SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

Addendum to the Final Environmental Impact Report for the Tesoro Los Angeles Refinery Integration and Compliance Project

October 2019

State Clearinghouse No. 2014091020

[Final EIR Certified May 12, 2017]

Executive Officer

Wayne Nastri

Deputy Executive Officer Planning, Rule Development, and Area SourcesPhilip Fine, Ph.D.

Assistant Deputy Executive Officer Planning, Rule Development, and Area Sources Susan Nakamura

Assistant Deputy Executive Officer Planning, Rule Development, and Area SourcesSarah Rees

Prepared by: Environmental Audit, Inc.

Reviewed by: Jillian Wong, Ph.D. – Planning and Rules Manager

Michael Krause – Planning and Rules Manager Barbara Radlein – Program Supervisor, CEQA

Danny Luong – Senior Air Quality Engineering Manager

Tran Vo – Supervising Air Quality Engineer Simin Mehrabani – Senior Air Quality Engineer

Barbara Baird - Chief Deputy Counsel

Veera Tyagi – Principal Deputy District Counsel

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT GOVERNING BOARD

Chairman: DR. WILLIAM A. BURKE.

Speaker of the Assembly Appointee

Vice Chairman: BEN BENOIT

Council Member, Wildomar Cities of Riverside County

MEMBERS:

LISA BARTLETT Supervisor, Fifth District County of Orange

JOSEPH BUSCAINO Council Member, 15th District City of Los Angeles Representative

MICHAEL A. CACCIOTTI Council Member, South Pasadena Cities of Los Angeles County / Eastern Region

VANESSA DELGADO Senate Rules Committee Appointee

JANICE HAHN Supervisor, Fourth District County of Los Angeles

LARRY MCCALLON Mayor Pro Tem, Highland Cities of San Bernardino County

JUDITH MITCHELL Mayor, Rolling Hills Estates Cities of Los Angeles County / Western Region


V. MANUEL PEREZ Supervisor, Fourth District County of Riverside

DWIGHT ROBINSON Council Member, Lake Forest Cities of Orange County

JANICE RUTHERFORD Supervisor, Second District San Bernardino County

VACANT Governor's Appointee

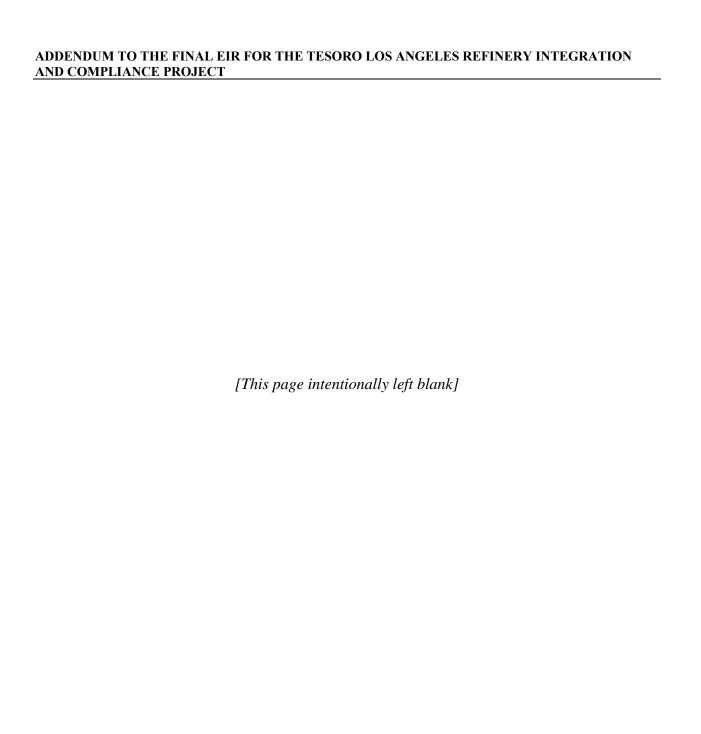
EXECUTIVE OFFICER: WAYNE NASTRI

TABLE OF CONTENTS

ADDENDUM TO THE FINAL EIR FOR THE TESORO LOS ANGELES REFINERY INTEGRATION AND COMPLIANCE PROJECT

Page No. 1.0 CALIFORNIA ENVIRONMENTAL OUALITY ACT AND BASIS FOR DECISION 2.0 TO PREPARE AN ADDENDUM......4 LARIC PROJECT CEQA DOCUMENTS.....8 3.0 4.0 BACKGROUND AND PROJECT DESCRIPTION......13 5.0 5.1 Additional Increased Utilization of Carson Operations Storage Tank 3514 5.2 Revise TAC Speciation for CCT Crude Oil Storage Tanks17 5.3 5.4 IMPACT ANALYSIS......21 6.0 6.1 Analysis of Impacts from the Currently Proposed Modifications.......22 6.2 Air Quality23 6.2.1 Hazards and Hazardous Materials44 6.2.2 6.2.3 Hydrology and Water Quality......47 6.2.4 6.2.5 6.2.6 Transportation and Traffic54 7.0 POTENTIAL ENVIRONMENTAL IMPACTS IN ORIGINAL NOP/IS FOUND TO BE AESTHETICS.......57 7.1 May 2017 Final EIR......57 7.2 May 2017 Final EIR......58 Currently Proposed Modifications......58 Biological Resources58 7.3 7.4 May 2017 Final EIR......59 Energy 60 7.5 May 2017 Final EIR......60 Currently Proposed Modifications......61 7.6 May 2017 Final EIR......61

i


				Page No.
		7.6.	2 Currently Proposed Modifications	62
	7.7	' Lan	nd Use and Planning	62
		7.7.	1 May 2017 Final EIR	62
		7.7.		
	7.8	Min	neral Resources	63
		7.8.	1 May 2017 Final EIR	63
		7.8.	2 Currently Proposed Modifications	63
	7.9	Pop	oulation and Housing	
		7.91	J control of the cont	
		7.9.	2 Currently Proposed Modifications	64
	7.1		lic Services	
			0.1 May 2017 Final EIR	
			0.2 Currently Proposed Modifications	
	7.1		creation	
			1.1 May 2017 Final EIR	
			1.2 Currently Proposed Modifications	
8.0			SIONS	
9.0	RE	FEREN	CES	68
FIGU l Figure		Regiona	al Map	
Figure			cation Map	12
Figure	3:		Los Angeles Refinery May 2017 Final EIR Carson	
			ions Modifications with Currently Proposed Modifications	
Figure			Los Angeles Refinery Carson Crude Terminal	
Figure			d Construction Schedule	
Figure	6:	Recepto	or Location Map	41
TABL	ES			
Table			Quality Significance Thresholds	
Table 2	2:		IC Project Unmitigated Peak Construction Emissions as Presented in the Final EIR	
Table 3	3:	LARI	IC Project Unmitigated Peak Construction Emissions Including the ently Proposed Modifications	
Table 4	4:	LARI	IC Project Localized Construction Air Quality Impact Analysis Results nted in the May 2017 Final EIR	as
Table :	5:	LARI	IC Project Localized Construction Air Quality Impact Analysis Results ding the Currently Proposed Modifications	
Table (5:	LARI	IC Project Operational Emissions Summary as Presented in the May 20 EIR	27 29

ii October 2019

ADDENDUM TO THE FINAL EIR FOR THE TESORO LOS ANGELES REFINERY INTEGRATION AND COMPLIANCE PROJECT

	Pag	ge No
Table 7:	LARIC Project Operational Emissions Summary Including the Currently Proposed Modifications	32
Table 8:	LARIC Project Interim Operational Emissions Summary as Presented in the May 2017 Final EIR	
Table 9:	LARIC Project Construction and 90-Day Transitional Period Operational Emissions Summary as Presented in the May 2017 Final EIR	37
Table 10:	LARIC Project Results of Criteria Pollutants Air Quality Modeling as Presented in the May 2017 Final EIR	38
Table 11:	LARIC Project Construction, Operational, and Combined Health Risk Results as Presented in the May 2017 Final EIR	39
Table 12:	Comparison of LARIC Project Results of Health Risk Modeling Including the Currently Proposed Modifications Using Different Meteorological Data Sets	40
Table 13:	Comparison of LARIC Project Combined Construction and Operational Health Risk Results to the LARIC Project with the Currently Proposed Modifications and Revised Construction Health Risk Results	
APPENDIC	CES	
Appendix A	: MAY 2017 FINAL EIR - CHAPTER 1 - INTRODUCTION AND EXECUTIVE SUMMARY	/E
Appendix B:	CONSTRUCTION EMISSIONS CALCULATIONS	
Appendix C:	LOCALIZED SIGNIFICANCE THRESHOLDS ANALYSIS	
Appendix D:	AIR QUALITY ANALYSIS ADDENDUM	
Appendix E:	HEALTH RISK ASSESSMENT ADDENDUM	

iii October 2019

iv October 2019

1.0 INTRODUCTION

The Tesoro Refining & Marketing Company LLC (Tesoro) is proposing three modifications to the Los Angeles Refinery Integration and Compliance Project (LARIC Project) that was analyzed in the May 2017 Final LARIC Project Environmental Impact Report (EIR) (May 2017 Final EIR). The LARIC Project was evaluated in the May 2017 Final EIR (State Clearinghouse [SCH] No. 2014091020) (South Coast AQMD, 2017). The LARIC Project was designed to more fully integrate the existing Tesoro Los Angeles Refinery – Wilmington Operations with the existing Carson Operations to become a more efficient operating entity, the Tesoro Los Angeles Refinery (Refinery). The Refinery includes: (1) the Wilmington Operations located at 2101 East Pacific Coast Highway in the Wilmington District of the City of Los Angeles; and (2) the adjacent Carson Operations, which is located at 2350 East 223rd Street in the City of Carson. The Carson Crude Terminal (CCT) is located adjacent to and immediately south of the Carson Operations at 24696 Wilmington Avenue, Carson, California, 90745.

In addition to further Refinery integration, the LARIC Project was designed to comply with the federally-mandated Tier 3 gasoline specifications and with State and local regulations mandating air emission reductions. The analysis in the May 2017 Final EIR for the overall LARIC Project identified reductions of greenhouse gas (GHG) and carbon monoxide (CO) emissions from the Refinery. Further analysis of the LARIC Project identified local benefits in reduced emissions of nitrogen oxides (NOx), sulfur oxides (SOx), particulate matter less than 10 microns in diameter (PM10), and particulate matter less than 2.5 microns in diameter (PM2.5), and regionally neutral air emissions effects because RECLAIM trading credits (RTCs) for NOx and SOx will be retained and Emission Reduction Credits (ERCs) are expected to be generated. emissions effects are a result of reconfiguring the combined Refinery complex to enable shutting down the Wilmington Operations Fluidized Catalytic Cracking Unit (FCCU), and improving the gasoline-to-distillate production ratio from the integrated Refinery in order to expeditiously respond and adjust to ongoing changes in market demand for various types of petroleum products. Additionally, heat recovery will be optimized by installing new heat exchangers and modifying specified units to further minimize criteria pollutant and GHG emissions. All new and modified stationary sources with emissions increases will be required to comply with Best Available Control Technology (BACT) requirements in South Coast Air Quality Management District (South Coast AQMD) Rule 1303- New Source Review Requirements. The May 2017 Final EIR determined the LARIC Project would have significant impacts (see Section 2.0) and feasible mitigation measures were imposed for air quality during construction, traffic during construction, and hazards and hazardous materials during operation.

Tesoro is currently proposing the following modifications: 1) relocate the propane recovery project component from the Carson Operations Naphtha Isomerization Unit to the Carson Operations C3 Splitter Unit; 2) include an increase to the throughput of the Carson Operations Tank 35; and, 3) update the toxic air contaminant (TAC) speciation for the six crude oil storage tanks at the CCT with additional data. The currently proposed modifications are for LARIC Project components that were approved in the May 2017 Final EIR, but have not yet been issued South Coast AQMD permits to construct. Additionally, due to delays, the construction schedule presented in the May 2017 Final EIR needs to be updated. Potential emission changes are

1

evaluated and discussed in this Addendum to the May 2017 Final EIR (Addendum). The proposed modifications will not change the overall conclusions in the May 2017 Final EIR, result in any new significant adverse impacts, or make existing significant adverse environmental impacts substantially worse.

The first proposed modification would relocate propane recovery to the Carson Operations C3 Splitter Unit from the Carson Operations Naphtha Isomerization Unit modification. The approved LARIC Project includes a modification to the Carson Operations Naphtha Isomerization Unit to install additional gas treatment to recover saleable propane, which was evaluated in the May 2017 Final EIR. The currently proposed modification would not install the gas treatment modifications at the Carson Operations Naphtha Isomerization Unit. Instead, the Carson Operations C3 Splitter Unit, which is designed to recover polymer-grade propylene from mixed C3¹ streams, would be modified to include piping modifications and the installation of a heat exchanger to recover saleable propane. The proposed modifications to the Carson Operations C3 Splitter Unit will result in fewer volatile organic compounds (VOC) emissions relative to those analyzed in the May 2017 Final EIR for the approved modifications to the Carson Operations Naphtha Isomerization Unit.

The second proposed modification would increase the maximum permitted throughput of the existing Carson Operations Tank 35 from the current 416,700 barrels per month (bbl/mo) to 1,000,000 bbl/mo, which represents a net increase of 583,300 bbl/mo. The Carson Operations Tank 35 was not originally evaluated in the May 2017 Final EIR. Carson Operations Tank 35 has a capacity of 100,000 barrels and is domed with an external floating roof. Carson Operations Tank 35 is currently permitted to store a variety of materials without explicitly limiting the type of materials that can be stored. The currently proposed modification to the permit would define the materials that can be stored in Carson Operations Tank 35 as wastewater, distillates including The blending of jet fuel to make a finished product occurs at both the jet fuel, and gasoline. Carson and Wilmington Operations. The proposed throughput increase would consolidate most of the jet fuel blending activities to the Carson Operations Tank 35, to improve the efficiency of product blending and product management at the Refinery and to allow for the further integration of the Wilmington and Carson Operations. In addition, the proposed modification will allow the use of the Carson Operations Tank 35 as a back-up tank when other tanks are taken out of service for regular maintenance. The requested increase in throughput to the Carson Operations Tank 35 is necessary because some tanks that are expected to be taken out of service for regular maintenance have greater monthly throughputs than the current throughput limit of Carson Operations Tank 35. Increasing the throughput of Carson Operations Tank 35 will result in changes to VOC and TAC emissions which are evaluated in this Addendum. No changes to the process units that produce jet fuel and gasoline are part of the modifications subject to this None of the proposed changes considered in this Addendum would increase Refinery crude oil processing throughput relative to what was previously analyzed in the May 2017 Final EIR.

¹ C3 means compounds that contain three carbon atoms, such as propane and propylene.

The third proposed modification would update the TAC speciation used for analyzing potential health impacts associated with the proposed six crude oil storage tanks at the CCT. The crude oil speciation data available from crude oil providers that was relied upon for the preparation of the May 2017 Final EIR did not provide concentration data for hydrogen sulfide (H₂S) as a potential TAC in crude oil. Since that time, newer analytical data identified differences in concentrations of some TACs, including H₂S concentrations for some crude oils (up to 45 parts per million (ppm)). Therefore, the speciation for crude oil previously relied upon in the May 2017 Final EIR is proposed to be updated in order to incorporate the most current information and to provide a more comprehensive quantification of the TAC concentrations of the various crude oils expected to be stored in the CCT tanks. No physical or operational changes will result from updating the TAC speciation at the CCT. The revised emission calculations with the updated speciation data are evaluated and presented in this Addendum.

