011-2-0011-6-11111-1111-10-00-00-04-04-0-0-04-04-0-0-04-04-0-0-04-04
	Client: Project Name: Project No. : Boring No.: Sample No. :	AMEC Geomatrix Sunshine Canyon LFGT 0148280000 B-3	E Facility	Tested By: JT Calculated By: KM Checked By: AF Depth (ft.) : 5-1			AP Number: Date: Date: Date:	10-0802 08/06/10 08/09/10 08/09/10
1	VISUAI Sample De METHOD MOLD VOLUME	(CU.FT)	A 0.0333	d	Compaction M	lethod ethod	X ASTM D15 ASTM D69 Moist X Dry	57 3
-	Trial No.		1	2	3	4	5	6
\	Wt. Comp. Soil	+ Mold (gm.)	3603	3719	3794	3763		
	Wt. of Mold (gr	n.)	1752	1752	1752	1752		
	Net Wt. of Soil	(gm.)	1851	1967	2042	2011		· · ·
(Container No.							
	Wt. of Container	r (gm.)	155.87	194.12	194.54	220.18		
	Wet Wt. of Soil ·	+ Cont. (gm.)	481.51	672.25	593.20	694.01		
	Dry Wt. of Soil +	- Cont. (gm.)	460.12	629.58	550.11	636.59		
	Moisture Conter	nt (%)	7.03	9.80	12.12	13.79		
<u>\</u>	Net Density (pc	f)	122.42	130.09	135.05	133.02		
	Dry Density (pcf)	114.38	118.48	120.46	116.90		
Maxi	M mum Dry Density	aximum Dry Density (pcf) vw/ Rock Correction (pcf)	120.5 123.3	Optimum	Opt Moisture Con	imum Moistun tent w/ Rock C	e Content(%)	<u>12.0</u> 11.6
	Assumed Specifi PROCEDURI METHOD A: Pero Soil Passing No Mold : 4 in. (101 Layers : 5 (Five Blows per layer : May be used if No METHOD B: Pero Soil Passing 3/8 in Mold : 4 in. (101 Layers : 5 (Five Blows per layer : Use if + No.4 > 20 METHOD C: Pero Soil Passing 3/4 in Mold : 6 in. (152 Layers : 5 (Five	fic Gravity = 2.7 E USED cent of Oversize: 7.8% 4 (4.75 mm) Sieve .6 mm) diameter a) 25 (twenty-five) 0.4 retained < 20% cent of Oversize: NA n. (9.5 mm) Sieve .6 mm) diameter a) 25 (twenty-five) 0% and - 3/8 in < 20% cent of Oversize: NA n. (19.0 mm) Sieve .4 mm) diameter a)	140 (Jac) (J				* 100% Sa @ assur	aturation Line ned Gs
	Blows per layer : Use if + 3/8 in >20	56 (fifty-six) 0% and +3/4 in <30%		0	10	20 Moisture (%)	30	40

		Engineering & T	esting, Inc.					
		NYALITAY FOR UP SETUDIETA IIII III SETUDIETA IIII SETUDIETA III SETUDIETA III SETUDIETA III SETUDIETA III SETUDI	COME	ACTION	TEST	E		***************************************
	Client: Project Name: Project No. : Boring No.: Sample No. : Visual Sample De	AMEC Geomatrix Sunshine Canyon L 0148280000 B-6 - 	FGTE Facility		Tested By: Calculated By: Checked By: Depth (ft.) :	JT KM AP 5-10	AP Number: Date: Date: Date:	10-0802 08/06/10 08/09/10 08/09/10
	METHOD MOLD VOLUME ((CU.FT)	A 0.0333		Compaction M	lethod ethod	X ASTM D15 ASTM D65 Moist X Dry	557 98
	Trial No.		1	2	3	4	5	6
	Wt. Comp. Soil	+ Mold (gm.)	3746	3829	3805	3613		
	Wt. of Mold (gr	n.)	1752	1752	1752	1752		
Ļ	Net Wt. of Soil	(gm.)	1994	2077	2053	1861		
	Container No.			Annes				
	Wt. of Container	- (gm.)	188.56	194.52	195.21	199.41		
	Wet Wt. of Soil	+ Cont. (gm.)	590.86	653.41	801.62	892.72		
	Dry Wt. of Soil +	Cont. (gm.)	558.08	607.63	729.52	850.41		
	Moisture Conter	nt (%)	8.87	11.08	13.49	6.50		
	Wet Density (pc	f)	131.88	137.37	135.78	123.11		
	Dry Density (pcf)	121.13	123.66	119.64	115.60		
M	M aximum Dry Density	aximum Dry Density (v w/ Rock Correction (pcf) 124.0 pcf) 126.2	Optimun	Op n Moisture Con	timum Moistur tent w/ Rock (e Content (%) Correction (%)	10.0 9.9
	Assumed Specifi PROCEDURI METHOD A: Pero Soil Passing No Mold : 4 in. (101 Layers : 5 (Five Blows per layer : May be used if No METHOD B: Pero Soil Passing 3/8 i Mold : 4 in. (101 Layers : 5 (Five Blows per layer : Use if + No.4 > 20 METHOD C: Pero Soil Passing 3/4 i Mold : 6 in. (152 Layers : 5 (Five Blows per layer :	fic Gravity = E USED cent of Oversize: 6 4 (4.75 mm) Sieve .6 mm) diameter a) 25 (twenty-five) 0.4 retained < 20% cent of Oversize: NA n. (9.5 mm) Sieve .6 mm) diameter a) 25 (twenty-five) 0% and - 3/8 in < 20% cent of Oversize: NA n. (19.0 mm) Sieve .4 mm) diameter a) 56 (fifty-six)	2.7] 140 .7% (ja) (ja) (ja) (ja) (ja) (ja) (ja) (ja)		10	20	100% S @ assu 0 assu 0 a a a a 0 a a a a 0 a a a a a 0 a a a a	Saturation Line
	Blows per layer : Use if + 3/8 in >20	56 (fifty-six) 0% and +3/4 in <30%		-		Moisture (%)	50	

DIRECT SHEAR TEST (ASTM-D3080)

Project Name: Sunshine Canyon LFGTE Facility Project No.: 0148280000											
Boring N	o.:	B-1	Sample N	√o.:	3	Depth:	8.5-9.0 F	eet	Date:	7/26-7/27	7/10
Soil Desc	cription:	-	Sandy Sil	lt (ML)		100.0 A 100			Tested B	y:	LT
								Pefere		٨ بند	
								Teat		Alter	
								lest	1 1 4		
Comple F	Name ter 1		0.440	harite		<u></u> .			Load 1	Load 2	Load 3
	Jameter, I	n:	2.416	ivveight o	T Wet Soil	& Ring, gr	• •	513.21			****
Normal S	danad @		1,3,5	vveight o	TRING, gr:		149/1494-94-04-04-04-04-04-04-04-04-04-04-04-04-04	129.76			
Cheen De	ueneu @,	per	0.005	ineight of	Sample, II	n:	********	3.00	0.9522	0.9013	0.8779
Shear Ra	ite, in/min:		0.005	Moisture	lare No.:			MC-81			
Natural N	loisture(x)	•	·····		Wet Weig	iht and Ta	re, gr:	169.48	142.26	136.57	135.16
Saturated	(X):		X		Dry Weig	ht and I ar	re, gr:	157.82	113.81	112.24	112.50
lintact(x):	1 (*****	X		Li are Wei	ght, gr:		50.44	0.00	0.00	0.00
Kemolde	a to, pct:				Moisture	Content, %	6:	10.9	25.0	21.7	20.1
	@, %:			Wet Den	sity, pcf:			106.2	125.8	129.3	131.1
Notes:				Dry Dens	sity, pcf:			95.8	100.6	106.3	109.1
				Saturatio	n %:	S.G. = 2.70	(Assumed)	38.6	100.0	99.9	99.9
	Load 1 (K	SF): 1.034	ŀ		Load 2 (K	SF): 3.000)		Load 3 (K	SF): 5.000)
Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear
Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress
tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)
0.0098	0.406	0.0006	0.139	0.0098	0.406	0.0030	0.458	0.0098	0.406	0.0058	0.830
0.0199	0.823	0.0011	0.206	0.0199	0.823	0.0048	0.697	0.0199	0.823	0.0096	1.335
0.0300	1.241	0.0017	0.285	0.0300	1.241	0.0060	0.857	0.0300	1.241	0.0118	1.627
0.0401	1.659	0.0021	0.339	0.0401	1.659	0.0069	0.976	0.0401	1.659	0.0136	1.866
0.0502	2.077	0.0026	0.405	0.0502	2.077	0.0077	1.082	0.0502	2.077	0.0149	2.039
0.0603	2.495	0.0029	0.445	0.0603	2.495	0.0085	1.189	0.0603	2.495	0.0164	2.238
0.0704	2.912	0.0033	0.498	0.0704	2.912	0.0093	1.295	0.0704	2.912	0.0177	2.411
0.0805	3.330	0.0037	0.551	0.0805	3.330	0.0100	1.388	0.0805	3.330	0.0189	2.570
0.0905	3.748	0.0041	0.604	0.0905	3.748	0.0105	1.454	0.0905	3.748	0.0199	2.703
0.1006	4.166	0.0045	0.657	0.1006	4.166	0.0111	1.534	0.1006	4.166	0.0209	2.836
0.1208	5.002	0.0051	0.737	0.1208	5.002	0.0119	1.640	0.1208	5.002	0.0223	3.022
0.1410	5.837	0.0057	0.817	0.1410	5.837	0.0128	1.760	0.1410	5.837	0.0243	3.288
0.1612	6.673	0.0064	0.910	0.1612	6.673	0.0133	1.826	0.1612	6.673	0.0260	3.514
0.1814	7.509	0.0069	0.976	0.1814	7.509	0.0138	1.893	0.1814	7.509	0.0277	3.740
0.2016	8.344	0.0076	1.069	0.2016	8.344	0.0141	1.933	0.2016	8.344	0.0286	3,859
0.2521	10.433	0.0092	1.282	0.2521	10.433	0.0147	2.012	0.2521	10.433	0.0296	3 992
0.3025	12.523	0.0096	1,335	0.3025	12.523	0.0153	2.092	0,3025	12.523	0.0308	4 151
0.3530	14.612	0.0104	1.441	0.3530	14.612	0.0156	2.132	0.3530	14,612	0.0324	4 364
0.4035	16.701	0.0111	1.534	0.4035	16,701	0.0157	2.145	0.4035	16 701	0.0328	4 4 17
0.4828	19.982	0.0120	1.654	0.4828	19,982	0.0158	2 159	0 4828	19 982	0.0020	4 3 1 1
Max. She	ar Stress	ksf:	1.654				2 159	0.7020	10.004	0.0020	<u>4 /1</u> 7
Shear De	flt.@Max S	Stress.% :	20.0		Construction of the	and any dama was frequency you and a second seco	20.0	and a subsection of the state of the subsection of the state of the st	*********	annanya) aya di karata na maka Petersian (karata karata karata karata karata karata karata karata karata karata	16 7
		- ,					20.0				10.7

DIRECT SHEAR TEST (ASTM-D3080)