Lastly, updates to the LARIC Project construction schedule are necessary due to the project approval of the LARIC Project EIR occurring in May 2017. The construction schedule analyzed in the May 2017 Final EIR was predicated on the shutdown of the Wilmington Operations FCCU occurring in July 2017. Because the certification of the LARIC Project Final EIR occurred in May 2017 and the initial Permits to Construct were issued in June 2017, the construction necessary to facilitate the shutdown of the Wilmington Operations FCCU could not be accomplished prior to July 2017. Therefore, the shutdown of the Wilmington Operations FCCU was delayed until October 2018. The LARIC Project construction schedule needed to be revised to facilitate the shutdown of the Wilmington Operations FCCU in October 2018 and to realign project component construction with the next scheduled turnaround for the respective units, where applicable.

2.0 CALIFORNIA ENVIRONMENTAL QUALITY ACT AND BASIS FOR DECISION TO PREPARE AN ADDENDUM

South Coast AQMD review and approval of the proposed modifications is a discretionary permitting action that requires review pursuant to the California Environmental Quality Act (CEQA). When the LARIC Project was originally proposed, the South Coast AQMD acted as CEQA Lead Agency because it was the public agency that had principal responsibility for approving the project which had the potential to result in a significant effect on the environment (Public Resources Code §21067). At the time the LARIC Project was proposed, South Coast AQMD staff evaluated the potential environmental impacts associated with the construction and operation of the project components and identified potentially significant adverse impacts in the areas of air quality impacts during construction and significant adverse hazards and hazardous materials impacts during operation. Thus, the South Coast AQMD prepared and certified the Final EIR for the LARIC Project (State Clearinghouse [SCH] No. 2014091020) on May 12, 2017. In addition, mitigation measures were made a condition of project approval and a Mitigation Monitoring and Reporting Plan (MMRP) was adopted for the LARIC Project. Findings were made and a Statement of Overriding Considerations was adopted.

The currently proposed modifications are considered to be modifications to the previously approved LARIC Project that was evaluated in the May 2017 Final EIR and are a "project" as defined by CEQA. CEQA requires evaluation of the potential adverse environmental impacts of proposed projects and identification of feasible method to reduce or avoid identified significant adverse environmental impacts of these projects.

CEQA Guidelines §15164(a) allows a lead agency to prepare an Addendum to a previously certified EIR if some changes or additions are necessary but none of the following conditions as described in CEQA Guidelines §15162 have occurred that would require a subsequent EIR or Negative Declaration:

- Substantial changes which will require major revision of the previous CEQA document due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects;
- Substantial changes, with respect to the circumstances under which the project is undertaken, which will require major revisions of the previous CEQA document due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects; or,
- New information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence at the time the previous CEQA document was certified as complete, such as:
 - The project will have one or more significant effects not discussed in the previous CEQA document;

- Significant effects previously examined will be substantially more severe than shown in the previous CEQA document;
- Identification of mitigation measures or alternatives previously found not to be feasible, but would in fact be feasible, and would substantially reduce one or more significant effects, but the project proponent declines to adopt the mitigation measure or alternatives; or
- Identification of mitigation measures or alternatives which are considerably different from those analyzed in the previous CEQA document would substantially reduce one or more significant effects on the environment, but the project proponents decline to adopt the mitigation measure or alternative.

The environmental impacts from project components that are currently proposed for modification were analyzed in the May 2017 Final EIR. The currently proposed modifications include: 1) relocating the propane recovery project component from the Carson Operations Naphtha Isomerization Unit to the Carson Operations C3 Splitter Unit; 2) increasing the throughput of the Carson Operations Tank 35; 3) updating the TAC speciation for the six crude oil storage tanks at the CCT with additional data; and, 4) updating the construction schedule. The currently proposed modifications will change the environmental impacts analyzed in the May 2017 Final EIR for the respective project components, but will not change the overall conclusions in the May 2017 Final EIR.

Thus, for the purpose of determining whether or not the conditions described in CEQA Guidelines §15162 calling for the preparation of a subsequent EIR or negative declaration have occurred, the effects of the proposed project modifications must be evaluated against the effects of the project as initially reviewed and approved. In other words, the "baseline" against which to evaluate the effects of the currently proposed modifications is the effects of LARIC Project analyzed in the May 2017 Final EIR. As demonstrated in Sections 6.0 and 7.0 of this Addendum, when the effects of the currently proposed modifications are evaluated against this baseline, they are not significant and, therefore, a subsequent EIR or negative declaration is not appropriate.

As stated above, CEQA Guidelines §15164(a) provides: "The lead agency or responsible agency shall prepare an addendum to a previously certified EIR if some changes or additions are necessary but none of the following conditions as described in CEQA Guidelines §15162 have occurred." Further, CEQA Guidelines §15164(e) requires a brief explanation of the decision not to prepare a subsequent EIR be included in the addendum, the lead agency's findings on the project, or elsewhere in the record. The explanation must be supported by substantial evidence. Finally, pursuant to CEQA Guidelines §15164(c), "an addendum need not be circulated for public review but can be included in or attached to the final EIR or adopted negative declaration."

Based on the analysis of the currently proposed modifications in Sections 6.0 and 7.0, the South Coast AQMD concludes that the only environmental topic area possibly adversely affected by the currently proposed modifications is air quality (including health risk assessment). The May 2017 Final EIR identified significant adverse impacts to the topics of air quality during construction and hazards and hazardous materials during operation. The May 2017 Final EIR also identified less than significant impacts to transportation and less than significant traffic impacts with mitigation imposed during construction. Impacts to air quality during operation, hydrology and water quality, noise, solid and hazardous waste, and transportation and traffic during operation were analyzed and concluded to be less than significant. As indicated in Section 6.0, the currently proposed modifications do not change the conclusions in the May 2017 Final EIR that significant adverse air quality impacts during construction and significant adverse hazards and hazardous materials impacts during operation of the approved LARIC Project are expected to occur. However, as shown in Subsection 6.2.1 of this Addendum, the currently proposed modifications will not increase the severity of significant adverse air quality impacts or result in new significant adverse air quality impacts beyond those previously identified in the May 2017 Final EIR. Hazard impacts are expected to be the same or slightly less for the affected project components with no change to the unaffected project components (see Section 6.2.2). Also, less construction at the Carson Operations C3 Splitter Unit is needed to implement the currently proposed modifications, so no change to the analysis of traffic and transportation impacts during construction as analyzed in the May 2017 Final EIR is necessary (see Section 6.2.6).

The potential health impacts of the currently proposed modifications have been evaluated and determined to be less than significant. The health risk impacts evaluation included: 1) the relocation of the propane recovery project to the Carson Operations C3 Splitter Unit, which will have less VOC emissions and is not expected to increase the health risks from the proposed project; 2) the increase in TAC emissions associated with the Carson Operations Tank 35 increased throughput; and, 3) revision of the TAC speciation for the crude oil storage tanks at the CCT. The health risk assessment also incorporated the use of the latest meteorological data published since the approval of the May 2017 Final EIR. As a result, the currently proposed modifications will not result in any new significant adverse impacts or increase the severity of significant impacts previously identified in the May 2017 Final EIR.

South Coast AQMD review shows that the potential impacts from implementing the currently proposed modifications are within the scope of what was previously analyzed in the May 2017 Final EIR. Further, South Coast AQMD concludes that the currently proposed modifications are not expected to trigger any conditions identified in CEQA Guidelines §15162 that would require preparation of a subsequent EIR. As a result, per CEQA Guidelines §15164(a), an Addendum is the appropriate CEQA document for evaluating the currently proposed modifications. Therefore, the South Coast AQMD has prepared this Addendum to the May 2017 Final EIR to evaluate the currently proposed modifications.

Sections 6.0 and 7.0 of this Addendum to the May 2017 Final EIR provide the evidence which demonstrates that the currently proposed modifications do not contain: 1) substantial changes to the LARIC Project that will cause new significant effects or a substantial increase in the severity

ADDENDUM TO THE FINAL EIR FOR THE TESORO LOS ANGELES REFINERY INTEGRATION AND COMPLIANCE PROJECT

of previously identified significant effects; 2) a substantial change in the circumstances that will cause new significant effects or a substantial increase in the severity of previously identified significant effects; or 3) substantial new information that could not have been known at the time the May 2017 Final EIR was certified that will cause new significant effects or a substantial increase in the severity of previously identified significant effects.

3.0 LARIC PROJECT CEQA DOCUMENTS

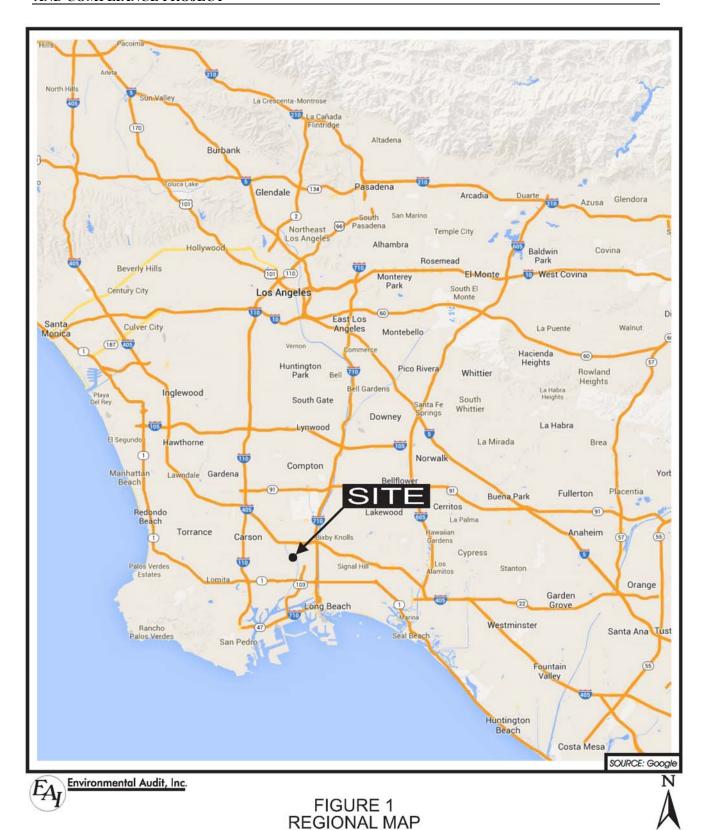
This section provides summaries of the activities associated with the Tesoro LARIC Project that were evaluated in CEQA documents, which are presented in sequential order. These CEQA documents can be obtained by contacting the South Coast AQMD's Public Information Center at (909) 396-2001 or they can be downloaded from the South Coast AQMD's CEQA Webpage at the following Internet address:

http://www.aqmd.gov/home/research/documents-reports/lead-agency-permit-projects/lead-agency-ceqa-documents---permit-projects-2017

Notice of Preparation of an Environmental Impact Report (EIR) (South Coast AQMD, September 2014): A Notice of Preparation (NOP) and Initial Study (IS) for the Tesoro LARIC Project were released for a 30-day public review and comment period from September 10, 2014, to October 10, 2014. The IS included a project description, project location, an environmental checklist, and a preliminary discussion of potential adverse environmental impacts. The NOP requested public agencies and other interested parties to comment on the scope and content of the environmental information to be evaluated in the Draft EIR. A public scoping meeting was held on September 24, 2014, and six written comments were received at the meeting. Eighty-seven additional comment letters were received during the comment period, which were letters of support for the LARIC Project that did not address environmental concern to be included in the EIR. The September 2014 NOP/IS, comment letters, and responses, where appropriate, are included in Appendix A of the May 2017 Final EIR.

Draft EIR (South Coast AQMD, 2016): The Draft EIR was released for a 45-day public review and comment period from March 8, 2016, to April 22, 2016, which was extended twice for a total of a 94-day public comment period ending on June 10, 2016. The Draft EIR included a project description, a description of the existing environmental setting, a preliminary analysis of potential adverse environmental impacts for each environmental topic (including cumulative impacts) that could be adversely affected by the proposed project, mitigation measures, project alternatives, and all other relevant topics required by CEQA. The Draft EIR also included a copy of the September 2014 NOP/IS, comment letters, and responses described above. The Draft EIR concluded that the Tesoro LARIC Project may have significant adverse impacts on air quality during construction and hazards and hazardous materials during operation, even after implementing mitigation measures, and less than significant noise, solid and hazardous waste, and traffic and transportation impacts. Impacts to all other environmental topic areas were also concluded to be less than significant.

<u>Final EIR (South Coast AQMD, 2017)</u>: The Final EIR was prepared by revising the Draft EIR to update project information and present the responses to comments received on the Draft EIR. Of the 2,107 comment letters, responses to only 302 of the comment letters were prepared because the remainder of the comment letters either supported the project and, as such, did not require response; opposed the project but did not raise new issues; or were received after the close of the comment period and did not raise new issues. The changes that were reflected in the Final EIR did not constitute significant new information relating to the environmental analysis or

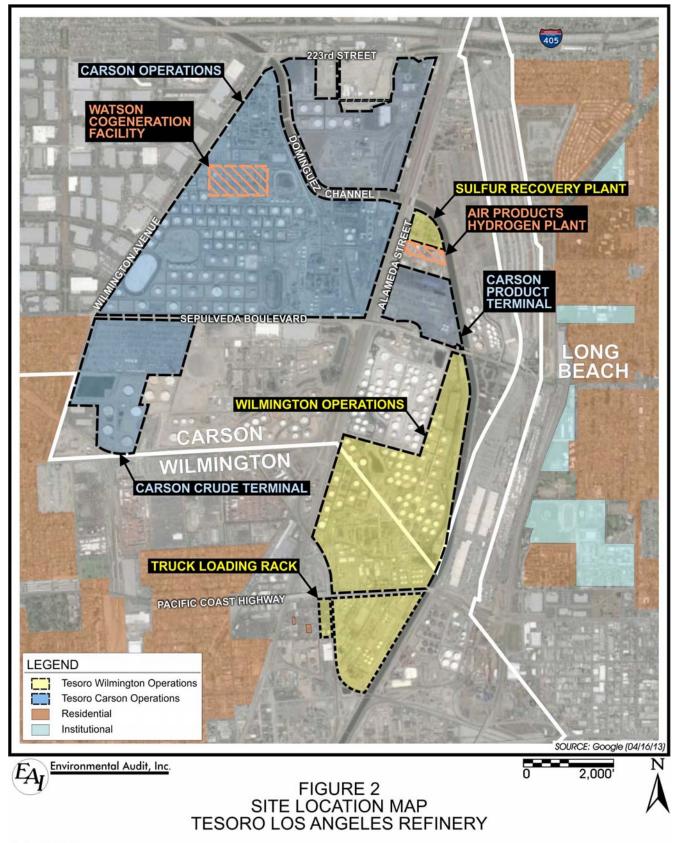

ADDENDUM TO THE FINAL EIR FOR THE TESORO LOS ANGELES REFINERY INTEGRATION AND COMPLIANCE PROJECT

mitigation measures. The Final EIR was certified on May 12, 2017, along with Attachment 1: Findings, Statement of Overriding Considerations, and Mitigation, Monitoring, and Reporting Plan. For reference, the May 2017 Final EIR Chapter 1 – Introduction and Executive Summary is presented in Appendix A of this Addendum.

4.0 PROJECT LOCATION

As described in the May 2017 Final EIR, the LARIC Project will occur at both the Carson Operations and Wilmington Operations of the Refinery and the CCT. The currently proposed modifications to components of the LARIC Project will occur at the Carson Operations and the CCT as part of the ongoing efforts to integrate the Carson Operations with the adjacent Wilmington Operations. The Refinery is approximately 950 contiguous acres in size and operates within the cities of Los Angeles (Wilmington District) and Carson, California.

The Carson Operations are located at 2350 East 223rd Street, Carson, California, 90810. The CCT is located immediately south of the Carson Operations at 24696 Wilmington Ave, Carson, California, 90745. The Wilmington Operations are located at 2101 East Pacific Coast Highway, Wilmington, California, 90744, and are not affected by the currently proposed modifications. Wilmington is a community under the jurisdiction of the City of Los Angeles. The Wilmington Operations Sulfur Recovery Plant, located in Carson, California, is not affected by the currently proposed modifications. Figure 1 depicts the regional location of the Refinery and Figure 2 provides a detailed Site Location Map.



TESORO LOS ANGELES REFINERY

11

Project No. 2844

N:\2844\Addendum Figures\RegionalMap.cdr

Project No. 2844

N:\2844\Addendum Figures\SiteLocMap (rev.13).cdr

5.0 BACKGROUND AND PROJECT DESCRIPTION

Tesoro is proposing the following modifications to the LARIC Project that was analyzed in the May 2017 Final EIR, to: 1) relocate the propane recovery project component from the Carson Operations Naphtha Isomerization Unit to the Carson Operations C3 Splitter Unit; 2) increase the throughput of the Carson Operations Tank 35; 3) update the TAC speciation for the six crude oil storage tanks at the CCT with additional data; and, 4) update the construction schedule. The currently proposed modifications will affect some LARIC Project components that were approved in the May 2017 Final EIR, but have not yet been issued South Coast AQMD permits to construct. Figures 3 and 4 show the LARIC Project components locations in the Carson Operations and CCT. None of the currently proposed modifications will occur in the Wilmington Operations.

It should be noted that the Wilmington Operations DCU H-100 heater project has been delayed. After the approval of the May 2017 Final EIR, a South Coast AQMD Permit to Construct was issued to change the described heat release level of the Wilmington Operations DCU H-100 heater from 252 million British thermal units per hour (mmBtu/hr) to 302.4 mmBtu/hr, without making any physical modifications. New permit limits on criteria pollutants were also included as part of the South Coast AOMD Permit to Construct to ensure that emissions would not exceed what they would be at 252 mmBtu/hr. After extensive review, Tesoro determined that additional engineering evaluation of the Wilmington Operations DCU H-100 heater was needed. Therefore, Tesoro requested the Permit to Construct be cancelled. Tesoro has informed the South Coast AQMD that once the engineering evaluation of the Wilmington Operations DCU H-100 heater is complete, a new South Coast AQMD permit application will be submitted. However, it is speculative as to when a new permit application can be submitted. At the request of Tesoro, the Permit to Construct has been cancelled and the existing Permit to Operate (A/N 469243) has been administratively re-issued to include a new permit condition limiting the heat release level of the Wilmington Operations DCU H-100 heater to no more than 252 mmBtu/hr. Compliance with the 252 mmBtu/hr heat release level condition ensures that the emission impacts of the Wilmington Operations DCU H-100 heater do not exceed those evaluated in the May 2017 Final EIR. Any potential changes to the Wilmington Operations DCU H-100 heater will be reviewed by the South Coast AQMD once a new South Coast AQMD permit application has been received. Any modifications needed to the CEQA evaluation for the Wilmington Operations DCU H-100 heater will be addressed at that time. The May 2017 Final EIR currently reflects the anticipated emissions associated with the Wilmington Operations DCU H-100 heater.

Sections 5.1 through 5.4 provide further details about the currently proposed modifications to the LARIC Project.

5.1 Carson Operations Propane Recovery

The South Coast AQMD analyzed modifications to the Carson Operations Naphtha Isomerization Unit modification in the May 2017 Final EIR and granted approval for Tesoro to install additional gas treatment to recover saleable propane. Specifically, the approved modifications to the Carson Operations Naphtha Isomerization Unit included the installation of

an off-gas caustic scrubber, two reactor effluent flash drums, up to two heat exchangers, four pumps, associated piping and instrumentation, and pressure relief valves that connect the modifications to the Refinery gas recovery and flare system. However, Tesoro did not submit permit applications to the South Coast AQMD for the analyzed modifications to the Carson Operations Naphtha Isomerization Unit.

After further engineering design of the LARIC Project was conducted, a simpler method of recovering saleable propane was identified that would produce fewer air emissions. As such, Tesoro is currently proposing modifications to the adjacent Carson Operations C3 Splitter Unit (see Figure 3), which are less complex and require less construction than the modifications to the Carson Operations Naphtha Isomerization Unit that were previously analyzed in the May 2017 Final EIR. The Carson Operations C3 Splitter Unit in the Isomerization Complex is designed to recover polymer-grade propylene and sales-grade propane from mixed C3 streams (i.e., hydrocarbons that contain three carbon atoms) in Refinery gas streams. In order to increase the yield of saleable propane from the Carson Operations C3 Splitter Unit, a new line will be installed to connect the existing Carson Operations C3 Splitter Unit regeneration propane header (which currently routes to the Refinery fuel gas system) to the existing Coker Gas Treatment System. The Carson Operations C3 Splitter Unit modifications will require the installation of a vaporizer (heat exchanger) and associated piping and instrumentation, as needed. As with the previously evaluated modifications to the Naphtha Isomerization Unit, part of the piping for the Carson Operations C3 Splitter Unit modifications will require the installation of one new pressure relief valve that will be connected for emergency venting to the No. 5 Gas Recovery and Flare System. By recovering the propane present in the Carson Operations C3 Splitter Unit the installation of additional gas treatment equipment at the Carson Operations Naphtha Isomerization Unit, which was originally evaluated as part of the approved LARIC Project, is no No other Refinery units will be affected by the currently proposed modification. Therefore, no change in propane production will result from the change in location of propane recovery activities.

5.2 Additional Increased Utilization of Carson Operations Storage Tank 35

The proposed modification to the Carson Operations Tank 35 would increase the maximum permitted throughput of the existing Carson Operations Tank 35 from the current 416,700 bbl/mo to 1,000,000 bbl/mo, which represents a net increase of 583,300 bbl/mo. Carson Operations Tank 35 has a capacity of 100,000 barrels and is domed with an external floating roof. Carson Operations Tank 35 is currently permitted to store a variety of materials without explicitly limiting the type of materials that can be stored. The currently proposed modification would define the materials that can be stored in Carson Operations Tank 35 as wastewater, distillates including jet fuel, and gasoline. The blending of jet fuel to make a finished product occurs at both the Carson and Wilmington Operations. The proposed throughput increase would consolidate most of the jet fuel blending activities to the Carson Operations Tank 35, to improve product management at the Refinery and to allow for the further integration of the Wilmington and Carson Operations. In addition, the proposed modification will allow the use of the Carson Operations Tank 35 as a back-up tank when other tanks are taken out of service for regular

I:\2844\Post Cert\Tesoro Carson Site Plan (rev.17) (Created) 01/22/14 (Drawn By) A.S.K. (Check By) M.R.B. (Last Rev.) 05/30/18 **LEGEND** FEIR APPROVED - NEW UNIT FEIR APPROVED -UNITS WITH PHYSICAL MODIFICATIONS OTHER MAJOR REFINERY UNITS WITH NO PHYSICAL MODIFICATIONS **CURRENTLY PROPOSED MODIFICATION** NO LONGER PART OF PROJECT (23) (11) #4 CRUDE UNI Environmental Audit, Inc. FIGURE 3 **TESORO LOS ANGELES REFINERY** MAY 2017 FINAL EIR CARSON OPERATIONS MODIFICATIONS WITH CURRENTLY PROPOSED MODIFICATIONS

October 2019

15

Project No. 2844

TESORO LOS ANGELES REFINERY CARSON CRUDE TERMINAL

maintenance. The requested increase in throughput to the Carson Operations Tank 35 is necessary because some tanks that are expected to be taken out of service for regular maintenance have greater monthly throughputs than the current throughput limit of Carson Operations Tank 35. Increasing the throughput of Carson Operations Tank 35 will result in changes to VOC and TAC emissions which are evaluated in this Addendum.

No changes to the process units that produce jet fuel and gasoline are part of the modifications subject to this Addendum. Market demand is the primary influence on the amount of jet fuel produced. The volume of products produced in the refining process is not dependent on the volume of storage available. Multiple storage tanks exist at the Refinery that are capable of storing jet fuel. Thus, this proposed throughput increase would not change the amount of jet fuel or gasoline produced by the Refinery. Additionally, no changes to the wastewater generated at the Refinery are proposed. Therefore, the amount of jet fuel and gasoline production and wastewater generated will not be affected by the Carson Operations Tank 35 proposed throughput increase.

5.3 Revise TAC Speciation for CCT Crude Oil Storage Tanks

In the baseline period (i.e., 2012-2013) analytical data from crude oil suppliers did not include data for H₂S in crude oil. Thus, the data used during the preparation of the May 2017 Final EIR did not provide concentration data for H₂S as a potential TAC in crude oil. For this reason, the May 2017 Final EIR describes the concentration of H₂S in crude oil as typically less than 5 ppm (the analytical detection limit) (page G1-1186 in Appendix G1 of the May 2017 Final EIR). During the preparation of the permit applications for the CCT storage tanks, analytical data became available that identified differences in concentrations of some TACs and included H₂S concentrations for some crude oils (up to 45 ppm). The South Coast AQMD verified the relevant data during the permit application review process. Therefore, the speciation for crude oil used in the May 2017 Final EIR has been updated in this Addendum to incorporate the most current information (i.e., the highest value in the crude oil speciation data set, 45 ppm H₂S, along with the higher values for some TACs) and to provide a more comprehensive quantification of the TAC concentrations of the various crude oils expected to be stored in the CCT tanks. The updated speciation reflects quantification improvements of the TAC speciation, but there are no changes in the types of crude oils stored from those previously analyzed in the May 2017 Final EIR. This update is informational only, as there are no physical or operational changes to the CCT tanks from what was previously analyzed in the May 2017 Final EIR.

The update in TAC speciation of the crude oil does not affect the location, physical capacity or throughput of the crude oil storage tanks as evaluated in the May 2017 Final EIR. The CCT crude oil storage tanks affected by the change in speciation in this Addendum are shown in Figure 4. As analyzed in the May 2017 Final EIR, impacts of TACs were evaluated as a composite of worst-case concentrations of crude oil previously processed and additional potentially foreseeable crude oils to be processed by the Refinery.

5.4 Update the Construction Schedule

The LARIC Project construction schedule presented in the May 2017 Final EIR was contingent upon project approval and the issuance of South Coast AQMD Permits to Construct for project components on a schedule that would precede the planned shutdown of the Wilmington Operations FCCU in July 2017. Because the certification of the LARIC Project Final EIR occurred in May 2017 and the initial Permits to Construct were issued in June 2017, the construction necessary to facilitate the shutdown of the Wilmington Operations FCCU could not be accomplished prior to July 2017. Thus, the scheduled shutdown of the Wilmington Operations FCCU needed to be delayed until October 2018 to allow the completion of construction of the project components. Therefore, the project schedule was adjusted to facilitate the shutdown of the Wilmington Operations FCCU in October 2018 and to realign project component construction with the next scheduled turnaround for the respective units, where applicable.

Construction activities were rescheduled to commence in July 2017. Adjustments to the construction schedule reflect the following considerations:

- Splitting construction schedules to coincide with planned shutdowns;
- Replacing the Carson Naphtha Isomerization Modifications with the C3 Splitter Unit Modifications;
- Delaying project components to the next planned shutdown;
- Delaying projects for permitting (CCT Crude Tankage); and,
- Delaying projects for engineering design delays.

The revised construction schedule is presented in Figure 5.

	Task						Year	r 1 (2	017)									Year	2 (201	8)				T					Year 3	(2019	9)								Ye	ar 4 (2	020)			
	idsk	J	lan I	eb N	lar A	pr M	lay Ju	ın J	ul Au	g Se	рОс	t Nov	Dec	Jan	Feb	Mar /	pr Ma	y Jur	ı Jul	Aug	Sep	Oct	Nov	Dec	Jan F	eb M	ar A	pr May	/ Jun	Jul	Aug	Sep C	ct No	ov Dec	Jan	Feb	Mar	Apr	May	Jun J	ul Au	g Sep	Oct	Nov
	and Compliance			-						-				<u></u>		-								_										-										
	Description		1				\perp	_						-		-	\perp			1				-						\square				_								-	\perp	
Carson	No. 51 Vac & Dehexanizer		\perp				$\sqcup \sqcup$	_								\perp	\perp			Ш.										\square													\perp	
Carson	HCU																																											
	Interconnect Pipelines																																											
Wilmington	HCU																																											
Wilmington	HTU-4																																											
Carson	LPG Rail Unloading																																											
Carson	Alkylation Unit																																											
Carson	Naphtha HDS - Iso-Octene		П														ПП																											
Carson	Steam Generation								ПП																																			
Carson	LHU																																											
Carson	Mid-Barrel Treater																																											
POURT ATOM TO HE		700																				4 10	filmine	ton (Onora	tions	ECCI	Shute	down						23									
ther Project	cts																				- 1	4 00	minié	gton v	Opera	tions	rocc	Siluti	JOWII															
ocation	Description			II																		\Box	TI													TT								
Carson	Wet Jet Treater																																											
Carson	Crude Tankage																																				Cru	de Ta	ankage	e Exter	nds to I	Decem	ber 20	123 ▶1
Wilmington	CRU-3/PSTU																																											
Wilmington	HTU-1 and 2 Modifications																													\Box														
Wilmington	Sulfuric Acid Regeneration Plant		\Box							11						П				T										\Box										Ext	ends to	Febru	ary 20	122 ▶1
Car/Wil	Electrical Intertie		\Box				\Box				+						\Box			TT																	أسرنون		انوزو					
Wilmington	Crude Tankage		\Box				\Box		Ш	11	\top						Ш						11	+																	Extend	ds to J	une 20	21 ▶1
Carson	C3 Splitter Unit Modifications						tti			11							\Box			T		\Box															أساسا							
										-									T		1																							
																				Υ																								
																			Trane	itional	Period	4																						

Note: Carson FCCU Modifications are operational changes only and have no construction schedule. Transitional Period is the 90-day period prior to the shutdown of the Wilmington Operations FCCU.

FIGURE 5

REVISED CONSTRUCTION SCHEDULE TESORO LOS ANGELES REFINERY

[This page intentionally left blank.]

6.0 IMPACT ANALYSIS

The following sections present a summary of the impact analysis contained in the May 2017 Final EIR for the affected LARIC Project components and analyze the currently proposed modifications.

The baseline period in the May 2017 Final EIR was operating years 2012 and 2013, which were the two years prior to the publication of the September 2014 NOP/IS in accordance with the requirements of CEQA Guidelines §15125. The May 2017 Final EIR considered all direct impacts (i.e., emissions associated with modified existing units and proposed new units), as well as indirect impacts (e.g., emissions associated with mobile sources) of the LARIC Project. All equipment potentially impacted by the LARIC Project (including upstream and downstream equipment) was also evaluated to determine if the LARIC Project would result in increased environmental impacts, even if the equipment was operating within permit limits. Downstream effects were described in Section 4.1.2 of the May 2017 Final EIR and included in the analysis in Sections 4.2 through 4.8 of the May 2017 Final EIR.