Project N	lame:	Sunshine	Canyon L	FGTE Fa	cility	Project N	o.:	0148280	000		
Boring N	0.:	B-5	Sample I	vo.:	1	Depth:	3.5-4.0 Fe	eet	Date:	8/13-8/17	/10
Soil Desc	cription:	9-19-1-1-1	Clayey S	and (SC)					Tested B	y:	LT
								Refore		After	
								Teet		Teet	
								1031	Load 1	Load 2	S heo I
Sample D	Diameter, i	n:	2,416	Weight o	f Wet Soil a	& Rina ar	•	565 38			
Normal S	tress. ksf:	0	.4.0.8.1.6	Weight o	f Rina, ar:		•	130.31	Li 10 10		5.046
Over-bur	dened @.	pcf:		Height of	Sample, ir	ויי		3.00	0.9951	0.9876	0 9742
Shear Ra	ite, in/min:		0.005	Moisture-	Tare No.:			MC-75	40 40 40		
Natural M	loisture(x)	•			Wet Weig	ht and Ta	re. ar:	157.91	148.98	149.39	145.32
Saturated	J(x):		X		Dry Weig	ht and Tar	re, qr:	142.14	120.79	121.55	119.06
Intact(x):			Х		Tare Weig	ght, gr:		50.27	0.00	0.00	0.00
Remolde	d to, pcf:				Moisture	Content, %	6:	17.2	23.3	22.9	22.1
	@, %:			Wet Den	sity, pcf:		504344300000000000000000000000000000000	120.5	127.5	128.0	128.9
Notes:			100	Dry Dens	ity, pcf:		*******	102.9	103.4	104.1	105.6
				Saturatio	n %:	S.G. = 2.70	(Assumed)	72.6	99.9	100.0	99.8
	Load 1 (I	<sf): 0.4<="" td=""><td></td><td></td><td>Load 2 (I</td><td>(SF): 0.8</td><td></td><td colspan="3">Load 3 (KSF): 1.6</td><td></td></sf):>			Load 2 (I	(SF): 0.8		Load 3 (KSF): 1.6			
Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear
Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress
tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)
0.0098	0.406	0.0008	0.166	0.0098	0.406	0.0013	0.232	0.0098	0.406	0.0026	0.405
0.0199	0.823	0.0015	0.259	0.0199	0.823	0.0022	0.352	0.0199	0.823	0.0044	0.644
0.0300	1.241	0.0022	0.352	0.0300	1.241	0.0030	0.458	0.0300	1.241	0.0058	0.830
0.0401	1.659	0.0029	0,445	0.0401	1.659	0.0037	0.551	0.0401	1.659	0.0069	0.976
0.0502	2.077	0.0034	0.511	0.0502	2.077	0.0041	0.604	0.0502	2.077	0.0079	1.109
0.0603	2.495	0.0037	0.551	0.0603	2.495	0.0044	0.644	0.0603	2.495	0.0087	1.215
0.0704	2.912	0.0038	0.564	0.0704	2.912	0.0045	0.657	0.0704	2.912	0.0093	1.295
0.0805	3.330	0.0038	0.564	0.0805	3.330	0.0048	0.697	0.0805	3.330	0.0099	1.375
0.0905	3.748	0.0038	0.564	0.0905	3.748	0.0050	0.724	0.0905	3.748	0.0100	1.388
0.1006	4.166	0.0038	0.564	0.1006	4.166	0.0052	0.750	0.1006	4.166	0.0101	1.401
0.1208	5.002	0.0037	0.551	0.1208	5.002	0.0056	0.803	0.1208	5.002	0.0101	1.401
0.1410	5,837	0.0036	0.538	0.1410	5.837	0.0058	0.830	0.1410	5.837	0.0101	1.401
0.1612	6.673	0.0034	0.511	0.1612	6.673	0.0057	0.817	0.1612	6.673	0.0101	1.401
0.1814	7.509	0.0033	0.498	0.1814	7.509	0.0060	0.857	0.1814	7.509	0.0101	1.401
0.2016	8.344	0.0033	0.498	0.2016	8.344	0.0062	0.883	0.2016	8.344	0.0102	1.415
0.2521	10.433	0.0032	0.485	0.2521	10.433	0.0074	1.043	0.2521	10.433	0.0107	1.481
0.3025	12.523	0.0031	0,471	0.3025	12.523	0.0078	1.096	0.3025	12.523	0.0109	1.508
0.3530	14.612	0.0030	0.458	0.3530	14.612	0.0078	1.096	0.3530	14.612	0.0116	1.601
0.4035	16.701	0.0029	0.445	0.4035	16.701	0.0073	1.029	0.4035	16.701	0.0118	1.627
0.4828	19.982	0.0029	0.445	0.4828	19.982	0.0067	0.950	0.4828	19.982	0.0119	1.640
Max. She	ar Stress,	ksf:	0.564			00000000000000000000000000000000000000	1.096	• • • • • • • • • • • • • • • • • • •			1.640
Shear Deflt.@Max Stress,%.: 4.2						14.6				20.0	

DIRECT SHEAR TEST (ASTM-D3080)

Project Name: Sunshine Cany		Canyon L	FGTE Fa	cility	Project N	lo.:	0148280	000			
Boring N	0.:	B-6	Sample N	lo.:	9	Depth:	23.5-24.0	Feet	Date:	7/26-7/28	/10
Soil Des	cription:		Sandy Le	an Clay (CL)				Tested B	y:	LT
								<u>Before</u> <u>Test</u>	r 14	<u>After</u> <u>Test</u>	
Sample	Diameter i	n .	2/16	Weight o	f Met Soil	& Ping ar		596.02	<u>Load 1</u> 1		Load 3
Normal S	trees ket	***************************************	125	Weight o	f Ring ar	a rung, gr	•	122.61			
Over-bur	dened @	ncf [.]		Height of	Sample i	<u></u>		3.00	0.0863	0 0707	0.0569
Shear Ra	ate, in/min:	p 01.	0.005	Moisture	Tare No :	L -		0.00 MC=52	0.0000	0.3737	0.5000
Natural N	Aoisture(x)				Wet Weir	tht and Ta	re ar	176 99	157 90	155.66	154 32
Saturated		•			Dry Weig	ht and Tar	e ar	163.04	133.62	133.00	132 //
Intact(x):			X		Tare Wei	abt ar	<u>o, gr.</u>	50.43	0.00	0.00	0.00
Remolde	d to, pcf:		~		Moisture	Content 9		12 4	18.2	17.8	16.5
	@. %:			Wet Den	sity. pcf:	<u> </u>		125.3	133.6	134.0	135.8
Notes:				Dry Dens	sity, per			111.5	113.1	113.8	116.5
				Saturatio	n %:	S.G. = 2.70	(Assumed)	65.4	99.9	99.8	99.9
	Load 1 (K	SF): 1.034		<u> </u>	Load 2 (K	SE): 3.000)	Load 3 (KSE) - 5 000			
Shear	Lateral	Load	Shear	Shear		Load	Shoor	Shoor		L ood	Shaar
Deflec-	Displace.	Ping	Strace	Deflec-	Dieplace	Ding	Stroop	Doffee	Diaplace	Dine	Shear
tion (in)	mont (%)	Pooding		tion (in)	mont (%)	Pooding		tion (in)	Displace-	Ring	Stress
						Reading	(NOF)		ment (%)	Reading	(KSF)
0.0098	0.406	0.0022	0.352	0.0098	0.406	0.0048	0.697	0.0098	0,406	0.0081	1.136
0.0199	0.023	0.0037	0.551	0.0199	0.823	0.0089	1.242	0.0199	0.823	0.0124	1.707
0.0300	1.241	0.0054	0.777	0.0300	1.241	0.0124	1.707	0.0300	1.241	0.0160	2.185
0.0401	1.659	0.0069	0.976	0.0401	1,659	0.0135	1.853	0.0401	1.659	0.0191	2.597
0.0502	2.077	0.0080	1.122	0.0502	2.077	0.0149	2.039	0.0502	2.077	0.0216	2.929
0.0603	2.495	0.0087	1.215	0.0603	2.495	0.0160	2.185	0.0603	2.495	0.0237	3.208
0.0704	2.912	0.0091	1.268	0.0704	2.912	0.0168	2.291	0.0704	2.912	0.0252	3.407
0.0805	3.330	0.0095	1.322	0.0805	3.330	0.0175	2.384	0.0805	3.330	0.0265	3.580
0.0905	3.748	0.0095	1.322	0.0905	3.748	0.0181	2.464	0.0905	3.748	0.0272	3.673
0.1006	4.166	0.0096	1.335	0.1006	4.166	0.0186	2.531	0.1006	4.166	0.0276	3.726
0.1208	5.002	0.0095	1.322	0.1208	5.002	0.0190	2.584	0.1208	5.002	0.0276	3.726
0.1410	5.837	0.0095	1.322	0.1410	5.837	0.0193	2.624	0.1410	5.837	0.0274	3.700
0.1612	6.673	0.0095	1.322	0.1612	6.673	0.0195	2.650	0.1612	6.673	0.0273	3.686
0.1814	7.509	0.0091	1.268	0.1814	7.509	0.0194	2.637	0.1814	7.509	0.0273	3.686
0.2016	8.344	0.0092	1.282	0.2016	8.344	0.0196	2.663	0.2016	8.344	0.0273	3.686
0.2521	10.433	0.0095	1.322	0.2521	10.433	0.0201	2.730	0.2521	10.433	0.0275	3.713
0.3025	12.523	0.0096	1.335	0.3025	12.523	0.0204	2.770	0.3025	12.523	0.0276	3.726
0.3530	14.612	0.0097	1.348	0,3530	14.612	0.0208	2.823	0.3530	14.612	0.0276	3.726
0.4035	16.701	0.0097	1.348	0.4035	16.701	0.0206	2.796	0.4035	16.701	0.0277	3.740
0.4828	19.982	0.0098	1.361	0.4828	19.982	0.0205	2.783	0.4828	19.982	0.0278	3.753
Max. She	ar Stress,	ksf:	1.361			i	2.823		J		3.753
Shear Deflt.@Max Stress,%.: 20.0				0 4 Jan 2017 Anno 1999 Anno 1977 Anno 19	hallinninninnin (111 a da hall dhaa hall dhaa ahad dhaa yaan		14.6			Letter and a second	20,0

DIRECT SHEAR TEST DATA ASTM D 3080

Project Name:	Sunshine C	Canyon LFGT	E Facility	Tested By	KM	Date:	8/4/2010
Sample ID:	<u>B-4</u>			Checked By	AP	Date:	8/9/2010
Sample No.:		Depth (ft):	2.5-4				
Description:	Brown San	dy Silt w/siltsl	one	823			
Sample Type:	Mod. Cal.			9 7 3			
Test Condition:	Inundated						

Sample Diameter (in)	2.415
Sample Height (in)	1.00
Total Soil+Ring Weight(g)	775.69
Total Ring Weight (g)	171.54
Wet Density (pcf)	125.61
Dry Density (pcf)	109.00

Moisture Determination	Before Test	After Test
Cont. Weight (g)	50.29	104.71
Wet Soil+Cont. (g)	216.34	710.55
Dry Soil+Cont. (g)	194.38	610.32
Moisture Content (%)	15.2	19.8
Degree Saturation	75.3	97.9

METHOD OF SHEARING

X Regular Shearing

Residual Shearing 5 Passes

Shear Rate (in/min):	0.01
Shear Distance (in):	0.5

Sample	Sample +	Ring Wt.	Normal Load	Max. Shear	Ultimate Shear	Remarks
Number	Ring Wt.		(ksf)	Reading (psf)	Reading (psf)	· · · · ·
1	193.38	41.98	0.4	684	337	
2	194.50	44.07	0.8	1020	720	
3	193.61	42.74	1.4	1368	1109	
4	194.20	42.75	2.0	1896	1520	

DIRECT SHEAR TEST RESULTS ASTM D 3080

DIRECT SHEAR TEST DATA ASTM D 3080

Project Name:	Sunshine Canyon LFGTE Facility	_Tested By	KM	Date:	08/03/10
Boring No.:	CH01	Checked By	AP	Date:	08/09/10
Sample No.:	Depth (ft):14-15				
Description:	Olive Brown Clay with small siltsto	nes			
Sample Type:	Mod. Cal.	50)			
Test Condition:	Inundated				

	Contraction of the second s
Sample Diameter (in)	2.415
Sample Height (in)	1.00
Total Soil+Ring Weight(g)	578.99
Total Ring Weight (g)	127.03
Wet Density (pcf)	125.29
Dry Density (pcf)	105.62

Moisture Determination	Before Test	After Test
Cont. Weight (g)	50.51	105.27
Wet Soil+Cont. (g)	164.94	567.81
Dry Soil+Cont. (g)	146.98	479.68
Moisture Content (%)	18.6	23.5
Degree Saturation	84.4	105.4

METHOD OF SHEARING

X

Regular Shearing	Shear Rate (in/min):	0.01
Residual Shearing 5 Passes	Shear Distance (in):	0.5

Sample	Sample +	Ring Wt.	Normal Load	Max. Shear	Ultimate Shear	Remarks
Number	Ring Wt.		(ksf)	Reading (psf)	Reading (psf)	
1	193.66	42.19	0.5	1796	828	
2	190.81	41.40	1.5	2209	1074	
3	194.52	43.44	2.5	2575	1452	

.