The following sections summarize and compare the environmental impacts of the LARIC Project that were previously evaluated in the May 2017 Final EIR to the currently proposed modifications.

6.1 Summary of Environmental Impacts in the May 2017 Final EIR

The September 2014 NOP/IS for the LARIC Project evaluated all 17 environmental topics in accordance with CEQA and determined that 11 environmental topic areas identified in the South Coast AQMD environmental checklist would not be significantly adversely affected by the LARIC Project. The environmental topic areas identified as not being significantly affected by the LARIC Project are: aesthetics; agriculture and forestry resources; biological resources; cultural resources; energy; geology and soils; land use and planning; mineral resources; population and housing; public services; and, recreation. The South Coast AQMD received 87 comment letters and six written comment cards from the public CEQA scoping meeting relative to the September 2014 NOP/IS. None of the comments addressed the conclusions in the September 2014 NOP/IS that the 11 aforementioned environmental topic areas would not be significantly affected by the LARIC Project. Thus, the less than significant environmental topic areas were not addressed in detail but were summarized in Section 4.10 of the May 2017 Final EIR.

The following six environmental topic areas were determined to be potentially significantly affected by the LARIC Project and required further evaluation in the EIR: air quality; hazards and hazardous materials; hydrology and water quality; noise; solid and hazardous waste; and, transportation and traffic. The May 2017 Final EIR concluded that three of the six environmental topic areas (hydrology and water quality; noise; and, solid and hazardous waste) evaluated in the EIR would not be significantly adversely affected by the LARIC Project and one of the six environmental topic areas (transportation and traffic) impacts could be mitigated to a level of insignificance. Air quality impacts during construction and hazards and hazardous

materials during operation were determined to be significant even after mitigation measures were applied. Traffic during construction was determined to be less than significant after mitigation measures were applied.

The May 2017 Final EIR concluded that the LARIC Project would result in the significant unavoidable adverse impacts to air quality and hazards and hazardous materials after implementation of feasible mitigation measures, as follows:

- Air quality, including project-specific and cumulatively considerable VOC and NOx emissions in exceedance of regional significance thresholds during construction, and nitrogen dioxide (NO₂) concentrations above the local significance threshold during construction. Mitigation measures imposed included requirements such as the development of a construction management plan, electrification of equipment where feasible, and use of construction equipment having Tier 4 engines with limited exceptions.
- Hazards and hazardous materials, including project-specific and cumulatively considerable off-site impacts which could occur in the event of a flash fire the Carson Operations Naphtha Isomerization Unit, a pool fire in the area of the new crude oil storage tanks, a toxic cloud arising from the proposed Sulfuric Acid Regeneration Plant (SARP), or a flash fire associated with the Interconnecting Pipelines under "worst-case" scenarios for each unit, respectively. The mitigation measure imposed included early compliance with applicable hazardous material rules and regulations.

6.2 Analysis of Impacts from the Currently Proposed Modifications

This Addendum includes an evaluation of all 17 of the environmental topic areas identified in the environmental checklist and concludes that the only environmental topic area evaluated in the May 2017 Final EIR that would require minor changes to reflect the currently proposed modifications is air quality. The six environmental topic areas (i.e., air quality; hazards and hazardous materials; hydrology and water quality; noise; solid and hazardous waste; and, transportation and traffic) analyzed in detail in the May 2017 Final EIR are presented in the following subsections. The analysis of the air quality impacts in the May 2017 Final EIR is the only analysis revised by the currently proposed modifications. The analysis of potential impacts to the five other environmental topic areas analyzed in detail in the May 2017 Final EIR did not require revision. The analysis in this Addendum demonstrates that the currently proposed modifications to the LARIC Project would not result in substantial changes or new significant impacts to these six environmental topic areas. The remaining 11 environmental topic areas that were evaluated in the 2014 NOP/IS for the LARIC Project are examined in Section 7.0. No potentially significant impacts to these 11 environmental topic areas are expected due to the currently proposed modifications. Therefore, the conclusions from the May 2017 Final EIR do not change as a result of implementing the currently proposed modifications.

6.2.1 Air Quality

The September 2014 NOP/IS determined that air quality impacts of the LARIC Project were potentially significant. Project-specific and cumulative adverse air quality impacts associated with increased emissions of air contaminants (criteria air pollutants, GHGs, and TACs) during the construction and operational phases of the LARIC Project were analyzed in the May 2017 Final EIR (see Sections 4.2, 5.2.1, and 5.2.2 of the May 2017 Final EIR). Potential adverse health impacts to sensitive receptors were also analyzed in the May 2017 Final EIR. The May 2017 Final EIR determined that only construction impacts were potentially significant. Air quality impacts that equal or exceed the significance thresholds identified in Table 1 are considered to be potentially significant adverse air quality impacts.

6.2.1.1 Construction Emissions Impacts

6.2.1.1.1 May 2017 Final EIR Construction Emissions Impacts

The original construction emission analysis in the May 2017 Final EIR was conservative and encompasses the currently proposed modifications, only one of which requires construction (i.e., the Carson Operations C3 Splitter Unit modifications). Table 4.2-2 of the May 2017 Final EIR (presented here as Table 2) concluded that unmitigated VOC and NOx emissions were significant and mitigation was imposed. The May 2017 Final EIR peak construction emissions were expected to occur in Months 18, 20, and 25.

6.2.1.1.2 Currently Proposed Modifications Construction Emissions Impacts

The currently proposed modification to the existing Carson Operations Tank 35 does not require any construction. The change to the crude speciation for the six CCT crude oil storage tanks does not affect the construction schedule or the level of construction needed to build the storage tanks. The Carson Operations C3 Splitter Unit modifications require less construction than the previously approved for the Carson Operations Naphtha Isomerization Unit because less equipment will be installed and no foundations are needed. The original construction schedule presented in the May 2017 Final EIR has been revised due to the delayed approval date of the LARIC Project (see Figure 5). The effects of the revised construction schedule are evaluated in this Addendum.

With the revisions to the construction schedule, while the peak emissions from construction shifts to Month 7 for NOx, SOx, and PM10, Month 11 for PM2.5 and CO, and Month 40 for VOC pollutants, the revised unmitigated peak construction emissions are less in comparison to the May 2017 Final EIR unmitigated peak construction emissions. The peak daily VOC emissions are now less than significant; however, the peak daily NOx emissions remain significant. Note that months 7 and 11 of construction have already occurred. Table 3 presents the revised construction emissions that result from the currently proposed modifications. The peak daily construction emissions are less than previously analyzed because the restructuring of the construction schedule reduced the number of overlapping construction activities for various project components as well as reduced the number of construction workers needed during the

peak construction period. The currently proposed modifications do not change the conclusion made in the May 2017 Final EIR and do not make a significant impact more severe.

TABLE 1South Coast AQMD Air Quality Significance Thresholds

Mass Daily Thresholds ^(a)											
Pollutant	Construction ^(b)	Operation ^(c)									
NO _x	100 lb/day	55 lb/day									
VOC	75 lb/day	55 lb/day									
PM10	150 lb/day	150 lb/day									
PM2.5	55 lb/day	55 lb/day									
SOx	150 lb/day	150 lb/day									
СО	550 lb/day	550 lb/day									
Lead	3 lb/day	3 lb/day									
Toxic Air Contaminants, Odor, and GHG Thresholds											
TACs (including carcinogens	Maximum Incrementa	al Cancer Risk ≥ 10 in 1 million									
and non-carcinogens)	Chronic and Acute Haza	ard Index ≥ 1.0 (project increment)									
		cancer cases (in areas ≥ 1 in 1 million)									
Odor	Project creates an odor nuisance	pursuant to South Coast AQMD Rule 402									
GHG	•	O ₂ eq for industrial facilities									
Ambient Air Quality for Criteria Pollutants ^(d)											
NO_2		ct causes or contributes to an exceedance of									
		ny standard:									
1-hour average		te) and 0.100 (federal) ^(e)									
annual average	0.03 ppm (state)	and 0.0534 ppm (federal)									
PM10		(6)									
24-hour		ion) ^(f) and 2.5 μg/m ³ (operation)									
annual average	$1.0~\mu\mathrm{g/m}^3$										
PM2.5											
24-hour average	10.4 μg/m ³ (construction) ^(f) and 2.5 μg/m ³ (operation)										
SO ₂		one (a.t. t. ooth									
1-hour average		075 ppm (federal – 99 th percentile)									
24-hour average	0.0	4 ppm (state)									
Sulfate	25	/ 3 (4.4.)									
24-hour average		μg/m³ (state)									
CO		et causes or contributes to an exceedance of									
1-hour average		ny standard: e) and 35 ppm (federal)									
8-hour average		m (state/federal)									
Lead	9.0 pp.	iii (State/Tederal)									
30-day average	1.5	μg/m³ (state)									
Rolling 3-month average		μg/m (state) μg/m³ (federal)									
Quarterly average		ug/m³ (federal)									
	Handbook (South Coast AOMD, 1993, Rev	ig/III (Icuciai)									

- a) Source: South Coast AQMD CEQA Handbook (South Coast AQMD, 1993, Revised April 2019)
- b) Construction thresholds apply to both the SCAB and Coachella Valley (Salton Sea and Mojave Desert Air Basin)
- For Coachella Valley, the mass daily thresholds for operation are the same as the construction thresholds.
- d) Ambient air quality thresholds for criteria pollutants based on South Coast AQMD Rule 1303, Table A-2 unless otherwise stated.
- e) The federal threshold has not been adopted for general use yet by South Coast AQMD, but as it is a federal requirement for permits being issued for this project.
- f) Ambient air quality threshold based on South Coast AQMD Rule 403.

KEY: ppm = parts per million; μ g/m³ = microgram per cubic meter; lb/day = pounds per day; MT/yr CO2eq = metric tons per year of CO₂ equivalents, \geq greater than or equal to, > = greater than

TABLE 2

Tesoro Los Angeles Refinery LARIC Project Unmitigated Peak Construction Emissions as Presented in the May 2017 Final EIR^(a) (lb/day)

ACTIVITY	VOC	CO	NOx	SOx	PM10	PM2.5 ^(b)
Construction Equipment	41.18	422.81	420.92	0.90	29.82	26.23
Vehicle Emissions	3.22	92.73	154.81	0.51	32.57	10.96
Fugitive Dust From Construction ^(c)					2.36	0.68
Fugitive Road Dust ^(c)					3.80	0.80
Architectural Coating	62.25					
Total Emissions ^(d)	106.65	515.54	575.73	1.41	68.55	38.67
Construction Significance Threshold	75	550	100	150	150	55
Significant?	Yes	No	Yes	No	No	No

- Source: May 2017 Final EIR, Table 4.2-2. Peak emissions for VOC predicted to occur in Month 25. Peak CO predicted to occur in Month 20. NOx, SOx, PM10, and PM2.5 predicted to occur during Month 18.
- (b) PM2.5 is determined using the methodology in South Coast AQMD, 2006.
- (c) Assumes application of water three times per day.
- (d) The emissions in the table may differ slightly from those in Appendix B-1 of the May 2017 Final EIR due to rounding.

TABLE 3

Tesoro Los Angeles Refinery LARIC Project Unmitigated Peak Construction Emissions Including the Currently Proposed Modifications^(a) (lb/day)

ACTIVITY	VOC	CO	NOx	SOx	PM10	PM2.5 ^(b)
Construction Equipment	6.45	233.67	242.41	0.59	14.04	15.63
	41.18	422.81	420.92	0.90	29.82	26.23
Vehicle Emissions	0.34	83.64	<u>154.96</u>	0.44	30.42	8.53
	3.22	92.73	154.81	0.51	32.57	10.96
Fugitive Dust From Construction ^(c)					2.36	0.68
Fugitive Road Dust ^(c)					3.80	0.80
Architectural Coating	62.25					
Total Emissions ^(d)	69.04	<u>317.31</u>	397.37	1.03	50.62	<u>25.64</u>
	106.65	515.5 4	575.73	1.41	68.55	38.67
South Coast AQMD Construction	75	550	100	150	150	55
Significance Threshold Level						
Significant?	Yes No	No	Yes	No	No	No

- Peak emissions for NOx, SOx, and PM10 predicted to occur in Month 7. CO and PM2.5 predicted to occur during Month 11. VOC predicted to occur during Month 40. See Appendix B for detailed calculations.
- (b) PM2.5 is determined using the methodology in South Coast AQMD, 2006.
- (c) Assumes application of water three times per day.
- (d) The emissions in the table may differ slightly from those in Appendix B due to rounding.

6.2.1.1.3 May 2017 Final EIR Localized Construction Air Quality Impacts

The May 2017 Final EIR evaluated the localized air quality impacts of construction emissions in Table 4.2-3 (presented here as Table 4). The localized construction impacts were determined to be significant for nitrogen dioxide (NO₂) 1-hour emissions.

TABLE 4

Tesoro Los Angeles Refinery

LARIC Project Localized Construction Air Quality Impact Analysis Results
as Presented in the May 2017 Final EIR

Criteria Pollutant	Averaging Period	Modeled GLC (μg/m³)	Background GLC (μg/m³) ^(a)	Total GLC (μg/m³)	Most Stringent Air Quality Standard (μg/m³) ^(b)	Exceeds Significance Threshold?
СО	1-hour	291.38	7,929.8	8,221.1	23,000	No
CO	8-hour	58.46	4,908.9	4,967.4	10,000	No
	1-hour	200.43	255.5	455.9	339	Yes
NO ₂ ^(c)	1-hour (Federal)	156.51 ^(d)	146.30 ^(e)	302.8	188	Yes
	Annual	4.99	47.7	52.7	57	No
PM10	24-hour	3.46			10.4	No
PIVIIU	Annual	0.86	-		1	No
PM2.5	24-hour	3.46			10.4	No
F1V12.3	Annual	0.86			1	No

GLC = ground-level concentration

Source: May 2017 Final EIR Table 4.2-3

6.2.1.1.4 Currently Proposed Localized Construction Air Quality Impacts

The schedule changes associated with the currently proposed modifications affect the Localized Significance Threshold (LST) evaluation presented in the May 2017 Final EIR. Due to the revisions to the construction schedule, different project components will be constructed in the peak emissions month than were expected in the May 2017 Final EIR. Consequently, the LST evaluation has been revised to reflect the expected construction schedule including the currently proposed modifications (see Appendix C for the complete LST report). Table 5 shows the revision to the May 2017 Final EIR for the currently proposed modifications localized construction air quality impacts. The revised construction schedule results in less concurrent construction of LARIC Project components, which reduces emissions during peak construction.

⁽a) South Coastal LA County years 2011-2014 Station 033 and 072.

⁽b) South Coast AQMD Air Quality Significance Thresholds. For PM10 and PM2.5, project comparison to incremental change. CO and NO₂ values converted from ppm values in Table 3. Standards are state standards unless distinguished as Federal.

⁽c) Impacts from air dispersion model are reported as using ambient ratio method.

The federal 1-hour NO₂ standard is the 3-year average of the 98th percentile. The modeled GLC used highest 98th percentile per year.

⁽e) 98th percentile background NO₂ value from the South Coast AQMD.

While the emissions of NOx still exceed the significance threshold, the total ground-level concentrations are lower than those analyzed in the May 2017 Final EIR. currently proposed modifications do not change the conclusion of the May 2017 Final EIR or increase the severity of impacts identified in the May 2017 Final EIR.

TABLE 5 **Tesoro Los Angeles Refinery** LARIC Project Localized Construction Air Quality Impact Analysis Results **Including the Currently Proposed Modifications**

Criteria Pollutant	Averaging Period	Modeled GLC (μg/m³)	Background GLC (μg/m³) ^(a)	Total GLC (μg/m³)	Most Stringent Air Quality Standard (μg/m³) ^(b)	Exceeds Significance Threshold?
CO	1-hour	99.39 291.38	4,196.6 7,929.8	4,296.0 8,221.1	23,000	No
СО	8-hour	25.89 58.46	2,646.5 4,908.9	2,672.4 4,967.4	10,000	No
	1-hour	110.48 200.43	253.2 255.5	363.7 455.9	339	Yes
NO ₂ ^(c)	1-hour (Federal)	82.33 ^(d) 156.51	133.83 ^(e) 146.30	216.2 302.8	188	Yes
	Annual	1.15 4.99	38.6 47.7	39.7 52.7	57	No
DM10	24-hour	1.14 3.46			10.4	No
PM10	Annual	<u>0.12</u> 0.86			1	No
DM2.5	24-hour	1.14 3.46			10.4	No
PM2.5	Annual	<u>0.12</u> 0.86			1	No

GLC = ground-level concentration

⁽a) South Coastal LA County years 2014-2016 Station 033 and 072 (the three most recent years).

⁽b) South Coast AQMD Air Quality Significance Thresholds. For PM10 and PM2.5, project comparison to incremental change. CO and NO2 values converted from ppm values in Table 3. Standards are state standards unless distinguished as Federal.

⁽c) Impacts from air dispersion model are reported as using ambient ratio method.

⁽d) The federal 1-hour NO₂ standard is the 3-year average of the 98th percentile. The modeled GLC used highest 98th percentile per year.

(e) 98th percentile background NO₂ value from the South Coast AQMD.

6.2.1.2 Operational Emissions Impacts

6.2.1.2.1 May 2017 Final EIR Criteria Pollutant Emission Impacts

In the May 2017 Final EIR, the LARIC Project was expected to have emissions reductions of CO and less than significant emission increases of VOC, NOx, SOx, PM10, and PM2.5 (see Table 4.2-4 from the May 2017 Final EIR presented here as Table 6). ERCs were required to be supplied for VOC and were expected to be retained by Tesoro for PM10 and PM2.5. RECLAIM trading credits (RTCs) were expected to be retained for NOx and SOx. The operational emissions of the LARIC Project were determined to be less than significant. The increases in emissions of NOx, SOx, PM10 and PM2.5 are exclusively from mobile sources. There are large localized emissions decreases of these pollutants from stationary sources, but these decreases are not creditable on a regional basis because Tesoro is expected to retain RTCs and ERCs that may be sold or used to offset future emission increases elsewhere.

6.2.1.2.2 Currently Proposed Modifications Criteria Pollutant Emission Impacts

The changes to the expected emissions from the LARIC Project due to the currently proposed modifications are shown in Table 7. The changes shown in Table 7 include: 1) reducing the VOC emissions from fugitive emissions associated with replacing the Naphtha Isomerization Unit modifications with the C3 Splitter Unit modifications; and, 2) adding the VOC emissions from the proposed throughput increase for Carson Operations Tank 35. No changes to VOC emissions will occur as a result of the updated toxic speciation profile for the CCT tanks.

Any project VOC emissions increases from stationary sources are required to comply with Regulation XIII; as such, VOC ERCs are required to be provided to offset emission increases, resulting in net zero emissions. Therefore, the projected VOC emissions after implementation of the currently proposed modifications (reported in Table 7) remain the same as analyzed in the May 2017 Final EIR (reported in Table 6). Mobile source emissions are not subject to Regulation XIII or RECLAIM offset requirements. Therefore, the overall LARIC Project regional emissions impacts result from mobile source emissions. The local emissions will be reduced, but these decreases are not creditable on a regional basis because Tesoro is expected to retain RTCs and ERCs that may be sold or used to offset future emission increases elsewhere.

The currently proposed modifications do not change the significance determination made in the May 2017 Final EIR.

TABLE 6 Tesoro Los Angeles Refinery LARIC Project Operational Emissions Summary as Presented in the May 2017 Final EIR

9			Emission	s (lb/day)		
Sources	VOC	CO	NOx	SOx	PM10	PM2.5 ^(a)
Direct Emiss	sion Impact	s from Stat	ionary Soul	rces		
Wilmington DCU H-100 Heater Duty Bump ^(b)	-0.43	-5.14	-171.03	86.69	-0.98	-0.98
Wilmington HCU H-300/301 Heater Duty Bump ^(c)	10.10	49.75	4.67	-14.98	10.79	10.79
SARP Process Air Heater	3.27	16.37	6.99	0.28	3.51	3.51
SARP Decomp. Furnace	6.88	34.39	2.45	0.59	7.37	7.37
SARP Converter Heater	0.82	4.09	1.75	0.07	0.88	0.88
SARP Process Vent				31.12		
Wilmington Tanks	141.64					
Wilmington Fugitive Emissions:						
CRU 3	10.24					
Crude Tanks	3.61					
HCU	20.69					
HTU 1	3.50					
HTU 2	3.80					
HTU 4	6.32					
Interconnect Piping	37.20					
PSTU	15.44					
Sulfuric Acid Plant ^(d)						
Wilmington FCCU Shutdown:(e)						
Wilmington FCCU and CO Boiler	-290.46	-909.62	-343.31	-387.50	-121.30	-121.30
Wilmington Heaters H2, H3/H4, and H5	-10.74	-49.36	-226.28	-28.87	-49.88	-49.88
Wilmington Startup Heater	-0.16	-0.81	-3.00	-0.01	-0.17	-0.17
Wilmington Fugitive Components	-17.60					
Carson No. 51 Vacuum Unit Heater	32.85	233.85	32.72	1.80	45.49	45.49
Carson Naphtha HDS ULNB Conversion	1.73	10.23	1.87	0.64	5.56	5.56
Carson Crude Tanks	112.51					
Carson Fugitive Emissions:						
No. 51 Vacuum Unit	11.74					
Alkylation	18.88					
Crude Tanks	43.05					
Carson HCU Mods	6.77					
Interconnect Piping	27.22					
Carson LHU Mods	14.34					
Carson LPG Railcar Unload	26.85					
Carson Mid Barrel Distillate Treater	2.15					
Carson Naphtha Isomerization Unit	9.46					
Carson NHDS Mods	15.21					
Carson Wet Jet Treater	50.45					
Subtotal, Direct Stationary Source Emissions	317.33	-616.25	-693.17	-310.17	-98.73	-98.73

TABLE 6 (continued)

G	Emissions (lb/day)							
Sources	VOC	CO	NOx	SOx	PM10	PM2.5 ^(a)		
Indirect Em	ission Impa	cts from S	tationary So	urces				
Wilmington DCU Heater H-101	0.83	4.36	19.00	7.58	0.83	0.83		
Wilmington HTU #3 Heaters H-30 and H-21/22	2.20	3.14	20.56	3.86	2.56	2.56		
Wilmington CRU Heaters H-501A/B, H-502, H-503/504, and H-510	0.23	1.55	1.75	0.65	0.74	0.74		
Wilmington Boilers 7, 8, 9, and 10	1.26	0.74	24.00	6.14	3.78	3.78		
Wilmington SRP Boilers H-1601/1602	0.02	0.01	0.11	0.04	0.05	0.05		
Wilmington SRP Incinerators F-704 and F-754	0.02	0.08	0.76	25.32	0.04	0.04		
Wilmington Existing Tanks 80044, 80074, 80211, 80215, and 80217	4.12							
Carson FCCU ^(f)								
Carson HC Heater R-1	1.77	1.04	18.00	4.61	5.38	5.38		
Carson HC Heater R-2	2.36	1.38	14.40	9.81	7.18	7.18		
Carson LHU Heater	0.62	0.36	6.00	1.50	1.87	1.87		
Carson Existing Tanks 14, 31, 62, 63, 64, 502, and 959	64.35							
Watson Cogen Facility	4.15	4.50	20.60	2.50	9.85	9.85		
Subtotal, Indirect Stationary Source Emissions	81.93	17.16	125.18	62.01	32.28	32.28		
	Mobile	Sources (g)(l	h)					
Vehicle Emissions	0.03	0.20	0.73	< 0.01	0.21	0.05		
Rail Emissions – On-Site Maneuvering	0.66	2.01	11.65	< 0.01	0.25	0.24		
Rail Emissions – In Basin Transiting	1.20	7.60	25.80	< 0.01	0.70	0.60		
Subtotal, Mobile Source Emissions	1.89	9.81	38.18	<0.01	1.16	0.89		
Total Project Emissions	401.15	-589.28	-529.81	-248.15	-65.29	-65.56		
Required Regulation XIII Compliance ⁽ⁱ⁾	-317.33							
Prior Regulation XIII Compliance ^(j)	-34.73				-9.85	-9.85		
Expected ERCs ^(k)			-		76.30	76.30		
Expected RTCs to be Retained(1)			491.63	248.14				
Total Project Emissions after Regulation XIII Compliance and ERC Generation ^(m)	49.09	-589.28	38.18	<0.01	1.16	0.89		
Significance Threshold During								
Operation	55	550	55	150	150	55		
Source: May 2017 Final EIR Table 4.2-4	No	No	No	No	No	No		

Source: May 2017 Final EIR Table 4.2-4

Note: Negative numbers represent emission reductions.

- (a) PM10 emissions are assumed to be 100 percent PM2.5 emissions for stationary combustion sources.
- (b) Negative numbers represent emission reductions as a result of permit limits imposed, which will reduce emissions to less than historically achieved.
- (c) SOx emissions reduction expected due to fuel switch from refinery fuel gas to natural gas, which contains less sulfur.
- (d) No fugitive VOC emissions are expected from the Sulfuric Acid Plant.
- (e) Based on actual historical emissions.
- (f) Peak daily emissions are not expected to change, but increased utilization will affect annual emissions.
- (g) Peak day marine vessel emissions do not change as a result of the proposed project.

TABLE 6 (concluded)

- (h) On-road mobile source emissions represent vehicle trips only within the jurisdiction of the South Coast AQMD. On-road mobile source emissions projected to occur outside of the South Coast AQMD's area of jurisdiction are provided in Subsection 4.2.2.2.2.
- (i) Regulation XIII compliance requires offsetting the project direct stationary source emissions increases. Indirect stationary source emissions increases comply with Regulation XIII New Source Review.
- (j) Some indirect sources (i.e., Carson Tanks 14, 502, and 959, Wilmington H-101, and Carson R-2) have undergone prior new source review.
- (k) ERCs for emission reductions are expected to be generated for PM10. No credits are issued for PM2.5 because it is a constituent of PM10.
- (l) Local emission reductions of SOx and NOx will result from the project. Tesoro will retain RTCs from retiring the Wilmington Operations FCCU for operation of its Los Angeles Refinery.
- (m) Regulation XIII compliance applied to significance determination reduces the VOC emissions to zero from stationary sources and ERCs are expected from emission reductions of PM10, so that the proposed project shows an emissions increase from mobile sources only.

TABLE 7

Tesoro Los Angeles Refinery

LARIC Project Operational Emissions Summary

Including the Currently Proposed Modifications

			Emission	s (lb/day)		
Sources	VOC	CO	NOx	SOx	PM10	PM2.5 ^(a)
Direct Emiss	sion Impact	s from Stat	ionary Soul	rces		
Wilmington DCU H-100 Heater Duty Bump ^(b)	-0.43	-5.14	-171.03	86.69	-0.98	-0.98
Wilmington HCU H-300/301 Heater Duty Bump ^(c)	10.10	49.75	4.67	-14.98	10.79	10.79
SARP Process Air Heater	3.27	16.37	6.99	0.28	3.51	3.51
SARP Decomp. Furnace	6.88	34.39	2.45	0.59	7.37	7.37
SARP Converter Heater	0.82	4.09	1.75	0.07	0.88	0.88
SARP Process Vent				31.12	6.00 ^(d)	6.00 ^(d)
Wilmington Tanks	141.64					
Wilmington Fugitive Emissions:						
CRU 3	10.24					
Crude Tanks	3.61					
HCU	20.69					
HTU-1	3.50					
HTU-2	3.80					
HTU-4	6.32					
Interconnect Piping	37.20					
PSTU	15.44					
Sulfuric Acid Plant ^(e)						
Wilmington FCCU Shutdown:(f)						
Wilmington FCCU and CO Boiler	-290.46	-909.62	-343.31	-387.50	-121.30	-121.30
Wilmington Heaters H2, H3/H4, and H5	-10.74	-49.36	-226.28	-28.87	-49.88	-49.88
Wilmington Startup Heater	-0.16	-0.81	-3.00	-0.01	-0.17	-0.17
Wilmington Fugitive Components	-17.60					
Carson No. 51 Vacuum Unit Heater	32.85	233.85	32.72	1.80	45.49	45.49
Carson Naphtha HDS ULNB Conversion	1.73	10.23	1.87	0.64	5.56	5.56
Carson Crude Tanks	112.51					
Carson Fugitive Emissions:						
No. 51 Vacuum Unit	11.74					
Alkylation	18.88					
Crude Tanks	43.05					
Carson HCU Mods	6.77					
Interconnect Piping	27.22					
Carson LHU Mods	14.34					
Carson LPG Railcar Unload	26.85					
Carson Mid Barrel Distillate Treater	2.15					
C3 Splitter Unit	0.83					
Carson Naphtha Isomerization Unit	9.46					

TABLE 7 (continued)

			Emission	s (lb/dav)		1
Sources	VOC	CO	NOx	SOx	PM10	PM2.5 ^(a)
Carson NHDS Mods	15.21					
Carson Wet Jet Treater	50.45					
<u>Tank 35</u>	7.89					
Subtotal, Direct Stationary Source Emissions	316.59 317.33	-616.25	-693.17	-310.17	<u>-92.73</u> <u>-98.73</u>	<u>-92.73</u> <u>-98.73</u>
Indirect Emis	sion Impact	s from Sta	tionary Sour			
Wilmington DCU Heater H-101	0.83	4.36	19.00	7.58	0.83	0.83
Wilmington HTU #3 Heaters H-30 and H-21/22	2.20	3.14	20.56	3.86	2.56	2.56
Wilmington CRU Heaters H-501A/B, H-502, H-503/504, and H-510	0.23	1.55	1.75	0.65	0.74	0.74
Wilmington Boilers 7, 8, 9, and 10	1.26	0.74	24.00	6.14	3.78	3.78
Wilmington SRP Boilers H-1601/1602	0.02	0.01	0.11	0.04	0.05	0.05
Wilmington SRP Incinerators F-704 and F-754	0.02	0.08	0.76	25.32	0.04	0.04
Wilmington Existing Tanks 80044, 80074, 80211, 80215, and 80217	4.12					
Carson FCCU ^(g)						
Carson HC Heater R-1	1.77	1.04	18.00	4.61	5.38	5.38
Carson HC Heater R-2	2.36	1.38	14.40	9.81	7.18	7.18
Carson LHU Heater	0.62	0.36	6.00	1.50	1.87	1.87
Carson Existing Tanks 14, 31, 62, 63, 64, 502, and 959	64.35					
Watson Cogen Facility	4.15	4.50	20.60	2.50	9.85	9.85
Subtotal, Indirect Stationary Source Emissions	81.93	17.16	125.18	62.01	32.28	32.28
	Mobile S	ources ^{(h)(i)}			l .	I
	0.20	0.79	2.98	< 0.01	0.22	0.05
Vehicle Emissions ^(j)	0.03	0.20	0.73		0.21	
Rail Emissions – On-Site Maneuvering	0.66	2.01	11.65	< 0.01	0.25	0.24
Rail Emissions – In Basin Transiting	1.20	7.60	25.80	< 0.01	0.70	0.60
Subtotal, Mobile Source Emissions	2.06 1.89	10.40 9.81	40.43 38.18	<0.01	1.17 1.16	0.89
Total Project Emissions	400.58 401.15	<u>-588.69</u> <u>-589.28</u>	<u>-527.56</u> - 529.81	-248.15	<u>-59.28</u> <u>-65.29</u>	<u>-59.56</u> - 65.56
Required Regulation XIII Compliance(k)	<u>-316.59</u> -317.33					
Prior Regulation XIII Compliance ⁽¹⁾	-41.62 -34.73		1	1	-9.85	-9.85
Expected ERCs ^(m)	-				70.30 76.30	70.30 76.30
Expected RTCs to be Retained ⁽ⁿ⁾			<u>567.99</u> 491.63	248.16 248.14		
Total Project Emissions after Regulation XIII Compliance and ERC Generation (o)	42.37 49.09	<u>-588.69</u> <u>-589.28</u>	40.43 38.18	<0.01	1.17 1.16	0.89
Significance Threshold During Operation	55	550	55	150	150	55
Significant?	No	No	No	No	No	No

TABLE 7 (concluded)

Note: Negative numbers represent emission reductions.