UNCONFINED COMPRESSIVE STRENGTH TEST (ASTM-D2166)

Project Name:	Sunshine Ca	nyon LFGTE Facility	Project No	o.:	0148280000
Boring No.:	CH-01	Sample No.: 7	Depth:	36.0-36.5 Fee	et
Soil Description:	Bedrock Core	e: Very Dark Grayish Bro	wn (2.5Y, 3/2) S	andy Silt (ML)	аларанын алаан алаан түүнөн түүнөн түүлээн
Date:	7/30/2010		By: L.T.		
Initial Diameter, in:	2.412	Wet We	ight of Sample, g	rs:	829.42
Initial Area, in ² :	4.569	Moisture	Content-		······································
Initial Height, in:	5.243		Tare No.:		MC-24
Height-to-Diameter Ratio:	2.17		Wet Weig	ht&Tare, grs:	179.77
Type of Sample:	Undisturbed		Dry Weigh	nt & Tare, grs:	164.75
Strain Rate, % / minute:	0.5		Tare Weig	ght, grs:	50.62
Note:	THE REPORT OF		Moisture (Content, %:	13.2
Moisture content specimen		Wet Der	nsity, pcf:		131.9
was obtained after test.		Dry Den	sity, pcf:		116.6

Elapsed Time	Axial Load, Pounds	Strain Dial Reading, in	Total Strain, %	Corrected Area, in ²	Compressive Stress, PSF	Remarks
0:00:00	0.0	0.000	0.00	4.569	0.0	****
	120.0	0.010	0.19	4.578	3774.6	
	277.0	0.021	0.40	4.588	8694.7	
	340.0	0.031	0.59	4.596	10651.8	
	395.0	0.042	0.80	4.606	12348.7	
	536.0	0.052	0.99	4.615	16724.5	
	660.0	0.063	1.20	4.625	20550.0	
	565.0	0.073	1.39	4.634	17558.1	
	525.0	0.084	1.60	4.644	16280.3	
	398.0	0.094	1.79	4.653	12318.1	Diagonal
	380.0	0.105	2.00	4.663	11735.9	Shear
	289.0	0.115	2.19	4.672	8908.1	at ~67°
	254.0	0.126	2.40	4.682	7812.5	
0:04:48	253.0	0.126	2.40	4.682	7781.7	
				[

Shear Strength, PSF = 10,275

UNCONFINED COMPRESSIVE STRENGTH TEST (ASTM-D2166)

Project Name:	Sunshine Ca	nyon LFGTE F	acility	F	Project No	o.:	0148280000
Boring No.:	CH-01	Sample No.:	8	Ľ	Depth:	42.0-42.5 Fee	et
Soil Description:	Bedrock Core	e: Very Dark G	ray (2.5Y	, 3/1) Sil	t with Sa	nd (ML)	
Date:	7/30/2010	·		By:	L.T.	*****	
Initial Diameter, in:	2.425		Wet We	eight of S	Sample, g	rs:	888.18
Initial Area, in ² :	4.619		Moisture	e Conter	nt-		
Initial Height, in:	5.282	***		Т	are No.:	· · · · · · · · · · · · · · · · · · ·	MC-40
Height-to-Diameter Ratio:	2.18			٧	Vet Weig	ht&Tare, grs:	185.62
Type of Sample:	Undisturbed			Ľ	Dry Weigl	nt & Tare, grs:	172.53
Strain Rate, % / minute:	0.5			T	are Weig	jht, grs:	50.31
Note:				N	/loisture (Content, %:	10.7
Moisture content specimen			Wet De	nsity, pc	f:		138.7
was obtained after test.			Dry Der	nsity, pcf		······································	125.3

Elapsed Time	Axial Load, Pounds	Strain Dial Reading, in	Total Strain, %	Corrected Area, in ²	Compressive Stress, PSF	Remarks
0:00:00	0.0	0.000	0.00	4.619	0.0	**************************************
	76.0	0.010	0.19	4.627	2365.0	
	145.0	0.021	0.40	4.637	4502.8	
	220.0	0.031	0.59	4.646	6818.9	
	302.0	0.042	0.80	4.656	9340.9	
	386.0	0.052	0.98	4.665	11916.3	
· · · ·	477.0	0.063	1.19	4.674	14694.6	
	576.0	0.073	1.38	4.683	17710.4	
	648.0	0.084	1.59	4.693	19882.1	
	453.0	0.094	1.78	4.702	13872.3	Diagonal
	507.0	0.105	1.99	4.712	15493.0	Shears
	559.0	0.115	2.18	4.721	17049.1	at ~60°
	572,0	0.126	2.39	4.732	17408.4	and
	378.0	0,136	2.57	4.741	11481.9	~80°
0:05:34	325.0	0.147	2.78	4.751	9850.9	

Unconfined Compressive Strength, PSF = Shear Strength, PSF =

UNCONFINED COMPRESSIVE STRENGTH TEST (ASTM-D2166)

Project Name:	Sunshine Ca	nyon LFGTE Fa	acility	Project N	0.:	0148280000
Boring No.:	CH-01	Sample No.:	9	Depth:	44.0-44.5 Fee	ət
Soil Description:	Bedrock Cor	e: Dark Gray (2.	5Y, 4/1) S	Sandy Silt (ML)		
Date:	7/30/2010	**************************************	· · · · · · · · · · · · · · · · · · ·	By: L.T.	****	
Initial Diameter, in:	2.418	7	Wet Wei	ght of Sample, g)rs:	985.94
Initial Area, in ² :	4.592		Moisture	Content-		t
Initial Height, in:	5.922			Tare No.:		MC-30
Height-to-Diameter Ratio:	2.45			Wet Weig	ht&Tare, grs:	424.52
Type of Sample:	Undisturbed			Dry Weig	ht & Tare, grs:	384.59
Strain Rate, % / minute:	0.5			Tare Wei	ght, grs:	50.50
Note:				Moisture	Content, %:	12.0
Moisture content specimen			Wet Den	sity, pcf:		138.1
was obtained after test.			Dry Dens	sity, pcf:		123.4

Elapsed Time	Axial Load, Pounds	Strain Dial Reading, in	Total Strain, %	Corrected Area, in ²	Compressive Stress, PSF	Remarks
0:00:00	0.0	0.000	0.00	4.592	0.0	
	32.0	0.011	0.19	4.601	1001.6	
	62.0	0.021	0.35	4.608	1937.4	
	95.0	0.032	0.54	4.617	2963.0	
	135.0	0.042	0.71	4.625	4203.4	
	180.0	0.053	0.89	4.633	5594.1	
	302.0	0.074	1.25	4.650	9352.0	······································
	445.0	0.095	1.60	4.667	13730.8	
	590.0	0.116	1.96	4.684	18139.3	
	771.0	0.137	2.31	4.701	23618.3	Diagonal
	838.0	0.147	2.48	4.709	25626.4	Shear
	858.0	0.158	2,67	4.718	26188.0	at ~70°
	790.0	0,168	2.84	4.726	24070.7	and
	349.0	0.179	3.02	4.735	10613.4	Vertical
0:06:23	234.0	0.189	3.19	4.743	7103.8	Shear

13,094

PLASTICITY INDEX ASTM-D 4318

Ρ	roject	Name:	Sunshine Canyon I	_FGTE Facility		Project No.	р в	0148280000	
S	ample	No.:	1	Stockpile No.:	57	2		Date: 10/28-1	1/04/10
S	oil De	scription:	Dark Yellowish Bro	wn (10YR, 4/4) Clay	/ey Sand (S	C)	946912-00-0420-0420-0420-0420-0420-0420-0420	Tested by:	VC, LT
D	RYIN	G PAN No.:	30	SOAKING DISH	ł No.:	A-8			
				LIQUID	LIMIT (LL)				
			TARE No.:		C-46	C-72	C-33		
			NUMBER OF BLO	WS	18	20	25		
			WEIGHT OF WET	SOIL + TARE, gr.:	33.48	34.69	36.85	vlastis	
			WEIGHT OF DRY	SOIL + TARE, gr.:	29.39	30.45	32.32	weak.	
			WEIGHT OF TARE	E, gr.:	15.05	15.36	15.62	Magement P	
			MOISTURE CONT	ENT, %:	28.5	28.1	27.1		
							····		
		50							
		Energy and the second sec							
	:	45							
							1		
	(%)	40							
	lts								
	lfer	N ^{MD} to the term of t	1999 - 1997 -	1999 1997 1997 - 1997 - 1997 1997 1997 1					
	0 S	35					maan kaansi teramika and maan kaansi kaansi		
	e								
	istu	30					erenari annon anno anno		
	Mo								
		25							
	5			1997-1997 (1997)					
	ļ	20							
		20 10		15	20	2.5	3() 35	40
				Num	ber of Blows	5			
	ь		LIQUID LIMIT =	27					
				PLASTIC	LIMIT (PL)				
			TARE No .		C-24	C-68			
			WEIGHT OF WET	SOIL + TARE or	29 00	27 03			
			WEIGHT OF DRY	SOIL + TARE or	26.00	25.00			
			WEIGHT OF TARE	ar:	20.00 15 1 <i>1</i>	15 / 2			
			MOISTURE CONT	., y ENT %.	12.14	20.40			
				∟1№1, /0,	10.0	۷.3			
	`		PLASTIC LIMIT =	19					
			PLASTICITY INDE	X (PI) = LL - PL =		8			· · ·

PLASTICITY INDEX ASTM-D 4318

Project	Name:	Sunshine Canyon LFGTE Facility		Project No.:		0148280000	
Sample	No.:	2 Stockpile No		2		Date: 10/28-1	1/04/10
Soil De	scription:	Dark Olive Gray (5Y, 3/2) Sandy Lea	an Clay (CL)	******	*****	Tested by:	VC, LT
DRYIN	G PAN No.:	28 SOAKING DI	SH No.:	A-3			
		LIQUI	D LIMIT (LL)				
		TARE No.:	C-41	C-63	C-39		
		NUMBER OF BLOWS	16	24	26	and see	
		WEIGHT OF WET SOIL + TARE, gr	.: 31.46	34,39	34.77	Manua .	
		WEIGHT OF DRY SOIL + TARE, gr.	.: 27.19	29.80	30.14	1999	
		WEIGHT OF TARE, gr.:	14,93	15.66	15.66	ADDING	
		MOISTURE CONTENT, %:	34.8	32.5	32.0	2004A	
			······································			www.	
	50	ารแก่นระบบของกระบบของกระบบของกระบบของกระบบของกระบบกระบบกระบบกระบบกระบบกระบบกระบบกระบ	jungunganganganganan sunan	1/2010/10/2019/10/00/00/2010/2010/2010/2		Source and successive and	cammonaansa assasy
Contraction of A							
	45						
(%	********************						
s)	40						
ent							
on	35						
0 e							
stur	30						
Voi							
	~ ~						
	25						
	20						
	10	15	20	25	30) 35	40
		Nu	umber of Blows	S			
		PLAST	IC LIMIT (PL)				
		TARE No.;	C-75	C-21			
		WEIGHT OF WET SOIL + TARE. ar	.: 25.41	28.34			
		WEIGHT OF DRY SOIL + TARE. or.	.: 23.80	26.23			
		WEIGHT OF TARE, gr.:	15.58	15.64			

 MOISTURE CONTENT, %:
 19.6
 19.9

 PLASTIC LIMIT =
 20

 PLASTICITY INDEX (PI) = LL - PL =
 12
AMEC Geomatrix

PLASTICITY INDEX ASTM-D 4318

Project Name:			9:	Sunshine Canyon LFGTE Facility						Project No.:					0148280000				
Sar	nple	No.:		3		Sto	ckpil	e No.:	*****		1	THE OWNER OF THE OWN		494 6-1,	Date: 10/28-11/04/10				
Soil Description:			ion:	Olive Yello	w (5Y, 6	/8) Silty	/ San	d (SM	1)				Test	ed by	а Э	VC	LT		
DR	YINC	g pan	No.:	32		SO	AKIN	IG DIS	H No.:		A-	11				*****			
							L	IQUIE) Limit	' (LL)									
				TARE No.:					C	-35	C-	19	C-3	32					
				NUMBER	OF BLO	WS			here and the second	17	2	2	35	5					
				WEIGHT (OF WET	SOIL +	TAR	E, gr.:	3	8.56	37	.00	33.	67	•				
				WEIGHT C	F DRY	SOIL +	TAR	E, gr.:	3	4.29	33	.01	30.	32	,				
				WEIGHT (OF TARE	., gr.:		-	1	5.88	15	.63	15.	15					
				MOISTUR	E CONT	ENT, %	ó:		2	23.2	23	3.0	22	.1	•				
															·			<u></u>	
		40								angen og af ter state og af ter		Contraction of the second	1		anto ananteo queo				
	ہ (%											interior in the second s							
		35																	
			noningen bleining a beinen	**************************************					พระสาวมีระวงการเลยได้ พระสาวมีระวงการเกมส์										ĺ
		20					ļ												
	lts (50				l													
	fer											STRATE OF				-			
	ð	25												na la cara la c					
	ē								With Division of Contract of C										
	istu	20								aunes i				en la companya de la	nn facts en journe	ter le			
	Mo																		
		15																	
Ì											, <u>, , , , , , , , , , , , , , , , , , </u>								
		40		····														+	
		10	10		ert harmilahrimter ann	15	nenti un entre	ni n	. 20)	in and the second	25	h namana (a sayar shaqo	30	astonateisaan	^{dometranda} 35	ncerkannikanni i	- 40	
								Nur	nber of	Blows	S								
. —					AIT =	80000000 / MPA-Lawin	2	3	D1F5w0074								· · ·]
							PL	ASTI	C LIMI	Γ (PL)									
				TARE No.:					C	-36	C-	80							

WEIGHT OF DRY SOIL + TARE, gr.:	26.44	24.59	
MOISTURE CONTENT. %	20.1	20.5	eneral y
			ener:
PLASTIC LIMIT = 20	*		
PLASTICITY INDEX (PI) = LL - PL =		3	webs:

	Sample No.	Stockpile No.	Depth (Feet)	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Soil Classification
	1	2		27	19	8	SC
	2	2		32	20	12	CL
	3	1		23	20	3	SM
			-	-			
Ĺ	1					чтттинининалаган алан алан алан алан алан алан ал	
		omatrix		Project No.			
AMEC Geomatrix			0148280000				

(UBC 18-2 (1994)/ASTM-D 4829)

Project Name:	Sunshine Canyon LFGTE Facility		Project No.:	0148280000		
Sample No.:	C-1	Source:	Excavated Be	edrock Material		
Soil Description:	Dark G	ray (2.5Y, 4/1) S	andy Silt (ML)	*****		
			**************************************	Date:	2/16-2/18/2011	By: LT
	0111 4 710	N & F	i.			
WET DENSITY CAL	CULATIC)N	I RIAL 1	TRIAL 2	TRIAL 3	TRIAL 4
RING No.			1			
RING AND WET SOIL, gr.			597.82			HARD With Middle And Annal
WEIGHT OF RING, gr.			198.58		*****	2 5 5 5 5 5
WEIGHT OF WET SOIL, gr.			399.24			
WET DENSITY, PCF		а у у ^д ини и то у у то и у у то и до и до и и и на констранија и и и и и и и и и и и и и и и и и и	121.0	**************************************		
MOISTURE CALCU	LATION					
TARE No.			1		·····	Pol
WET SOIL AND TAP	₹E, gr.		407.09		9 A A A A A A A A A A A A A A A A A A A	
DRY SOIL AND TAF	RE, gr.	**************************************	376.36			
TARE WEIGHT, gr.	00000000000000000000000000000000000000		97.68	nami (1960) (1197) - 2000) (1970) - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970		
MOISTURE CONTE	NT, %	***************************************	11.0		1999-1999 (Martin Martin M 1999-1999 (Martin Martin Ma	**************************************
DRY DENSITY, PCI	- -		109.0		·····	
SATURATION DEG	REE (S _{me}	_{as}), % *	54.58			

EXPANSION INDEX (EI) CALCULATION

APPARATUS No.: 1 INITIAL SPECIMEN HEIGHT: 1.0000 inch

		HEIGHT		
		CHANGE, in.	DATE	TIME
INITIAL DIAL READING, in.	0.0500	0.0000	1/17/2011	11:24
PERIODIC DIAL READING, in.	0.0758	0.0258	1/18/2011	13:24
			20000020000000000000000000000000000000	
			"APPendix-May a Condensidade Colonial de Condensidade da Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de C	
Laukeam			**************************************	
		00-01 (2010) Minesteries of the Province of th		
Vibilities-			***********	
FINAL DIAL READING, in.	0.0758	0.0258	1/18/2011	15:36

El _{meas}	≂	26	**
Elso	=	28	***

FINAL MOISTURE CONTENT, DRY DENSITY AND SATURATION DEGREE

TARE No.		MOISTURE CONTENT, %	21.7
WET SOIL AND TARE, gr.	427.13	FINAL VOLUME, cc.	211.24
DRY SOIL AND TARE, gr.	351.07	FINAL DRY DENSITY, PCF.	106.3
TARE WEIGHT, gr.	0.00	FINAL SATURATION, %	99.9

* SATURATION % = (Moist. Content in % x G_s X Dry Density in PCF) / ((G_s X 62.4)-Dry Density in PCF)

** El_{meas} (Measured Expansion Index) = (Height Change/Initial Height) X 1000

*** EI₅₀ (Estimated Expansion Index at 50% Saturation) = EI_{meas}-((50-S_{meas})x((65+EI_{meas})/(220-S_{meas})))

Gs = 2.7 unless it is known to be less than 2.6 or more than 2.8

(UBC 18-2 (1994)/ASTM-D 4829)

Project Name:	Sunshi	ne Canyon LFGT	E Facility	Project No.:	0148280000		
Sample No.:	C-2	Source:	Stockpile So	uth of Gas to Energy	h of Gas to Energy Site		
Soil Description:	Very D	ark Gray (2.5Y, 3	/1) Sandy Lean C	lay (CL)			
	THE STOCK STREET, STOCK		anato (Date:	3/09-3/10/2011	By: LT	
WET DENSITY CAL	CULATIC	N	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL 4	
RING No.			1		a manifest til förste sing signifikanse signifikanse som menne som ander som en sind som av sind for 150	Vetility of a databased and development of the community of the communi	
RING AND WET SO	IL, gr.		582.31			anna an ann an ann an ann ann ann ann a	
WEIGHT OF RING,	gr.		198.58				
WEIGHT OF WET S	OIL, gr.		383.73				
WET DENSITY, PCF	-	an a	116.3	999.9 (999.9990) (99.99) (99.9			
MOISTURE CALCU	LATION						
TARE No.			3) }		
WET SOIL AND TAF	RE, gr.		401.89				
DRY SOIL AND TAR	E, gr.		373.38		**************************************		
TARE WEIGHT, gr.		21 M 1992 A 1997 A 1999 A 1994 A 1	98.95				
MOISTURE CONTEN	NT, %	PPPPA-A-Stable A-Valletin With the Solution State Laboration	10.4	nin (een men performent) – Although in in de marke keinen men angemennen de angemennen gewonnen.	**************************************		
DRY DENSITY, PCF	•		105.4				
SATURATION DEGI	REE (S _{mea}	as), % *	46.85				

EXPANSION INDEX (EI) CALCULATION

APPARATUS No.: 1 INITIAL SPECIMEN HEIGHT: 1.0000 inch

		HEIGHT		
		CHANGE, in.	DATE	TIME
INITIAL DIAL READING, in.	0.0500	0.0000	3/9/2011	16:33
PERIODIC DIAL READING, in.	0.0925	0.0425	3/10/2011	10:23
			749499494949494949494949494949494949494	
				2000.00700.00712000000000000000000000000
				ennennen er en
				999-99988889999988888999988888999999999

FINAL DIAL READING, in.	0.0925	0.0425	3/10/2011	14:20

El _{meas}	=	43	**
EI ₅₀		41	***

FINAL MOISTURE CONTENT, DRY DENSITY AND SATURATION DEGREE

TARE No.		MOISTURE CONTENT, %	24,6
WET SOIL AND TARE, gr.	426.95	FINAL VOLUME, cc.	214.68
DRY SOIL AND TARE, gr.	342.70	FINAL DRY DENSITY, PCF.	101.1
TARE WEIGHT, gr.	0.00	FINAL SATURATION, %	99.6

* SATURATION % = (Moist. Content in % x G_s X Dry Density in PCF) / ((G_s X 62.4)-Dry Density in PCF)

** El_{meas} (Measured Expansion Index) = (Height Change/Initial Height) X 1000

*** EI₅₀ (Estimated Expansion Index at 50% Saturation) = EI_{meas}-((50-S_{meas})x((65+EI_{meas})/(220-S_{meas})))

Gs = 2.7 unless it is known to be less than 2.6 or more than 2.8

(UBC 18-2 (1994)/ASTM-D 4829)

Project Name:	Sunsh	ine Canyon LFGTE	Facility	Project No.:	0148280000	
Sample No.:	1	Stockpile No.:	2	Depth:	NT-70-70-70-70-70-70-70-70-70-70-70-70-70-	
Soil Description:	Dark Y	′ellowish Brown (10`	YR, 4/4) Clayey	Sand (SC)	«инститите на полнатите на полна	
		• • • • • • • • • • • • • • • • • • •		Date:	11/08-11/09/10	By: LT
	CHI ATH	3 6 1	TTT LAL 4			
WEI DENOITT CAL	LUULAII	JN	I RIAL 1	I RIAL 2	I RIAL 3	TRIAL 4
RING No.			1			
RING AND WET SC	IL, gr.		591.42			
WEIGHT OF RING, gr.			198.58	An Andreas I frame a frame of the second		
WEIGHT OF WET S	OIL, gr.		392.84			
WET DENSITY, PCI		na n	119.1		000000000 0000000000000000000000000000	
MOISTURE CALCU	LATION		www.winaterateraterateraterateraterateraterater			
TARE No.		********	17			
WET SOIL AND TAP	RE, gr.	and a final first of a set of the	403.82	2014 7 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	00-081/01/01 (hamanihannya saanan mammaa kena kapita mataoo pantaoo oo	
DRY SOIL AND TAF	₹E, gr.		373.75	and all the second s	0070000 700000000000000000000000000000	
TARE WEIGHT, gr.		1999 (and 1999) also have been as a many of the function of th	99.59			
MOISTURE CONTE	NT, %	Harrowski, fri de Antonio de Antonio de Antonio de Antonio de Antonio de Antonio antoneo a Antonio y de Antonio	11.0	An an a de la companya de la company An an a de la companya		
DRY DENSITY, PCI	F.		107.3			
SATURATION DEG	REE (Sm		51.97			

EXPANSION INDEX (EI) CALCULATION

APPARATUS No.: 1 INITIAL SPECIMEN HEIGHT: 1.0000 inch

		HEIGHT		
		CHANGE, in.	DATE	TIME
INITIAL DIAL READING, in.	0.0500	0.0000	11/8/2010	14:35
PERIODIC DIAL READING, in.	0.0737	0.0237	11/9/2010	11:49
				C7.XV7979323638383848884848999999999999999999999999
+******			**************************************	
14-5		Ingue augustantin and a filler and a		Technolasulased Communication and an approximate property of the property of the base
FINAL DIAL READING, in.	0.0737	0.0237	11/9/2010	13:25

El _{meas}	22	24	**
El ₅₀		25	***

FINAL MOISTURE CONTENT, DRY DENSITY AND SATURATION DEGREE

TARE No.	NA AN A	MOISTURE CONTENT, %	22.5
WET SOIL AND TARE, gr.	432.09	FINAL VOLUME, cc.	210.81
DRY SOIL AND TARE, gr.	352.79	FINAL DRY DENSITY, PCF.	104.8
TARE WEIGHT, gr.	0.00	FINAL SATURATION, %	100.0

* SATURATION % = (Moist. Content in % x G_s X Dry Density in PCF) / ((G_s X 62.4)-Dry Density in PCF)

Gs = 2.7 unless it is known to be less than 2.6 or more than 2.8

^{**} EI_{meas} (Measured Expansion Index) = (Height Change/Initial Height) X 1000

^{***} EI_{50} (Estimated Expansion Index at 50% Saturation) = EI_{meas} -((50- S_{meas})x((65+ EI_{meas})/(220- S_{meas})))