- (a) PM10 emissions are assumed to be 100 percent PM2.5 emissions for stationary combustion sources.
- (b) Negative numbers represent emission reductions as a result of permit limits imposed, which will reduce emissions to less than historically achieved.
- (c) SOx emissions reduction expected due to fuel switch from refinery fuel gas to natural gas, which contains less sulfur.
- (d) Corrects omission from Table 4.2-4 of the May 2017 Final EIR. The PM10 was reported in Appendix B-3 of the May 2017 Final EIR, but not included in the summary table in Chapter 4 (Table 6 of this Addendum).
- (e) No fugitive VOC emissions are expected from the Sulfuric Acid Plant.
- (f) Based on actual historical emissions.
- (g) Peak daily emissions are not expected to change, but increased utilization will affect annual emissions.
- (h) Peak day marine vessel emissions do not change as a result of the proposed project.
- (i) On-road mobile source emissions represent vehicle trips only within the jurisdiction of the South Coast AQMD. On-road mobile source emissions projected to occur outside of the South Coast AQMD's area of jurisdiction are provided in Subsection 4.2.2.2.2.
- (j) Corrects omission from Table 4.2-4 of the May 2017 Final EIR. The on-site emissions were reported in Appendix B-3 of the May 2017 Final EIR, but not included with the off-site emissions in the summary table in Chapter 4 (Table 6 of this Addendum).
- (k) Regulation XIII compliance requires offsetting the project direct stationary source emissions increases. Indirect stationary source emissions increases comply with Regulation XIII New Source Review.
- (1) Some indirect sources (i.e., Carson Tanks 14, 502, and 959, Wilmington H-101, and Carson R-2) have undergone prior new source review. Additionally, direct source Tank 35 has undergone prior new source review.
- (m) ERCs for emission reductions are expected to be generated for PM10. No credits are issued for PM2.5 because it is a constituent of PM10.
- (n) Local emission reductions of SOx and NOx will result from the project. Tesoro will retain RTCs from retiring the Wilmington Operations FCCU for operation of its Los Angeles Refinery. Mathematical correction to totals presented in May 2017 Final EIR.
- (o) Regulation XIII compliance applied to significance determination reduces the VOC and PM10 emissions from stationary sources. Mobile sources are not subject to Regulation XIII or RECLAIM offset requirements.

6.2.1.2.3 May 2017 Final EIR Interim Operations Scenario Evaluation

The May 2017 Final EIR presented emissions from an interim operations scenario due to some project components that were expected to be implemented prior to the shutdown of the Wilmington Operations FCCU (see Table 4.2-5 from the May 2017 Final EIR presented here as Table 8). The interim operations emissions were expected to occur for up to approximately one year until the Wilmington Operation FCCU was to be shutdown, at which time, emission reductions would occur. No significant air quality impacts were identified from the interim operations.

6.2.1.2.4 Currently Proposed Interim Operations Scenario Evaluation

The Wilmington Operations FCCU shutdown occurred in October 2018. Therefore, none of the currently proposed modifications would occur during the time period between the LARIC Project approval and the Wilmington Operations FCCU shutdown (i.e., the interim operating period). Thus, the currently proposed modifications have no impact on the interim operations air quality analysis that was presented in the May 2017 Final EIR, do not change the significance determination, or make a significant impact more severe.

TABLE 8

Tesoro Los Angeles Refinery LARIC Project Interim Operational Emissions Summary as Presented in the May 2017 Final EIR

Saurage	Emissions (lb/day)							
Sources	VOC	CO	NOx	SOx	PM10	PM2.5 ^(a)		
Direct Emiss	ion Impacts	from Stat	ionary Sour	ces				
Wilmington DCU H-100 Heater Duty Bump ^(b)	-0.43	-5.14	-171.03	86.69	-0.98	-0.98		
Wilmington Fugitive Emissions:								
HCU	20.69							
Carson Fugitive Emissions:								
Carson HCU Mods	6.77							
Carson LHU Mods	14.34							
Carson Mid Barrel Distillate Treater	2.15							
Subtotal, Direct Stationary Source Emissions	43.52	-5.14	-171.03	86.69	-0.98	-0.98		
Indirect Emis	sion Impact	ts from Sta	tionary Sou	rces				
Wilmington DCU Heater H-101	0.83	4.36	19.00	7.58	0.83	0.83		
Wilmington HTU #3 Heaters H-30 and H-21/22	2.20	3.14	20.56	3.86	2.56	2.56		
Wilmington CRU Heaters H-501A/B, H-502, H-503/504, and H-510	0.23	1.55	1.75	0.65	0.74	0.74		
Wilmington Boilers 7, 8, 9, and 10	1.26	0.74	24.00	6.14	3.78	3.78		
Wilmington SRP Boilers H-1601/1602	0.02	0.01	0.11	0.04	0.05	0.05		
Wilmington SRP Incinerators F-704 and F-754	0.02	0.08	0.76	25.32	0.04	0.04		
Wilmington Existing Tanks 80044, 80074, 80211, 80215, and 80217	4.12							
Carson LHU Heater	0.62	0.36	6.00	1.50	1.87	1.87		
Subtotal, Indirect Stationary Source Emissions	9.30	10.24	72.18	45.09	9.87	9.87		
Total Project Emissions	52.82	5.10	-98.85	131.78	8.89	8.89		
Required Regulation XIII Compliance ^(c)	-43.52							
Prior Regulation XIII Compliance ^(d)	-0.83	-	-					
Total Project Emissions after Regulation XIII Compliance	8.47	5.10	-98.85	131.78	8.89	8.89		
Significance Threshold During Operation	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		

Note: Negative numbers represent emission reductions.

- (a) PM10 emissions are assumed to be 100 percent PM2.5 emissions for stationary combustion sources.
- (b) Negative numbers represent emission reductions as a result of permit limits imposed, which will reduce emissions to less than historically achieved.
- (c) Regulation XIII compliance requires offsetting the project direct stationary source emissions increases. Indirect stationary source emissions increases comply with Regulation XIII New Source Review.
- (d) Indirect source Wilmington H-101has undergone prior new source review.

Source: May 2017 Final EIR, Table 4.2-5

6.2.1.2.5 May 2017 Final EIR 90-Day Transitional Period Evaluation

The May 2017 Final EIR analyzed the 90-day transitional period when LARIC Project components would become operational to facilitate the shutdown of the Wilmington Operations FCCU and on-going construction would occur concurrently. Table 4.3-6 of the May 2017 Final EIR presented the emissions associated with 90-day transitional period using the peak construction emissions from the transitional period combined with the operational emissions associated with LARIC Project components (presented here as Table 9). The transitional period was determined to be significant for VOC and NOx emissions primarily due to the significant construction VOC and NOx emissions. Mitigation was imposed on construction and for specific stationary sources.

6.2.1.2.6 Currently Proposed Modifications 90-Day Transitional Period Evaluation

The Wilmington Operations FCCU shutdown occurred in October 2018. Therefore, none of the currently proposed modifications would occur during the 90-day time period prior to the shutdown (i.e., the 90-day transitional period). Thus, the currently proposed modifications have no impact on the transitional period air quality analysis that was presented in the May 2017 Final EIR, do not change the significance determination, or make a significant impact more severe.

6.2.1.2.7 May 2017 Final EIR Impacts to Ambient Air Quality

The May 2017 Final EIR included an ambient air analysis for operational activities. Table 4.2-12 of the May 2017 Final EIR presented the results of ambient air quality modeling (presented here as Table 10). No significant impacts to ambient air quality from operations were expected from implementation of the LARIC Project.

6.2.1.2.8 Currently Proposed Modifications Impacts to Ambient Air Quality

The currently proposed modifications affect operational fugitive VOC emissions only and the CO, NO₂, SO₂, PM10, and PM2.5 emissions modeled in the May 2017 Final EIR remain unchanged. Thus, the ambient air quality modeling for CO, NO₂, SO₂, PM10, and PM2.5 is not affected by the currently proposed modifications. Therefore, the currently proposed modifications do not change the significance determination in the May 2017 Final EIR and do not make significant impacts more severe.

TABLE 9

Tesoro Los Angeles Refinery LARIC Project Construction and 90-Day Transitional Period Operational Emissions Summary as Presented in the May 2017 Final EIR

Sources		_	Emission	s (lb/day)	_	_
Sources	VOC	CO	NOx	SOx	PM10	PM2.5 ^(a)
CON	ISTRUCTI	ON EMISS	SIONS			
Maximum Construction Emissions during Transitional Period ^(b)	52.38	488.48	575.73	1.41	68.55	38.67
TRANSITIONAL	PERIOD (OPERATIO	ONAL EMI	SSIONS		
Emissions from Interim Operations (c)	8.47	5.10	-98.85	131.78	8.89	8.89
Direct Emission	on Impacts	from Statio	onary Sourc	ces ^(d)		
Wilmington Fugitive Emissions:						
Interconnect Piping ^(e)	13.02					
Carson Fugitive Emissions:						
Interconnect Piping ^(e)	9.53					
Carson LPG Railcar Unload	26.85					
Carson NHDS Mods	15.21					
Subtotal, Direct Stationary Source Emissions	64.61					
Indirect Emis	sion Impac	ts from Sta	tionary Sou	rces		
Carson Existing Tanks 31,62 63, and 64	36.92					
Subtotal, Indirect Stationary Source Emissions	36.92					
	Mobile	Sources				
Rail Emissions – On-Site Maneuvering	0.66	2.01	11.65	< 0.01	0.25	0.24
Rail Emissions – In Basin Transiting	1.20	7.60	25.80	< 0.01	0.70	0.60
Subtotal, Mobile Source Emissions	1.86	9.61	37.45	< 0.01	0.95	0.84
Total Construction and Transitional Period Project Emissions	164.24	503.19	514.33	133.19	78.39	48.40
Required Regulation XIII Compliance(f)	-64.61					
Total Project Emissions after Regulation XIII Compliance	99.63	503.19	514.83	133.19	79.39	48.40
Significance Threshold During Operation ^(g)	55	550	55	150	150	55
Significant?	Yes	No	Yes	No	No	No

- (a) PM10 emissions are assumed to be 100 percent PM2.5 emissions for stationary combustion sources.
- (b) The projected peak construction emissions during the transitional period are expected to occur in Month 18 (See Appendix B-1 of the May 2017 Final EIR Construction Emission Summary).
- (c) From Table 8.
- (d) The unmitigated construction emissions combined with the transitional period of operational emissions are expected to occur for the 90 days prior to the Wilmington Operations FCCU shutdown. At which time, emission reductions will occur (see Table 6).
- (e) The emissions associated with the interconnecting piping have been reduced to reflect that prior to the shutdown of the Wilmington Operations FCCU only two pipes will be operational.
- (f) Regulation XIII compliance requires offsetting the project direct stationary source emissions increases. Indirect stationary source emissions increases comply with Regulation XIII New Source Review.
- (g) When construction activities occur concurrently with project operation, the operational significance threshold is applied. Source: May 2017 Final EIR, Table 4.2-6

TABLE 10

Tesoro Los Angeles Refinery

LARIC Project Results of Criteria Pollutants Air Quality Modeling
as Presented in the May 2017 Final EIR

Criteria Pollutant	Averaging Period	Modeled GLC (μg/m³)	Background GLC. (µg/m³) ^(a)	Total GLC (μg/m³)	Most Stringent Air Quality Standard (µg/m³) ^(b)	Exceeds Significance Threshold?
СО	1-hour	11.2	4,809.0	4,820.2	23,000	No
CO	8-hour	5.1	2,977.0	2,982.1	10,000	No
	1-hour	48.5	255.5	304.0	339	No
$NO_2^{(c)}$	1-hour (Fed.) ^(d)	40.8	146.3 ^(e)	187.1	188	No
	Annual	2.1	47.6	49.7	57	No
	1-hour	6.5	64.9	71.4	655	No
SO_2	1-hour (Fed.) ^(f)	6.5	40.0	46.6	196	No
	24-hour	0.6	64.9	65.5	105	No
PM10	24-hour	0.42			2.5	No
FIVITU	Annual	0.52			1.0	No
PM2.5	24-hour	0.42	-		2.5	No

- (a) South Coastal LA County 3 years 2012-2014. Maximum value of the three years was used, except concentrations used to compare with federal standards were averages.
- (b) South Coast AQMD Air Quality Significance Thresholds. For PM10 and PM2.5, project comparison to incremental change. Standards are state standards unless distinguished as Federal. CO and NO₂ values converted from ppm values in Table 3.
- (c) Impacts from air dispersion model are reported as NOx. NO₂ converted from NOx by using default factor of 0.8 for hourly and 0.75 for annual, per 9/30/2014 Memorandum from R Chris Owen and Roger Brode, U.S. EPA Air Quality Modeling Group, to Regional Air Division Directors re: Clarification on the Use of AERMOD Dispersion Modeling for Demonstrating Compliance with the NO₂ NAAQ.
- (d) Federal standard is the 98th percentile concentration, averaged over three years.
- (e) 98th percentile background NO₂ value from the South Coast AQMD.
- (f) Federal standard is the 99th percentile concentration, averaged over three years.

Source: May 2017 Final EIR, Table 4.2-12

6.2.1.2.9 May 2017 Final EIR Toxic Air Contaminant Impacts

The May 2017 Final EIR included a health risk assessment (HRA) for operational emissions associated with the LARIC Project. In the response to comments to the Draft EIR, the May 2017 Final EIR included a supplemental HRA focused on the health impacts of the construction and operational activities of the LARIC Project (see May 2017 Final EIR Appendix H, Table 1 (presented here as Table 11)). In all three scenarios, operations, construction, and combined construction and operation, the resulting health risk impacts of the LARIC Project were determined to be less than significant.