(UBC 18-2 (1994)/ASTM-D 4829)

Project Name:	Sunshir	e Canyon LFGTE	Facility	Project No.:	0148280000	
Sample No.:	2	Stockpile No.:	2	Depth:		
Soil Description:	Dark Ol	ive Gray (5Y, 3/2)	Sandy Lean Cla	y (CL)		
······································			******	Date:	11/08-11/09/10	By: LT
WET DENSITY CA		AI				
	LCOLAID			I KIAL Z	I KIAL 3	I RIAL 4
RING No.			2		2. 	
RING AND WET SO	OIL, gr.		591.36			
WEIGHT OF RING	, gr.		199.55		garangan yana mpana muna yana muna yana kan kana da Anto Santa Anto Santa Anto Santa Anto Santa Anto Santa Anto	
WEIGHT OF WET	SOIL, gr.	n ya yana ana amana ya yana ya ya katana kata katana katana katana katana katana katana katana katana katana k	391.81			
WET DENSITY, PC	CF,	an a	118.8			H ^{an}
MOISTURE CALCI	ULATION		**************************************			
TARE No.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2			1. 2
WET SOIL AND TA	RE, gr.		408.53		000.00 million and a second and a	999 ¹ Terrete de 1998 - 19 a 2010 - moi de 19 de casa de la 2014 de se san glasses en acomo, y se supe
DRY SOIL AND TA	RE, gr.		378.68		**************************************	
TARE WEIGHT, gr.	n an		96.82			200 C - 1111 (1) (1) (1) (1) (1) (1) (1) (1) (1
MOISTURE CONTENT, %			10.6			
DRY DENSITY, PC	CF.		107.4			
SATURATION DEC	GREE (S _{mea}	s), % *	50.29		9.44614.4444.4544.4544.4544.4544.4544.454	

EXPANSION INDEX (EI) CALCULATION

APPARATUS No.: 2 INITIAL SPECIMEN HEIGHT: 1.0000 inch

		HEIGHT		
		CHANGE, in.	DATE	TIME
INITIAL DIAL READING, in.	0.0500	0.0000	11/8/2010	15:20
PERIODIC DIAL READING, in.	0.0893	0.0393	11/9/2010	11:49
				na ya kutoka da kutok

	}			
				H anno 1999 - Anna ann an Anna ann ann ann ann ann an
				na a na mandan ana ana ana ana ana ana ana ana an
FINAL DIAL READING, in.	0.0893	0.0393	11/9/2010	13:25

El_{meas} = 39 ** El₅₀ = 39 ***

FINAL MOISTURE CONTENT, DRY DENSITY AND SATURATION DEGREE

TARE No.		MOISTURE CONTENT, %	23.3
WET SOIL AND TARE, gr.	433.38	FINAL VOLUME, cc.	214.02
DRY SOIL AND TARE, gr.	351.41	FINAL DRY DENSITY, PCF.	103.3
TARE WEIGHT, gr.	0.00	FINAL SATURATION, %	99.9

* SATURATION % = (Moist. Content in % x G_s X Dry Density in PCF) / ((G_s X 62.4)-Dry Density in PCF)

*** EI₅₀ (Estimated Expansion Index at 50% Saturation) = EI_{meas}-((50-S_{meas})x((65+EI_{meas})/(220-S_{meas})))

Gs = 2.7 unless it is known to be less than 2.6 or more than 2.8

^{**} EI_{meas} (Measured Expansion Index) = (Height Change/Initial Height) X 1000

(UBC 18-2 (1994)/ASTM-D 4829)

Project Name:	Sunshi	ne Canyon LFGTE	Facility	Project No.:	0148280000			
Sample No.:	3	Stockpile No.:	1	Depth:				
Soil Description:	Olive Y	ellow (5Y, 6/8) Silty	Sand (SM)		***********			
				Date:	11/08-11/09/10	By: LT		
WET DENSITY CA	LCULATIC	N	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL 4		
RING No.		449 - 04 - 04 - 14 - 14 - 14 - 14 - 14 - 14	3		0000000000 editmismenterioliticitas nuovas examplementerio program y acquer program y			
RING AND WET SO	DIL, gr.	ar managaman ya mara ya mana ku anga nga nga nga nga nga nga nga nga ng	607.06		1996-1996 (Anno 1997) (Anno 1977) (Anno 1977) (Anno 19			
WEIGHT OF RING,	gr.		199.54			1445 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 -		
WEIGHT OF WET	SOIL, gr.		407.52			N - Carrow of the second s		
WET DENSITY, PC	;F.		123.5	dad (1997) provide the second of Pressel (1999) and the second of the second second second second second second	una una mente la companya da companya d			
MOISTURE CALCU	JLATION							
TARE No.			7		A			
WET SOIL AND TA	RE, gr.		407.98		000 14 9 10000 14 10 10 10 10 10 10 10 10 10 10 10 10 10			
DRY SOIL AND TA	RE, gr.		378.81					
TARE WEIGHT, gr.	**************************************		90.28	hapanan mana da kali daga da kanan kana	************	*****		
MOISTURE CONTENT, %			10.1	efiledeninner fil vielelen normang og melje, geve er og en opperenter delitiet over diener	interferindel and the last management of the second second second second second second second second second sec	8 M - 1999 - 199		
DRY DENSITY, PCF.			112.2			1997		
SATURATION DEGREE (Smeas), % *			54.42					

EXPANSION INDEX (EI) CALCULATION

APPARATUS No.: 3 INITIAL SPECIMEN HEIGHT: 1.0000 inch

	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	HEIGHT		
		CHANGE, in.	DATE	TIME
INITIAL DIAL READING, in.	0.0500	0.0000	11/8/2010	15:45
PERIODIC DIAL READING, in.	0.0501	0.0001	11/9/2010	11:50
			24000000000000000000000000000000000000	
Level as o				
			Por an annual second and a second	
				A series a difference concernence of the series of the first operating of the series of t
FINAL DIAL READING, in.	0.0501	0.0001	11/9/2010	13:25

 $EI_{meas} = 0 ** EI_{50} = 2 ***$

FINAL MOISTURE CONTENT, DRY DENSITY AND SATURATION DEGREE

TARE No.		MOISTURE CONTENT, %	18.6
WET SOIL AND TARE, gr.	434.16	FINAL VOLUME, cc.	205.95
DRY SOIL AND TARE, gr.	366.13	FINAL DRY DENSITY, PCF.	112.2
TARE WEIGHT, gr.	0.00	FINAL SATURATION, %	100.0

* SATURATION % = (Moist. Content in % x G_s X Dry Density in PCF) / ((G_s X 62.4)-Dry Density in PCF)

*** EI_{50} (Estimated Expansion Index at 50% Saturation) = EI_{meas} -((50- S_{meas})x((65+ EI_{meas})/(220- S_{meas})))

Gs = 2.7 unless it is known to be less than 2.6 or more than 2.8

^{**} EI_{meas} (Measured Expansion Index) = (Height Change/Initial Height) X 1000

0 1 CONSOLIDATION (PERCENT) 2 3 4 0.1 1 10 100 NORMAL PRESSURE (KIPs PER SQUARE FOOT) At Field Moisture Inundated Sample No.: 109.4 (1) Remold Dry Density (PCF): 1 2 13.5 (2) Stockpile No.: Remold Moisture Content (%): Sample Condition: Remolded Soil Type: SC ⁽¹⁾ 90% maximum dry density (2) 2% over optimum moisture

AMEC Geomatrix CONSOLIDATION VS. PRESSURE CURVE SUNSHINE CANYON LFGTE FACILITY Sylmar, California Project No. 0148280000

Project Name: Sunshine Canyon LFGTE Facility Project No.:					o.:	0148280	000				
Sample I	Vo.:	1	Stockpile	No.:	2	Depth:			Date:	11/01-11/	/04/2010
Soil Dese	cription:		Dark Yell	owish Bro	wn (10YR,	4/4) Clay	ey Sand (S	SC)	Tested B	y:	LT
								Refere		After	
								<u>Deloie</u>		Aller	
· .								Test	1. 14		
Somelar	Nomotor i		0.440	hA/a:-h4 -	51N/-+ 0-11	0 m:			Load 1	Load 2	Load 3
Nample L	haneter, n	//. 	2.410	vveignt o	r wet Soll a	s Ring, gr		580.18			
Normar S	densed O		1,3,5	vveight o	r Ring, gr:	000000-0449-049-049-049-049-049-049-049-		132.10			
Over-bur	aenea @,	pct:	0.000	Height of	Sample, ir	1:		3.00	0.9923	0.9802	0.9710
Snear Ra	te, in/min:		0.005	Moisture	l are No.:						****
Natural N	loisture(x)	•			Wet Weig	ht and Tai	re, gr:	-	151.86	152.70	151.03
Saturated	(x):	inter and a second second	X		Dry Weig	ht and Tar	e, gr:	Remolded	127.05	128.44	127.62
lintact(x);					Tare Weig	ght, gr:			0.00	0.00	0.00
Remolde	d to 109.4	pcf (90%			Moisture	Content, %	0.	13.5	19.5	18.9	18.3
maximum	n dry densi	ity) at 13.5	%	Wet Den	sity, pcf:			124.1	131.7	132.6	133.3
moisture	content (2	% over opt	timum)	Dry Dens	sity, pcf:			109.4	110.2	111.6	112.6
				Saturatio	n %:	S.G. = 2.70	(Assumed)	67.3	99.6	99.8	99,7
	Load 1 (K	SF): 1.034			Load 2 (KS	SF): 3.000			Load 3 (K	SF): 5.000)
Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear
Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress
tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)
0.0098	0.406	0.0028	0.431	0.0098	0.406	0.0074	1.043	0.0098	0.406	0.0122	1.680
0.0199	0.823	0.0044	0.644	0.0199	0.823	0.0103	1.428	0.0199	0.823	0.0150	2.052
0.0300	1.241	0.0052	0.750	0.0300	1.241	0.0117	1.614	0.0300	1.241	0.0167	2.278
0.0401	1.659	0.0054	0.777	0.0401	1.659	0.0125	1.720	0.0401	1.659	0.0180	2.451
0.0502	2.077	0.0056	0.803	0.0502	2.077	0.0131	1.800	0.0502	2.077	0.0191	2.597
0.0603	2.495	0.0057	0.817	0.0603	2.495	0.0133	1.826	0.0603	2.495	0.0201	2.730
0.0704	2.912	0.0058	0.830	0.0704	2.912	0.0136	1.866	0.0704	2.912	0.0211	2.863
0.0805	3.330	0.0058	0.830	0.0805	3.330	0.0137	1.880	0.0805	3.330	0.0219	2 969
0.0905	3.748	0.0057	0.817	0.0905	3.748	0.0138	1.893	0.0905	3.748	0.0227	3 075
0.1006	4.166	0.0056	0.803	0.1006	4.166	0.0139	1.906	0.1006	4.166	0.0233	3 155
0.1208	5.002	0.0055	0.790	0.1208	5.002	0.0140	1.919	0.1208	5.002	0.0244	3 301
0.1410	5.837	0.0054	0.777	0.1410	5.837	0.0140	1 9 1 9	0.1410	5 837	0.0251	3 394
0.1612	6.673	0.0054	0.777	0.1612	6.673	0.0140	1 919	0.1612	6 673	0.0255	3 / / 7
0.1814	7.509	0.0054	0.777	0.1814	7 509	0.0140	1 919	0.1814	7 509	0.0257	3.471
0.2016	8.344	0.0053	0.764	0.2016	8 344	0.0140	1.010	0.1014	8344	0.0207	2 / 97
0 2521	10 433	0.0053	0 764	0.2521	10 433	0.01/6	1 000	0.2010	10,044	0.0200	3.407
0.3025	12 523	0.0054	0 777	0.2021	12 522	0.0152	2 070	0.2021	10.400	0.0208	3.500
0.3530	14 612	0.0055	0.700	0.0020	1/ 612	0.0152	2.073	0.0020	14,020	0.0200	0.014
0.0000	16 701	0.0000	0.130	0.000	16 704	0.0104	2.100	0.3030	14.012	0.0258	3.487
0.4033	10.001	0.0000	0.000	0.4030	10.701	0.0150	2.132	0.4035	10.701	0.0257	3.4/4
May Sha	ar Strees	v.0000	0,000	0.4020	19.902	0.0100	2.109	0.4828	19.982	0.0255	3.44/
Shoar De	ai Juess,	Nol.	0.830		00000 - CCCC201113 C111240130001191324 (+66m)	504-e- c-to - us z so danimi su	2.159			x15111010000000000000000000000000000000	3.514
Shear Deflt.@Max Stress,%.: 3							20.0				12.5

Project N	lame:	Sunshine	Canyon L	FGTE Fa	cility	Project N	0.:	0148280000			
Sample I	No.:	2	Stockpile	No.:	2	Depth:		Date: 11/01-11			/05/2010
Soil Des	cription:		Dark Oliv	e Gray (5`	Y, 3/2) Sar	ndy Lean (Clay (CL)		Tested B	y:	LT
								Before		After	
								Test		Test	
									Load 1	Load 2	Load 3
Sample [Diameter, i	n:	2.416	Weight o	f Wet Soil a	& Ring, gr		576.80		10698	
Normal S	Stress, ksf:		1,3,5	Weight o	f Ring, gr:		****	128.60			******
Over-bur	dened @,	pcf:		Height of	Sample, ir	ו:		3.00	0.9920	0.9796	0.9673
Shear Ra	ate, in/min:	******	0.005	Moisture	Tare No.:	***************************************		***			
Natural N	/loisture(x)	* -			Wet Weig	ht and Ta	re, gr:		155.54	151.35	150.52
Saturated	d(x):	,	Х		Dry Weig	ht and Tar	e, gr:	Remolded	129.85	127.07	127.13
Intact(x):					Tare Wei	ght, gr:			0.00	0.00	0.00
Remolde	d to 108.9) pcf (90%			Moisture	Content, %	o:	14.0	19.8	19.1	18.4
maximun	n dry densi	ity) at 14.0	%	Wet Den	sity, pcf:			124.1	131.5	132.4	133.3
moisture	content (2	% over op	timum)	Dry Dens	ity, pcf:			108.9	109.8	111.2	112.6
				Saturatio	n %:	S.G. = 2.70	(Assumed)	69.0	99.8	99.9	99.9
	Load 1 (K	SF): 1.034			Load 2 (K	SF): 3.000	}		Load 3 (K	SF): 5.000)
Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear
Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress
tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)
0.0098	0.406	0.0043	0.631	0.0098	0.406	0.0046	0.671	0.0098	0.406	0.0062	0.883
0.0199	0.823	0.0048	0.697	0.0199	0.823	0.0097	1.348	0.0199	0.823	0.0147	2.012
0.0300	1.241	0.0049	0.710	0.0300	1.241	0.0112	1.547	0.0300	1.241	0.0173	2.358
0.0401	1.659	0.0049	0.710	0.0401	1.659	0.0120	1.654	0.0401	1.659	0.0188	2.557
0.0502	2.077	0.0050	0.724	0.0502	2.077	0.0123	1.694	0.0502	2.077	0.0199	2.703
0.0603	2.495	0.0051	0.737	0.0603	2.495	0.0127	1.747	0.0603	2.495	0.0206	2.796
0.0704	2.912	0.0051	0.737	0.0704	2.912	0.0130	1.787	0.0704	2.912	0.0212	2.876
0.0805	3.330	0.0051	0.737	0.0805	3.330	0.0132	1.813	0.0805	3.330	0.0217	2.942
0.0905	3.748	0.0052	0.750	0.0905	3.748	0.0135	1.853	0.0905	3.748	0.0221	2.996
0.1006	4.166	0.0052	0.750	0.1006	4.166	0.0138	1.893	0.1006	4.166	0.0225	3.049
0.1208	5.002	0.0052	0.750	0.1208	5.002	0.0140	1.919	0.1208	5.002	0.0229	3.102
0.1410	5.837	0.0052	0.750	0.1410	5.837	0.0144	1.973	0.1410	5.837	0.0231	3.128
0.1612	6.673	0.0052	0.750	0.1612	6.673	0.0145	1.986	0.1612	6.673	0.0234	3.168
0.1814	7.509	0.0052	0.750	0.1814	7.509	0.0146	1.999	0.1814	7.509	0.0235	3.182
0.2016	8.344	0.0052	0.750	0.2016	8.344	0.0147	2.012	0.2016	8.344	0.0236	3.195
0.2521	10.433	0.0053	0.764	0.2521	10.433	0.0147	2.012	0.2521	10.433	0.0248	3.354
0.3025	12.523	0.0054	0.777	0.3025	12.523	0.0148	2.026	0.3025	12.523	0.0256	3.461
0.3530	14.612	0.0055	0.790	0.3530	14.612	0.0148	2.026	0.3530	14.612	0.0262	3.540
0.4035	16.701	0.0056	0.803	0.4035	16.701	0.0148	2.026	0.4035	16.701	0.0263	3.554
0.4828	19.982	0.0057	0.817	0.4828	19.982	0.0148	2.026	0.4828	19.982	0.0263	3.554
Max. She	ear Stress,	ksf:	0.817				2.026				3.554
Shear De	eflt.@Max \$	Stress,%.:	20.0				20.0		20.0		

Project Name: Sunshine Canyon LFGTE Facility Project No.: 0148280000											
Sample I	No.:	3	Stockpile	No.:	1	Depth:		999911109994 II IIIIIIIIIAAALEELIILA	Date:	11/01-11	/02/2010
Soil Dese	cription:		Olive Yel	low (5Y, 6	i/8) Silty Sa	and (SM)			Tested B	y:	LT
								Poforo		Attar	
								Teat		<u>Aiter</u>	
								<u>16St</u>	1 1 - 1	<u>1 est</u>	1
Somolo [Viamator i	<u>ه.</u>	2416	Maighta	EMILE CLU			F70 00	<u>Load 1</u>		Load 3
Normal S	troce kot	[].	4.25	Weight o		s King, gr	-	576.38			
Over hur	donad @		1,3,5	vveignt o	r Ring, gr:	-		130.43			
Chaor Do	ueneu @,	per:	0.005	Height of	Sample, Ir	3:		3.00	0.9958	0.9885	0.9809
Shear Re			0.005	Noisture	are No.:	1 4 2 444		007428-07			
	loisture(x)	•			wet weig	ht and 1a	re, gr:		155,86	153.36	153.37
Saturated	J(X):		X		Dry Weigi	nt and 1 ar	e, gr:	Remolded	130.44	128.76	129.25
Intact(x):	11. 100 0				l are wei	ght, gr:			0.00	0.00	0.00
	a to 109.8	s pct (90%	~		Moisture	Content, %	<u>6:</u>	12.5	19.5	19.1	18.7
maximum	n dry densi	ity) at 12.5	%	Wet Den	sity, pcf:			123.5	131.8	132.3	132.8
moisture	content (2	% over opt	timum)	Dry Dens	sity, pcf:			109.8	110.3	111.1	111.9
				Saturatio	n %:	S.G. = 2.70	(Assumed)	63.1	99.5	99.7	99.6
	Load 1 (K	SF): 1.034		Load 2 (KSF): 3.000			Load 3 (KSF): 5.000)	
Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear
Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress
tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)
0.0098	0.406	0.0025	0.392	0.0098	0.406	0.0070	0.989	0.0098	0.406	0.0095	1.322
0.0199	0.823	0.0033	0.498	0.0199	0.823	0.0115	1.587	0.0199	0.823	0.0141	1.933
0.0300	1.241	0.0038	0.564	0.0300	1.241	0.0135	1.853	0.0300	1.241	0.0167	2.278
0.0401	1.659	0.0039	0.578	0.0401	1.659	0.0146	1.999	0.0401	1.659	0.0185	2.517
0.0502	2.077	0.0039	0.578	0.0502	2.077	0.0150	2.052	0.0502	2.077	0.0196	2.663
0.0603	2.495	0.0040	0.591	0.0603	2.495	0.0151	2.066	0.0603	2.495	0.0207	2.810
0.0704	2.912	0.0041	0.604	0.0704	2.912	0.0152	2.079	0.0704	2.912	0.0214	2.903
0.0805	3.330	0.0041	0.604	0.0805	3.330	0.0152	2.079	0.0805	3.330	0.0221	2.996
0.0905	3.748	0.0042	0.617	0.0905	3.748	0.0152	2.079	0.0905	3.748	0.0227	3.075
0.1006	4.166	0.0042	0.617	0.1006	4.166	0.0152	2.079	0.1006	4.166	0.0228	3.089
0.1208	5.002	0.0043	0.631	0.1208	5.002	0.0154	2.105	0.1208	5.002	0.0232	3.142
0.1410	5.837	0.0044	0.644	0.1410	5.837	0.0156	2.132	0.1410	5.837	0.0235	3.182
0.1612	6.673	0.0044	0.644	0.1612	6.673	0.0157	2.145	0.1612	6.673	0.0235	3.182
0.1814	7.509	0.0044	0.644	0.1814	7.509	0.0157	2,145	0.1814	7,509	0.0235	3.182
0.2016	8.344	0.0045	0.657	0.2016	8.344	0.0157	2.145	0.2016	8.344	0.0235	3.182
0.2521	10.433	0.0045	0.657	0.2521	10.433	0.0157	2.145	0.2521	10.433	0.0240	3.248
0.3025	12.523	0.0045	0.657	0.3025	12.523	0.0157	2.145	0.3025	12.523	0.0245	3.314
0.3530	14.612	0.0046	0.671	0.3530	14.612	0.0158	2.159	0.3530	14.612	0.0254	3.434
0.4035	16.701	0.0047	0.684	0.4035	16.701	0.0159	2.172	0.4035	16,701	0.0265	3 580
0.4828	19.982	0.0049	0.710	0.4828	19.982	0.0159	2.172	0.4828	19.982	0.0273	3.686
Max. She	ar Stress.	ksf:	0.710				2 172			5.0210	3 686
Shear De	flt.@Max \$	Stress.%.:	20.0		1.41111190119011111111111111111111111111	AF 000 THE OLD THE POINT OF THE CONTRACT OF THE CONTRACT.	20.0	00000000000000000000000000000000000000	~ 7	Additional Andore in the property of the prope	20.0
		,					-0.0				A