Table 11 Tesoro Los Angeles Refinery LARIC Project Construction, Operational, and Combined Health Risk Results as Presented in the May 2017 Final EIR

Receptor	Operatio	ns Only ^(a)	Construct	ion Only ^(b)	Combined Construction and Operations (c)	
Location	Cancer Risk	Chronic HI	Cancer Risk	Chronic HI	Cancer Risk	Chronic HI
Resident	3.7×10^{-6}	0.030	2.9×10^{-6}	0.003	5.7×10^{-6}	0.033
Worker	9.3 x 10 ⁻⁶	0.106	2.5×10^{-6}	0.008	9.3 x 10 ⁻⁶	0.115

HI = hazard index

(a) Resident UTM Coordinates: 383700, 3741400; Worker UTM Coordinates: 386005.9, 3742921.4

(b) Resident UTM Coordinates: 385251.4, 3739502.8; Worker UTM Coordinates: 384457.8, 3741374.6

(c) Resident UTM Coordinates: 385251.4, 3739502.8; Worker UTM Coordinates: 386005.9, 3742921.4

Source: May 2017 Final EIR, Appendix H, Table 1

6.2.1.2.10 Currently Proposed Modifications Toxic Air Contaminant Impacts

The following currently proposed modifications will alter the TAC emission estimates that were evaluated in the May 2017 Final EIR:

- Carson Operations C3 Splitter Unit: Replacing the Carson Naphtha Isomerization Unit modification portion of the project with the Carson Operations C3 Splitter Unit will change the quantities, types and location of TACs emitted from the project.
- Carson Operations Storage Tank 35: This proposed modification will increase the TAC emissions from the project due to increased throughput at Carson Operations Tank 35.
- Carson Crude Terminal: The speciation will be revised to incorporate the differences in concentrations of some TACs and to include H₂S concentrations for some crude oils.

Therefore, new modeling was performed for the entire LARIC Project updated with the potential changes in TAC emissions from the currently proposed modifications (see Appendix E for details).

The HRA included in the May 2017 Final EIR relied upon the South Coast AQMD's meteorological data set for years 2006-2011. Subsequently, the South Coast AQMD published a new meteorological data set for years 2012–2016. To show the effect on the change in meteorological data, Table 12 summarizes the results of the HRA for the LARIC Project using the 2006–2011 meteorological data set as published in the May 2017 Final EIR results and compares it to the results for the LARIC Project using the 2012–2016 meteorological data set. The change in meteorological data has the effect of reducing the residential and worker cancer risk and chronic hazard index values and slightly increasing the maximum cancer risk at a sensitive receptor and acute health hazard index. Table 12 also presents the results using the 2012–2016 meteorological data set including the potential impacts from the currently proposed modifications to the LARIC Project. The results for the LARIC Project using the 2012–2016

meteorological data set are similar to those for the LARIC Project including the currently proposed modifications using the same 2012–2016 meteorological data set (i.e., the incremental change with the currently proposed modifications indicates the residential cancer risk increase is about 0.1 and the chronic hazard index increase is 0.007). The projected maximum impact locations are shown in Figure 6.

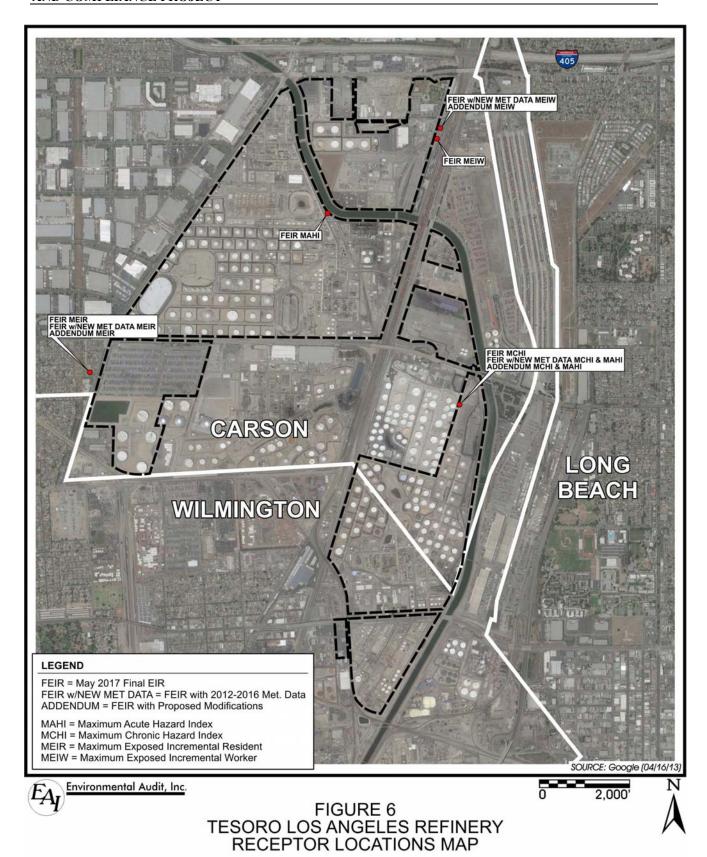
TABLE 12

Tesoro Los Angeles Refinery

Comparison of LARIC Project Results of Health Risk Modeling

Including the Currently Proposed Modifications

Using Different Meteorological Data Sets


Location	Significance Threshold	LARIC Project as in the Final EIR using 2006-2011 met data	Original LARIC Project using 2012-2016 met data ^(a)	LARIC Project with Currently Proposed Modifications using 2012- 2016 met data	Incremental Change	Exceeds Significance Threshold?
		Cancer Ri	sk (per million)			
Residential Receptor	10	3.7	2.8	2.9	0.1	No
Offsite Workplace Receptor	10	9.3	7.0	7.0	< 0.1	No
Sensitive Receptor	10	2.1	2.4	2.4	< 0.1	No
		Chronic	Hazard Index			
Offsite Workplace Receptor	1	0.106	0.078	0.085	0.007	No
		Acute H	lazard Index			
Offsite Workplace Receptor	1	0.052	0.076	0.076	< 0.001	No

See Appendix E for further details.

The currently proposed modifications do not change the construction equipment that will be utilized, but rearrange the construction schedule. The supplemental HRA presented in Appendix H of the May 2017 Final EIR conservatively assumed all construction and operational modifications occurred concurrently. This assumption overestimated the expected risk because the operation of the approved project components to be constructed was assumed to occur concurrently with their construction.

Using the same approach as used in Appendix H of the May 2017 Final EIR (i.e., evaluating the construction and operation impacts as if they were occurring concurrently), the currently proposed modifications and construction activities were combined to determine the potential health impacts. Table 13 compares the potential health impacts from the currently proposed modifications occurring concurrently with construction to the results presented in the May 2017 Final EIR. In each case, the results do not exceed the significance thresholds.

⁽a) Only the meteorological data was changed to show that effect independently of the currently proposed modifications.

Project No. 2844

N:\2844\Receptor-2019APR\Receptor Locations Map.cdr

TABLE 13

Tesoro Los Angeles Refinery

Comparison of LARIC Project Combined Construction and Operational Health Risk Results to the LARIC Project with the Currently Proposed Modifications and Revised Construction Health Risk Results

Recepto Locatio	May 2017 Final EIR Combined Construction and Operation using 2006- 2011 met data	Original LARIC Project using 2012-2016 met data ^(a)	LARIC Project with Currently Proposed Modifications using 2012-2016 met data ^(b)	Incremental Change ^(c) Significance Threshold		Exceeds Significance Threshold?
			Cancer Risk (per n	nillion)		
Resident	5.7	4.7	4.7	< 0.1	10	No
Worker	9.3	7.0	7.0	< 0.1	10	No
Worker	9.3	7.0	7.0 Chronic Hazard	-	10	No

The revised HRA prepared as part of this Addendum (see Appendix E) conservatively represents the potential health impacts of the currently proposed modifications with the restructured construction schedule; no change in the significance determination in the May 2017 Final EIR or in the severity of significant impacts is expected from the currently proposed modifications.

6.2.1.3 Cumulative Air Quality Impacts

6.2.1.3.1 Construction Impacts

Section 5.2.1.2 of the May 2017 Final EIR concluded that the cumulative air quality impacts associated with the construction phase of the LARIC Project would exceed the air quality significance thresholds for VOC and NOx. Therefore, the cumulative air quality construction impacts were considered significant. Since CO, SOx, PM10, and PM2.5 construction emissions were not expected to exceed their respective project-specific thresholds, they were not considered to be cumulatively considerable and, therefore, would not contribute to cumulative construction air quality impacts.

The currently proposed modifications do not change the construction air quality significance determinations from the May 2017 Final EIR (see Tables 2 and 3). Therefore, no change to the cumulative construction impacts is expected.

6.2.1.3.2 Operational Impacts

In Section 5.2.1.3 of the May 2017 Final EIR, it was concluded that the cumulative air quality impacts associated with the operational phase of the LARIC Project was not cumulatively

considerable and would not contribute to the cumulative operational impacts for CO, VOC, NOx, SOx, PM10, and PM2.5.

The currently proposed modifications do not change the significance determination made in the May 2017 Final EIR (see Table 6 and 7) for operational air quality impacts and, therefore, do not change the cumulative operational air quality significance determination from the May 2017 Final EIR.

6.2.1.3.3 Toxic Air Contaminants

Section 5.2.1.4 of the May 2017 Final EIR concluded that the cumulative impacts of TAC emissions associated with the LARIC Project were below the significance criteria for cancer risk of ten per one million and below the significance criteria for hazard indices of 1.0. Therefore, significant adverse cumulative TAC impacts were not expected from the LARIC Project.

As presented in Tables 12 and 13, the currently proposed modifications do not substantially alter the HRA results from those reported in the May 2017 Final EIR (see Section 6.2.1.2.10 of this Addendum Table 11) and do not change the significance determinations for TACs in the May 2017 Final EIR. Therefore, the currently proposed modifications do not alter the cumulative TAC impacts, which are less than significant.

6.2.1.3.4 Greenhouse Gas Emissions

An evaluation of greenhouse gas (GHG) emissions, as presented in Section 5.2.2 of the May 2017 Final EIR, estimated construction emissions of 772 metric tons per year as amortized over 30 years, and a decrease in operational GHG emissions of 68,947 metric tons per year. The overall GHG emissions from the LARIC Project were expected to be a decrease of 68,175 metric tons per year with an AB32 Cap and Trade Allowance that offset the reduction to result in an emissions neutral GHG impact. Therefore, the GHG emissions impact was less than significant.

The currently proposed project takes into account a revised construction schedule, which will have the effect of reducing the 30-year amortized GHG emissions from 772 metric tons per year to 610 metric tons per year (see Appendix B); there will be no change in operational GHG emissions presented in the May 2017 Final EIR. Fewer construction GHG emissions will occur because fewer construction activities will be needed to implement the proposed Carson Operations C3 Splitter Unit modifications than the Carson Operations Naphtha Isomerization Unit modifications. Therefore, the currently proposed modifications will result in fewer GHG emissions than those presented in the May 2017 Final EIR such that the conclusion of less than significant GHG impacts will not change.

6.2.1.4 Mitigation Measures

The May 2017 Final EIR included the following eight construction mitigation measures to reduce the impact of the construction emissions and one operational mitigation measure, because

the VOC and NOx emissions during construction exceeded the South Coast AQMD air quality significance thresholds:

- Require development and implementation of a construction management program,
- Minimize the use of diesel-powered equipment through the use of electric or alternative-fueled equipment where available,
- Limit on-road truck and off-road equipment idling,
- Require equipment maintenance,
- Use electric welders instead of gas or diesel welders where electricity is available,
- Use on-site electricity rather than temporary power generators where electricity is available,
- Require use of Tier 4 engines on construction equipment greater than 50 hp unless unavailable, then use equipment with Tier 3 engines, and
- Prohibit the use of air pollutant emitting construction equipment on days with a first stage smog alert.

In addition, the May 2017 Final EIR included one operational mitigation measure to reduce NOx operational emissions during the construction period. The operational mitigation measure required Tesoro to implement early SCR catalyst replacement of three specified units on a schedule established in the May 2017 Final EIR. The SCR catalyst replacements were completed by year-end in 2017. Because the currently proposed modifications do not change the significance determinations made in the May 2017 Final EIR, no additional air quality mitigation measures are required.

6.2.2 Hazards and Hazardous Materials

The September 2014 NOP/IS determined that the LARIC Project has the potential to generate significant adverse hazards and hazardous materials impacts. The hazards and hazardous material impacts from the LARIC Project are discussed in this section.

Impacts associated with hazards will be considered significant if any of the following occur:

- Non-compliance with any applicable design code or regulation.
- Non-conformance to National Fire Protection Association standards.

- Non-conformance to regulations or generally accepted industry practices related to operating policies and procedures concerning the design, construction, security, leak detection, spill containment or fire protection.
- Exposure to hazardous chemicals in concentrations equal to or greater than the Emergency Response Planning Guideline (ERPG) 2 levels.
- Exposure to radiant heat exposures in excess of 1,600 British Thermal Units (Btu)/(hr-ft²) (the level that creates second degree burns on unprotected skin).
- Overpressure exposure that exceeds one pound per square inch (gauge) (psig) (the level that would result in partial demolition of houses).
- Flash fire hazard zones that exceed the lower flammable limit (LFL) (the level that would result in a flash fire in the event a flammable vapor cloud was ignited).

The significance criteria used in the May 2017 Final EIR also applies to this Addendum.

6.2.2.1 May 2017 Final EIR

The potential hazard and hazardous material impacts of the LARIC Project were analyzed in Section 4.3 of the May 2017 Final EIR. The Carson Operations Naphtha Isomerization Unit, the new crude oil storage tanks, SARP, and Interconnecting Pipelines were determined to pose potentially significant off-site hazards. One mitigation measure was imposed to require an evaluation of, and early compliance with, regulatory requirements related to process safety and accident prevention. The analysis identified construction hazards from disturbing areas with existing soil contamination during excavation activities and these hazards were concluded to have less than significant impacts.

6.2.2.2 Currently Proposed Modifications

The currently proposed modification to relocate propane recovery to the Carson Operations C3 Splitter Unit from the proposed Carson Operations Naphtha Isomerization Unit is expected to reduce hazard impacts from the original project analyzed because the proposed Carson Operations C3 Splitter modifications only require piping modifications and the installation of a new heat exchanger, which are located farther from the property line (approximately 150 feet). As shown in Figure 3, the Carson Operations C3 Splitter Unit is located just north of the Carson Operations Naphtha Isomerization Unit farther from the fenceline. Hazard impacts from processing units are evaluated based on the composition of the streams in the process lines and operating conditions. The conditions analyzed for the approved modification to the Carson Operations Naphtha Isomerization Unit were more complex than the currently proposed modification of the Carson Operations C3 Splitter Unit. The Carson Operations Naphtha Isomerization Unit hazard impacts were based on the hazard zone of influence extending off-site beyond the fenceline. Moving the proposed modification farther from the fenceline would lessen the size of the hazard zone that extends off-site. Therefore, the hazard impacts presented in the

May 2017 Final EIR for the Carson Operations Naphtha Isomerization Unit overestimate the potential hazard impact from the proposed Carson Operations C3 Splitter Unit modifications.

Hazard impacts associated with storage tanks are evaluated based on the maximum volume of the storage tank, the properties of the materials stored in the storage tank, and the dimensions of the secondary containment surrounding the tank. The secondary containment is designed to contain the maximum volume of the tank when released from the storage tank. These characteristics are used to evaluate a release and subsequent fire of the pool of material within the secondary containment (i.e., pool fire). In the case of a release from the storage tank, the proper procedure requires shutting off supply to the tank. Thus, hazard impacts from a pool fire are not influenced by throughput. The currently proposed modification to increase the throughput of the Carson Operations Tank 35 makes no physical modification to the tank or secondary containment, and does not change the types of materials stored. Therefore, no change in hazards associated with the Carson Operations Tank 35 is expected and no new hazards are expected from the currently proposed throughput increase.