Project Name: Sunshine Canyon LFGTE Facility Project No.: 0148280000											
Sample	No.:	C-1	Source:	Excavated Bedrock Material				Date: 2/16-2/17/		//2011	
Soil Des	cription:		Dark Gra	y (2.5Y, 4/1) Sandy Silt (ML)				****	Tested B	y:	LT
								Before		After	
								Test		Test	
									Load 1	Load 2	Load 3
Sample [Diameter, i	in:	2.416	Weight o	f Wet Soil	& Ring, gr:		567.97			
Normal S	Stress, ksf:		1,3,5	Weight o	f Ring, gr:		1994))+ E/h0///	131.05		*****	
Over-bur	dened @,	pcf:		Height of	Sample, ii	n:		3.00	0.9944	0.9719	0.9683
Shear Ra	ate, in/min:		0.005	Moisture	Tare No.:						
Natural N	Aoisture(x)	:			Wet Weig	ht and Tai	re, gr:		152.87	149.52	151.28
Saturated	d(x):		Х		Dry Weig	ht and Tar	e, gr:	Remolded	126.49	125.05	126.72
Intact(x):					Tare Weig	ght, gr:			0.00	0.00	0.00
Remolde	d to 107.1	l pcf (90%			Moisture	Content, %	6:	13.0	20.9	19.6	19.4
maximun	n dry dens	ity) at 13.0	%	Wet Den	sity, pcf:			121.0	130.2	131.8	132.0
moisture	content (2	% over op	timum)	Dry Dens	sity, pcf:			107.1	107.7	110.2	110.6
				Saturatio	n %:	S.G. = 2.70	(Assumed)	61.2	99.7	99.8	99.9
	Load 1 (K	SF): 1.034		Load 2 (KSF): 3.000				Load 3 (KSF): 5.000			
Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear
Deflec-	Displace	Ring	Stress	Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress
tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)
0.0098	0.406	0.0040	0.591	0.0098	0.406	0.0079	1.109	0.0098	0.406	0.0055	0.790
0.0199	0.823	0.0050	0.724	0.0199	0.823	0.0105	1.454	0.0199	0.823	0.0121	1.667
0.0300	1.241	0.0054	0.777	0.0300	1.241	0.0117	1.614	0.0300	1.241	0.0152	2.079
0.0401	1.659	0.0055	0.790	0.0401	1.659	0.0126	1.733	0.0401	1.659	0.0168	2.291
0.0502	2.077	0.0055	0.790	0.0502	2.077	0.0132	1.813	0.0502	2.077	0.0179	2.438
0.0603	2.495	0.0055	0.790	0.0603	2.495	0.0138	1.893	0.0603	2.495	0.0188	2.557
0.0704	2.912	0.0055	0.790	0.0704	2.912	0.0141	1.933	0.0704	2.912	0.0197	2.677
0.0805	3.330	0.0055	0.790	0.0805	3.330	0.0144	1.973	0.0805	3.330	0.0204	2.770
0.0905	3.748	0.0055	0.790	0.0905	3.748	0.0147	2.012	0.0905	3.748	0.0210	2.849
0.1006	4.166	0.0055	0.790	0.1006	4.166	0.0149	2.039	0.1006	4.166	0.0214	2.903
0.1208	5.002	0.0055	0.790	0.1208	5.002	0.0153	2.092	0.1208	5.002	0.0223	3.022
0.1410	5.837	0.0055	0.790	0.1410	5.837	0.0154	2.105	0.1410	5.837	0.0232	3.142
0.1612	6.673	0.0055	0.790	0.1612	6.673	0.0155	2.119	0.1612	6.673	0.0238	3.221
0.1814	7.509	0.0055	0.790	0.1814	7.509	0.0156	2.132	0.1814	7.509	0.0243	3.288
0.2016	8.344	0.0055	0.790	0.2016	8.344	0.0157	2.145	0.2016	8.344	0.0243	3.288
0.2521	10.433	0.0055	0.790	0.2521	10.433	0.0158	2.159	0.2521	10.433	0.0243	3.288
0.3025	12.523	0.0056	0.803	0.3025	12.523	0.0161	2.198	0.3025	12.523	0.0244	3.301
0.3530	14.612	0.0057	0.817	0.3530	14.612	0.0163	2.225	0.3530	14.612	0.0250	3.381
0.4035	16.701	0.0058	0.830	0.4035	16.701	0.0164	2.238	0.4035	16.701	0.0254	3.434
0.4828	19.982	0.0060	0.857	0.4828	19.982	0.0165	2.252	0.4828	19.982	0.0259	3.500
Max. She	ar Stress,	Kst:	0.857				2.252	*****			3.500
Shear De	tit.@Max :	Stress,%.:	20.0				20.0				20.0

Project N	roject Name: Sunshine Canyon LFGTE Facility Project No.: 0148280000										
Sample I	No.:	C-2	Source:	Stockpile South of Gas to End				ergy Site	Date: 3/10-3/14/2011		/2011
Soil Des	cription:		Very Darl	k Gray (2.	5Y, 3/1) Sa	andy Lean	Clay (CL)		Tested B	y:	LT
								Refore		Aftor	
								Test		Teet	
								1631	Load 1	1031	[oad 3
Sample [Diameter, i	n:	2.416	Weight o	f Wet Soil a	& Rina, ar		570 74		<u></u>	
Normal S	Stress, ksf:	<u></u>	0.5,1.3	Weight o	f Rina, ar:	3, 3,		127.91			
Over-bur	dened @,	pcf:	,.,.	Height of	Sample, ir	ን:		3.00	0.9960	0.9924	0.9781
Shear Ra	ate, in/min:		0.005	Moisture-	Tare No.:	974 - III (III))))))))					
Natural M	loisture(x)	•			Wet Weig	ht and Tai	re, gr:		152.93	153.16	151.09
Saturated	d(x):		X		Dry Weig	ht and Tar	e, gr:	Remolded	125.90	126.32	125.45
Intact(x):					Tare Weig	ght, gr:			0.00	0.00	0.00
Remolde	d to 106.2	2 pcf (90%			Moisture	Content, %	6:	15.5	21.5	21.2	20.4
maximun	n dry dens	ity) at 15.5	%	Wet Den	sity, pcf:			122.7	129.5	129.8	130.8
moisture	content (2	% over op	timum)	Dry Dens	ity, pcf:	****	and an	106.2	106.6	107.0	108.6
				Saturatio	n %:	S.G. = 2.70	(Assumed)	71.3	99.8	99.7	99.9
	Load 1 (K	SF): 0.500			Load 2 (K	SF): 1.034		Load 3 (KSF): 3.000			
Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear	Shear	Lateral	Load	Shear
Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress	Deflec-	Displace-	Ring	Stress
tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)	tion (in)	ment (%)	Reading	(KSF)
0.0098	0.406	0.0013	0.218	0.0104	0.430	0.0018	0.284	0.0098	0.406	0.0071	0.989
0.0199	0.823	0.0022	0,337	0.0205	0.848	0.0048	0.683	0.0199	0.823	0.0110	1.508
0.0300	1.241	0.0028	0.417	0.0306	1.266	0.0061	0.856	0.0300	1.241	0.0125	1.708
0.0401	1.659	0.0031	0.457	0.0407	1.684	0.0064	0.896	0.0401	1.659	0.0133	1.815
0.0502	2.077	0.0032	0.470	0.0508	2.101	0.0064	0.896	0.0502	2.077	0.0140	1.908
0.0603	2.495	0.0033	0.484	0.0609	2.519	0.0063	0.883	0.0603	2.495	0.0146	1.988
0.0704	2.912	0.0033	0.484	0.0710	2.937	0.0062	0.870	0.0704	2.912	0.0151	2.054
0.0805	3.330	0.0031	0.457	0.0811	3.355	0.0062	0.870	0.0805	3.330	0.0155	2.107
0.0905	3.748	0.0031	0.457	0.0912	3.773	0.0061	0.856	0.0905	3.748	0.0159	2.161
0.1006	4.166	0.0031	0.457	0.1013	4.191	0.0061	0.856	0.1006	4.166	0.0162	2.200
0.1208	5.002	0.0031	0.457	0.1214	5.026	0.0060	0.843	0.1208	5.002	0.0163	2.214
0.1410	5.837	0.0031	0.457	0.1416	5.862	0.0060	0.843	0.1410	5.837	0.0161	2.187
0.1612	6.673	0.0030	0.444	0,1618	6.698	0.0059	0.830	0.1612	6.673	0.0159	2.161
0.1814	7.509	0.0030	0.444	0.1820	7.534	0.0059	0.830	0.1814	7.509	0.0158	2.147
0.2016	8.344	0.0030	0.444	0.2022	8.369	0.0059	0.830	0.2016	8.344	0.0156	2.121
0.2521	10.433	0.0030	0.444	0.2527	10.458	0.0058	0.816	0.2521	10.433	0.0148	2.014
0.3025	12.523	0.0029	0.430	0.3031	12.548	0.0054	0.763	0.3025	12.523	0.0142	1.934
0.3530	14.612	0.0028	0.417	0.3536	14.637	0.0053	0.750	0.3530	14.612	0.0138	1.881
0.4035	16.701	0.0027	0.404	0.4041	16.726	0.0051	0.723	0.4035	16.701	0.0137	1.868
0.4828	19.982	0.0026	0.391	0.4834	20.007	0.0050	0.710	0.4828	19.982	0.0136	1.854
Max. She	ar Stress,	ksf:	0.484	0.896 2.214							2.214
Shear De	flt.@Max :	Stress,%.:	2.9	2.1 5.0							

www.schiffassociates.com Consulting Corrosion Engineers – Since 1959

Table 1 - Laboratory Tests on Soil Sample(s)

AMEC Geomatrix Sunshine Canyon LFGTE Facility Your #148280000, SA #11-0165LAB 15-Feb-11

Sample ID

				C-1	
Resistivity			Units		
as-rece	ived		ohm-cm	48,000	
saturate	ed		ohm-cm	1,120	
pH				7.1	
Electrical					
Conductivi	ty		mS/cm	1.17	
Chemical A	nalyse	s			
Cation	S				
calciun	n	Ca ²⁺	mg/kg	840	
magnes	sium	Mg^{2+}	mg/kg	257	
sodium	1	Na ¹⁺	mg/kg	46	
potassi	um	K^{1+}	mg/kg	57	
Anions	5				
carbon	ate	CO3 ²⁻	mg/kg	ND	
bicarbo	onate	HCO ₃ ¹⁻	mg/kg	64	
fluorid	e	F^{1-}	mg/kg	ND	
chlorid	e	Cl1-	mg/kg	1.6	
sulfate		SO4 ²⁻	mg/kg	2,371	
phosph	ate	PO4 ³⁻	mg/kg	ND	
Other Tests	6				
ammon	nium	NH4 ¹⁺	mg/kg	. 22	
nitrate		NO ₃ ¹⁻	mg/kg	ND	
sulfide		S ²⁻	qual	na	
Redox	27486-000000000000000000000000000000000000	THEIMING CONTRACTOR OF A CONTRACTOR OFTA	mV	na	

Electrical conductivity in millisiemens/cm and chemical analysis were made on a 1:5 soil-to-water extract. mg/kg = milligrams per kilogram (parts per million) of dry soil.

Redox = oxidation-reduction potential in millivolts

ND = not detected

na = not analyzed

431 West Baseline Road · Claremont, CA 91711 Phone: 909.626.0967 · Fax: 909.626.3316

HDR \otimes SCHIFF

www.hdrinc.com Corrosion Control and Condition Assessment (C3A) Department

Table 1 - Laboratory Tests on Soil Samples

AMEC Geomatrix, Inc. Sunshine Canyon LFGTE Facility Your #0148280000, SA #11-0247LAB 10-Mar-11

Sample ID

IIS YS IID MORE BOARD				C-2	
all and a second					
Res	istivity		Units		
	as-received		ohm-cm	6,400	
	saturated		ohm-cm	640	
pН				7.2	
Elec	ctrical				
Conductivity			mS/cm	1.32	
Che	mical Analyse	S			
	Cations				
	calcium	Ca^{2+}	mg/kg	838	
	magnesium	Mg^{2+}	mg/kg	251	
	sodium	Na ¹⁺	mg/kg	159	
	potassium	\mathbf{K}^{1+}	mg/kg	98	
	Anions				
	carbonate	CO3 ²⁻	mg/kg	ND	
	bicarbonate	HCO31-	mg/kg	177	
	fluoride	F^{l}	mg/kg	ND	
	chloride	Cl1-	mg/kg	5.7	
	sulfate	SO_4^{2}	mg/kg	2,399	
	phosphate	PO_4^{3}	mg/kg	ND	
Oth	er Tests				
	ammonium	NH_{4}^{1+}	mg/kg	35	
	nitrate	NO3 ¹⁻	mg/kg	1.9	
	sulfide	S ²⁻	qual	Positive	
STREET	Redox		mV	-68	

Electrical conductivity in millisiemens/cm and chemical analysis were made on a 1:5 soil-to-water extract.

mg/kg = milligrams per kilogram (parts per million) of dry soil.

Redox = oxidation-reduction potential in millivolts

ND = not detected

na = not analyzed

www.schiffassociates.com Consulting Corrosion Engineers – Since 1959

Table 1 - Laboratory Tests on Soil Sample(s)

AMEC Geomatrix Sunshine Canyon Landfill Your #0148280000, SA #10-1146LAB 4-Nov-10

Sample ID

			Sample #1	Sample #2	Sample #3	
			Stockpile # 2	Stockpile #2	Stockpile #1	
				trikologist stratististe		
Resistivity		Units				
as-received		ohm-cm	3,080	2,520	2,160	
saturated		ohm-cm	1,000	680	1,000	
рН			6.3	6.3	6.4	
Electrical						
Conductivity		mS/cm	0.83	1.30	0.23	
Chemical Analys	es					
Cations						
calcium	Ca ²⁺	mg/kg	463	915	114	
magnesium	Mg^{2+}	mg/kg	203	299	44	
sodium	Na ¹⁺	mg/kg	107	90	25	
potassium	\mathbf{K}^{1+}	mg/kg	45	97	13	
Anions						
carbonate	CO_3^{2}	mg/kg	ND	ND	ND	
bicarbonate	HCO ₃ ¹⁻	mg/kg	61	49	24	
fluoride	\mathbf{F}^{1}	mg/kg	0.9	ND	1.7	
chloride	Cl1-	mg/kg	8.9	4.7	3.2	
sulfate	SO_4^{2-}	mg/kg	1,720	2,540	462	
phosphate	PO ₄ ³⁻	mg/kg	ND	ND	ND	
Other Tests						
ammonium	$\mathrm{NH_4}^{\mathrm{l+}}$	mg/kg	3.2	13	ND	
nitrate	NO3 ¹⁻	mg/kg	1.0	1.0	2.3	
sulfide	S ²⁻	qual	na	na	na	
Redox		mV	na	na	na	

Electrical conductivity in millisiemens/cm and chemical analysis were made on a 1:5 soil-to-water extract. mg/kg = milligrams per kilogram (parts per million) of dry soil.

Redox = oxidation-reduction potential in millivolts

ND = not detected

na = not analyzed

431 West Baseline Road · Claremont, CA 91711 Phone: 909.626.0967 · Fax: 909.626.3316

APPENDIX C

Aerial Photographs

11/2/2005

3/15/2006

8/25/2006

Page 3 of 5

7/27/2008

11/14/2009

Page 5 of 5

APPENDIX D

Slope Stability Analysis Results

Case 1 - Section 1'-1", Static - Global

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 1\File Name: Static.gsz

Case 2 - Section 1'-1", Pseudo-static - Global k = 0.15

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 1\File Name: Pseudostatic.gsz

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 2\File Name: Static.gsz

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 2\File Name: Static-deep.gsz

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 2\File Name: Pseudostatic.gsz

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 2\File Name: Pseudostatic-deep.gsz

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 5\File Name: Static Global.gsz

Case 8 (NO REINFORCEMENT) - Section 5'-5", Static without geogrid - Global

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 5\File Name: Case 8 NO REINFORCEMENT Static Global.gsz

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 5\File Name: Pseudostatic.gsz

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 6\File Name: Static.gsz

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 6\File Name: Pseudostatic.gsz

Case 13 - Section 7-7', Static with geogrid - Global

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 7\File Name: Static with geogrid.gsz

Case 14 - Section 7-7', Pseudostatic with geogrid - Global k = 0.15

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 8\File Name: Static.gsz

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 8\File Name: Pseudostatic.gsz

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 9\File Name: Static.gsz

Directory: K:\14828.000.0\slope stability\AMEC 2011 Analyses\Section 9\File Name: Pseudostatic.gsz

APPENDIX E

Infinite Slope Stability Analysis Package

APPENDIX E INFINITE SLOPE STABILITY ANALYSIS PACKAGE

Sunshine Gas Producers Landfill Gas to Energy Project Sunshine Canyon Landfill Sylmar, California

The infinite slope formulation by Giroud et al. (1995), which includes the contribution of geosynthetic reinforcement, was used to calculate the factor of safety (FS) of the proposed 1.5:1 reinforced and 3:1 unreinforced fill slopes, and the existing 1.5:1 unreinforced fill slopes and bedrock slopes.

The equation provided in Giroud et al. (1995) for fully saturated condition is as follows:

 $FS = (\gamma'/\gamma_s) * (\tan \phi'/\tan \beta) + (c'/(\gamma_s * t * \sin \beta)) + (T/(\gamma_s * t * h))$

where:

 $\gamma' =$ buoyant unit weight (pcf) $\gamma_s =$ saturated unit weight (pcf) $\phi' =$ angle of internal friction (degrees) $\beta =$ slope angle (degrees) c' = cohesion (psf) t = soil thickness measured perpendicular to ground surface (ft); $t = z \cos \beta$, z = vertical height of the soil column (ft) T = tensile strength of geogrid (lb/ft) h = vertical height between geogrid layers (ft)

For proposed reinforced earth fill slopes, the pullout resistance, P_r , is used to calculate the minimum embedment length of geogrid layers required to achieve a minimum FS = 1.5 for a 4-foot thick zone of saturation. The equation for pullout resistance per unit width of reinforcement (lb/ft) is as follows:

$P_{\rm r} = C_i \tan \phi' \alpha \sigma_{\rm v}' L_e C$

where:

C_i = pullout coefficient of interaction (dimensionless)

- ϕ' = angle of internal friction (degrees)
- α = scale effect correction factor (dimensionless)
- σ_v ' = effective overburden pressure at the soil-reinforcement interfaces (psf)
- L_e = effective geogrid length beyond the slip surface (ft)

C = reinforcement effective unit perimeter (dimensionless)

UNREINFORCED SLOPES

Existing

1.5:1 Unreinforced Fill Slopes – 4-foot thick no flow condition $\gamma' = \gamma_s = 120$ (pcf) for unsaturated conditions $\phi' = 45$ (degrees) (See Figure 7 for Shear Strength Envelope at low normal loads) $\beta = \tan^{-1}(1/1.5) = 33.7$ (degrees) c' = 0 (psf) (See Figure 7 for Shear Strength Envelope at low normal loads) z = 4 (ft) t = 4 ft * cos (33.7) = 3.33 (ft), $FS = (120/120) * (\tan 45 / \tan 33.7) + 0 + 0 = 1.50 ≥ 1.5, \sqrt{OK}$

 $\begin{array}{l} \underline{1.5:1 \ \text{Unreinforced Fill Slopes}-4\text{-foot thick full flow condition}} \\ \gamma' = 120-62.4 = 57.6 \ (\text{pcf}) \\ \gamma_{\text{s}} = 120 \ (\text{pcf}) \\ \varphi' = 45 \ (\text{degrees}) \ (\text{See Figure 7 for Shear Strength Envelope at low normal loads}) \\ \beta = \tan^{-1}(1/1.5) = 33.7 \ (\text{degrees}) \\ c' = 0 \ (\text{psf}) \ (\text{See Figure 7 for Shear Strength Envelope at low normal loads}) \\ z = 4 \ (\text{ft}) \\ t = 4 \ \text{ft}^* \cos (33.7) = 3.33 \ (\text{ft}), \end{array}$

 $FS = (57.6/120) * (\tan 45 / \tan 33.7) + 0 + 0 = 0.72$ < 1.5, NOT OK

1:1 Moderately Weathered Bedrock Slopes - 4-foot thick full flow condition

 $\begin{array}{l} \gamma' = 133 - 62.4 = 70.6 \ (\text{pcf}) \\ \gamma_{\text{s}} = 133 \ (\text{pcf}) \\ \varphi' = 30 \ (\text{degrees}) \ (\text{See Figure 8 for Shear Strength Envelope}) \\ \beta = \tan^{-1}(1/1) = 45 \ (\text{degrees}) \\ c' = 1,900 \ (\text{psf}) \ (\text{See Figure 8 for Shear Strength Envelope}) \\ z = 4 \ (\text{ft}) \\ t = 4 \ \text{ft}^* \cos (45) = 2.83 \ (\text{ft}), \end{array}$

 $FS = (70.6/133) * (\tan 30/\tan 45) + (1,900/(133 * 2.83 * \sin 45)) + 0 = 7.45$ $\ge 1.5, \sqrt{OK}$

Proposed

3:1 Fill Slopes - 4-foot thick full flow condition $\gamma' = 125 - 62.4 = 62.6 \text{ (pcf)}$ $\gamma_s = 125 \text{ (pcf)}$ $\phi' = 31 \text{ (degrees)} \text{ (See Figure 9 for Shear Strength Envelope)}$ $\beta = \tan^{-1}(1/3) = 18.4 \text{ (degrees)}$ c' = 100 (psf) (See Figure 9 for Shear Strength Envelope) z = 4 (ft) $t = 4 \text{ ft}^* \cos(18.4) = 3.79 \text{ (ft)},$ $FS = (62.6/125)^* (\tan 31/\tan 18.4) + (100/(125*3.79*\sin 18.4)) + 0 = 1.57 ≥ 1.5, √OK$

PROPOSED REINFORCED SLOPES

1.5:1 Reinforced Fill Slopes with 8-foot geogrid spacing - 4-foot thick full flow condition

 $\gamma' = 125 - 62.4 = 62.6 \text{ (pcf)}$ $\gamma_s = 125 \text{ (pcf)}$ $\phi' = 31 \text{ (degrees)} \text{ (See Figure 9 for Shear Strength Envelope)}$ $\beta = \tan^{-1}(1/1.5) = 33.7 \text{ (degrees)}$ c' = 100 (psf) (See Figure 9 for Shear Strength Envelope) z = 4 (ft) $t = 4 \text{ ft}^* \cos (33.7) = 3.33 \text{ (ft)},$ T = 1,760 (lb/ft) (Tensar UX1400HS or equivalent) h = 8 (ft) $FS = (62.6/125)^* (\tan 31/\tan 33.7) + (100/(125 * 3.33 * \sin 33.7)) + (1,760/(125 * 3.33 * 8)) = 1.41$

< 1.5, NOT OK: Therefore, add another layer in between 8-foot spaced primary reinforcements

1.5:1 Reinforced Fill Slopes with 4-foot geogrid spacing - 4-foot thick full flow condition

 $\begin{array}{l} \gamma' = 125 - 62.4 = 62.6 \ (\text{pcf}) \\ \gamma_{\text{s}} = 125 \ (\text{pcf}) \\ \varphi' = 31 \ (\text{degrees}) \ (\text{See Figure 9 for Shear Strength Envelope}) \\ \beta = \tan^{-1}(1/1.5) = 33.7 \ (\text{degrees}) \\ c' = 100 \ (\text{psf}) \ (\text{See Figure 9 for Shear Strength Envelope}) \\ z = 4 \ (\text{ft}) \\ t = 4 \ \text{ft}^* \ \cos (33.7) = 3.33 \ (\text{ft}), \\ T = 1,760 \ (\text{lb/ft}) \ (\text{Tensar UX1400HS or equivalent}) \\ h = 4 \ (\text{ft}) \\ FS = (62.6/125)^* \ (\tan 31/\tan 33.7) + (100/(125 * 3.33 * \sin 33.7)) + (1,760/(125 * 3.33 * 4)) = 1.94 \end{array}$

≥ 1.5, √OK

Calculation of Effective Geogrid Length for Secondary Layers

 $\begin{array}{l} C_{i}=0.5 \mbox{ (manufacturer recommended low-end conservative value for fine grained soils)}\\ \varphi'=31 \mbox{ (degrees) (See Figure 9 for Shear Strength Envelope)}\\ C=2 \mbox{ (2 for uniaxial geogrids)}\\ \alpha=1 \mbox{ (for uniaxial geogrids)}\\ P_{r}=1,760 \mbox{ (lb/ft) (Tensar UX1400HS or equivalent)}\\ \sigma_{v}'=(L_{e}/3+4)^{*}\gamma_{s} \mbox{ (psf) & }\gamma_{s}=125 \mbox{ (pcf)}\\ 1760=0.5 \mbox{ tan}(31)(1)(L_{e}/3+4)(125)L_{e}(2)\\ \end{tabular}$

Solve for L_e ; $L_e = 4.5$ '

Total geogrid length = (4 ft vertical saturation x 1.5:1) + 4.5' = 10.5' (11')

Minimum geogrid length of 11 feet at 4-foot vertical spacing between geogrid layers over 1.5:1 slope,

Summary of Findings

The infinite slope stability analyses were performed using the equation provided in Giroud et al. (1995). The required FS per the Los Angeles County Manual for Preparation of Geotechnical Reports is 1.5.

The existing fill slopes exhibit a FS of 1.50 for a no-water-flow condition within the fill, and exhibit a FS less than unity (FS=1) for full-flow assumption over a 4-foot thickness.

The bedrock slopes exhibit a high FS against surficial instability.

The FS for the proposed 3:1 unreinforced fill slopes is greater than 1.50. The proposed 1.5:1 reinforced slopes exhibit a FS less than 1.5 for a 8-foot geogrid spacing in between prmary geogrid reinforcement. Including additional geogrid in between the primary reinforcements where the spacing is 8 feet (i.e., every 4 feet vertically), the FS is greater than 1.5. The minimum geogrid length for layers within the 1.5:1 slope should be 11 feet based on the soil shear strength assumed in this Study.

Refer to Report Section 6.2 for the discussion of these results.