No construction activities are associated with the currently proposed modifications to the CCT crude oil TAC speciation. The hazard analysis presented in the May 2017 Final EIR would not be affected by a change in the speciation. The hazard analysis for the crude oil storage tanks is based on the maximum volume of the storage tank, the properties of the materials stored in the storage tank, and the dimensions of the secondary containment surrounding the tank. The proposed change in TAC speciation does not affect these parameters. Therefore, the hazard analysis presented in the May 2017 Final EIR is representative of the currently proposed modifications. The currently proposed modifications to the CCT TAC speciation do not change the significant impacts or make the significant impacts more severe.

The schedule of construction activities associated with the LARIC Project was reorganized, but the expected amount of excavation work did not change. The only currently proposed modification that would change construction activities is the replacement of the Carson Operations Naphtha Isomerization Unit modifications with the Carson Operations C3 Splitter Unit modifications. The Carson Operations C3 Splitter Unit modifications require no new foundations, less equipment, and, thus, less construction. Therefore, the change in construction schedule does not affect the volume or location of excavation work and would not affect the amount of contaminated soil encountered during excavation activities.

The hazards impacts from the currently proposed modifications are expected be the same as or less than the hazard impacts analyzed in the May 2017 Final EIR. Thus, the significance conclusion made in the May 2017 Final EIR conservatively addresses the hazard impacts associated with the modified LARIC Project. The currently proposed modifications would not create new signification hazard impacts or make a significant hazard impact more severe.

6.2.2.3 Cumulative Hazard Impacts

6.2.2.3.1 May 2017 Final EIR

Section 5.2.3 of the May 2017 Final EIR concluded that the cumulative hazards and hazardous materials impacts associated with the construction phase of the LARIC Project would not generate significant impacts. Therefore, the cumulative construction hazards and hazardous materials impacts were less than significant.

Section 5.2.3 of the May 2017 Final EIR concluded that the cumulative hazards and hazardous materials impacts associated with the operations of the LARIC Project were cumulatively considerable and cumulatively significant. No additional feasible mitigation measures beyond what was required in the May 2017 Final EIR for the project hazards was identified or imposed.

6.2.2.3.2 Currently Proposed Modifications

The proposed change in construction schedule does not affect the volume or location of excavation work, only the timing of the work. Therefore, construction hazards are expected to be the same as those identified in the May 2017 Final EIR. The hazard impacts from construction of the LARIC Project are expected to remain less than significant with the currently proposed modifications. Therefore, no change to the significance determination for construction hazards and hazardous materials is expected as a result of implementation of the currently proposed modifications.

Further, the currently proposed modifications do not change the LARIC Project operational hazard impacts because the changes do not affect the parameters that determine the hazard impacts or in the case of the Carson Operations C3 Splitter Unit would not worsen, and potentially lessen the hazard impacts, but are expected to remain significant. The three other LARIC Project components that were determined to have significant impacts (i.e., the new crude oil storage tanks, SARP and Interconnecting Pipelines) would continue to have the same potentially significant hazard impacts and cumulatively significant hazard impacts after implementation of the currently proposed modifications. Therefore, the operational hazard impacts would remain significant and the cumulative hazard impacts would also remain significant, but potentially less severe than what was analyzed in the May 2017 Final EIR.

6.2.3 Hydrology and Water Quality

The September 2014 NOP/IS for the LARIC Project determined that the hydrology and water quality impacts of the LARIC Project were potentially significant for water supply. The potential adverse impacts of the LARIC Project on water supply were evaluated in the May 2017 Final EIR. The September 2014 NOP/IS also concluded that the LARIC Project would have less than significant impacts to water quality including wastewater generation. However, to provide a complete understanding of the water supply and wastewater discharge relationship, a discussion of the LARIC Project wastewater impacts was provided along with the analysis of water supply impacts in the May 2017 Final EIR. The potential adverse impacts of the currently

proposed modifications on water supply and wastewater treatment facilities are evaluated in this subsection.

The impacts on hydrology and water quality would be considered significant if the following occurs:

Water Demand:

- The existing water supply does not have the capacity to meet the increased demands of the project, or the project would use more than 262,820 gallons per day of potable water.
- The project increases demand for water by more than five million gallons per day.

Water Quality:

- The project will cause degradation or depletion of ground water resources substantially affecting current or future uses.
- The project will cause the degradation of surface water substantially affecting current or future uses.

#

- The project will result in a violation of NPDES permit requirements.
- The capacities of existing or proposed wastewater treatment facilities and the sanitary sewer system are not sufficient to meet the needs of the project.

6.2.3.1 May 2017 Final EIR

Section 4.4 of the May 2017 Final EIR concluded that the LARIC Project was expected to increase water use for construction by about 40,000 gallons per day (gpd), which is below the significance threshold for water demand. The wastewater discharge treatment facilities during construction were concluded to be sufficient to meet the added project needs. Therefore, the impact to water supply and wastewater treatment facilities during construction would be less than significant.

Section 4.4 of the May 2017 Final EIR concluded that the LARIC Project was expected to increase the operational water demand of the Refinery by approximately 110,160 gpd, which is below the significance threshold. The LARIC Project was expected to decrease wastewater generation by 79,344 gpd. Therefore, no significant hydrology and water quality impacts were identified in the May 2017 Final EIR.

6.2.3.2 Currently Proposed Modifications

The currently proposed modifications are not expected to increase the water demand estimates presented in the May 2017 Final EIR during construction because the currently proposed modifications do not increase earth movement that would require water for dust suppression. The currently proposed modifications to the Carson Operations Tank 35 throughput and the CCT crude oil speciation do not involve construction and the Carson Operations C3 Splitter Unit modifications involve fewer construction activities (i.e., piping modifications and a heat exchanger) than the previously approved Carson Operations Naphtha Isomerization Unit modifications (i.e., new off-gas scrubber, reactor effluent flash drums, heat exchangers, pumps, piping, and instrumentations). Therefore, the construction water use analyzed in the May 2017 Final EIR represents the estimated water use for the LARIC Project with the currently proposed modifications and will remain less than significant.

The currently proposed modifications are not expected to change the water demand during operation of the LARIC Project because the currently proposed modifications do not require water. The proposed relocation of propane recovery to the Carson Operations C3 Splitter Unit from the Naphtha Isomerization Unit is a hydrocarbon stream separation process that does not use water. The currently proposed modification to increase the throughput of the Carson Operations Tank 35 will not require any operational water use. The change in TAC speciation at the CCT crude oil storage tanks also does not involve water use. Therefore, the operational water use analyzed in the May 2017 Final EIR represents the estimated water use for the LARIC Project with the currently proposed modifications. It was determined water demand impacts to be less than significant in Section 4.4 of the May 2017 Final EIR. The currently proposed modifications will not change the conclusions in the May 2017 Final EIR. The currently proposed modifications would not create new significant hydrology and water quality impacts, or make significant hydrology and water quality impacts more severe.

6.2.3.3 Cumulative Hydrology and Water Quality Impacts

6.2.3.3.1 May 2017 Final EIR

In Section 5.2.4 of the May 2017 Final EIR, it was concluded that the cumulative water demand and water quality impacts from the LARIC Project were less than significant.

6.2.3.3.2 Currently Proposed Modifications

The currently proposed modifications do not change the water demand or water quality impacts analyzed in the May 2017 Final EIR. Therefore, the currently proposed modifications do not change the less than significant determination made in the May 2017 Final EIR for water demand or water quality impacts.

6.2.4 Noise

The September 2014 NOP/IS determined that the LARIC Project has the potential to generate significant adverse noise impacts during construction and operation. Potential noise impacts associated with the LARIC Project construction and operational activities were evaluated in the May 2017 Final EIR (see Section 4.5 of the May 2017 Final EIR).

Sensitive noise receptors in the vicinity of the LARIC Project fall within three jurisdictions, the Wilmington District of the City of Los Angeles, the City of Carson, and the City of Long Beach (see Figure 3.5-2). The significance thresholds used for this noise analysis rely on the Los Angeles CEQA Thresholds Guide (City of Los Angeles 2006) and the vibration significance criterion from the Federal Transit Administration (FTA) Vibration Impact Criteria for General Assessment, which sets acceptability limits for vibration in buildings (including residential structures.)

A project would have a significant adverse noise or vibration impact under the following circumstances:

- Construction of the proposed project would have a significant noise impact if construction noise levels exceed the local noise ordinances, or if the noise ordinance is currently exceeded, if ambient Community Noise Exposure Levels (CNEL) would be increased by 3.0 dBA or more at a noise sensitive receptor during the construction period.
- Operation of the proposed project would have a significant noise impact if proposed project operational noise levels exceed any of the local noise ordinances at the site boundary or, if the noise threshold is currently exceeded, ambient CNEL noise levels would be increased by 3.0 dBA or more at a noise sensitive receptor.
- Construction and operation of the proposed project would have a significant vibration impact if ground vibration levels for residential structures would exceed 72 vibration decibels (VdB) for frequent events (70+ vibration events), 75 VdB for occasional events (30-70 events), and/or 80 VdB for infrequent events (30 or fewer events), the acceptability limits prescribed by the FTA.

The local noise ordinances were summarized in Subsection 3.5.3 of the May 2017 Final EIR for the jurisdictions in which the LARIC Project is located (i.e., the Cities of Carson and Los Angeles). In order to provide a conservative analysis of noise impacts, noise impacts will be considered significant if there would be an increase of 3.0 dBA or more during construction and operational activities as the use of the noise ordinances could allow increases greater than 3.0 dBA.

6.2.4.1 May 2017 Final EIR

In Section 4.5 of the May 2017 Final EIR, construction noise and vibration impacts were analyzed and it was concluded that the impacts were less than 3 dBA and less than 72 VdB, respectively from the LARIC Project. Therefore, the expected construction noise and vibration impacts were determined to be less than significant.

In Section 4.5 of the May 2017 Final EIR, operational noise and vibration impacts were analyzed and it was concluded that the impacts were less than 3 dBA and less than 72 VdB, respectively from the LARIC Project. Therefore, the expected operational noise and vibration impacts were determined to be less than significant.

6.2.4.2 Currently Proposed Modifications

No physical modifications are needed for the currently proposed modifications to increase throughput in the Carson Operations Tank 35 or the change in the TAC speciation for the CCT crude oil storage tanks. The replacement of the approved Carson Operations Naphtha Isomerization Unit modifications with the proposed Carson Operations C3 Splitter Unit modifications would reduce the amount of construction and move construction farther into the Refinery interior. Therefore, less construction related noise is expected from the currently proposed modifications than was analyzed in the May 2017 Final EIR.

The noise and vibration analyses presented in Section 4.5 of the May 2017 Final EIR are conservative and representative of the potential noise and vibration impacts from the currently proposed modifications. As such, the currently proposed modifications do not change the construction noise and vibration conclusions or significance determinations made in the May 2017 Final EIR. The construction noise and vibration impacts will remain less than significant.

No physical modifications are needed for the currently proposed increased throughput in the Carson Operations Tank 35 or the change in TAC speciation for the CCT crude oil storage tanks. The currently proposed modifications to the Carson Operations C3 Splitter Unit are piping modifications and a heat exchanger and do not add noise generating equipment (e.g., pumps). Therefore, the noise and vibration analyses presented in the May 2017 Final EIR are conservative and representative of the currently proposed modifications. As such, the currently proposed modifications do not change the operational noise and vibration conclusions or significance determinations made in the May 2017 Final EIR. The operational noise and vibration impacts will remain less than significant. The currently proposed modifications would not create new significant noise impacts, or make significant noise impacts more severe.

6.2.4.3 Cumulative Noise Impacts

6.2.4.3.1 May 2017 Final EIR

The cumulative noise impacts from the LARIC Project were determined to be not cumulatively considerable and would not contribute to a significant adverse cumulative construction noise or operational noise impacts.

6.2.4.3.2 Currently Proposed Modifications

The May 2017 Final EIR noise and vibration analyses encompass the currently proposed modifications and are representative of the expected impacts. Therefore, no change to the cumulative noise and vibration impacts will occur from implementation of the currently proposed modifications. The cumulative noise impacts from construction and operation of the currently proposed modifications will remain less than significant.

6.2.5 Solid and Hazardous Waste

The September 2014 NOP/IS determined that construction and operation of the LARIC Project could generate potentially significant adverse solid and hazardous waste impacts. Therefore, Section 4.6 of the May 2017 Final EIR addressed the potential solid and hazardous waste impacts associated with the LARIC Project.

A project would have a significant impact on solid and hazardous waste if it would:

 Result in an increase in solid or hazardous waste generation due to project operations that would exceed the capacity of existing solid or hazardous waste handling and disposal facilities.

6.2.5.1 May 2017 Final EIR

Section 4.6 of the May 2017 Final EIR evaluated construction and operational impacts of the LARIC Project on solid waste and hazardous waste. The May 2017 Final EIR concluded that there would be a less than significant increase in the generation of non-hazardous and hazardous wastes associates with the construction of the LARIC Project.

Section 4.6 of the May 2017 Final EIR also concluded that there would be a less than significant increase in the generation of non-hazardous and hazardous wastes associated with the operation of the LARIC Project.

6.2.5.2 Currently Proposed Modifications

No physical modifications are needed for the currently proposed increased throughput in the Carson Operations Tank 35 or the change in TAC speciation for the CCT crude oil storage tanks. The replacement of the approved Carson Operations Naphtha Isomerization Unit modifications

with the proposed Carson Operations C3 Splitter Unit modifications would reduce the amount of construction as less equipment is needed and no new foundations are necessary. The currently proposed modifications are not expected to increase the amount of solid or hazardous waste generated during construction. The currently proposed modifications do not involve the removal of any existing structures and the project area has been previously graded. Therefore, the solid and hazardous waste generation associated with construction analyzed in the May 2017 Final EIR conservatively represents the solid and hazardous waste generation with the currently proposed modifications. The May 2017 Final EIR determined construction solid and hazardous waste impacts to be less than significant. The currently proposed modifications will not change the conclusions in the May 2017 Final EIR.

The currently proposed modifications are not expected to change the amount of solid or hazardous waste generated for disposal during operation. The proposed change in TAC speciation for the CCT crude oil storage tanks and the replacement of the approved Carson Operations Naphtha Isomerization Unit modifications with the proposed Carson Operations C3 Splitter Unit modifications do not involve operational activities that generate any additional solid or hazardous waste. The increased throughput of the Carson Operations Tank 35 involves refined material that does not generate solid waste. Process tanks are taken out of service and cleaned as required by regulation or when maintenance is required but is not expected to increase the need for tank cleaning that may generate solid waste. Solids produced from tank cleaning are expected to be processed at the Refinery. Therefore, no additional solid or hazard waste that would be sent offsite for disposal is expected, so the operational solid and hazardous waste generation analyzed in the May 2017 Final EIR represents the estimated solid and hazardous waste generation with the currently proposed modifications. The May 2017 Final EIR determined operational solid and hazardous waste impacts to be less than significant. The currently proposed modifications will not change the conclusions in the May 2017 Final EIR. The currently proposed modifications would not create new significant solid and hazardous waste impacts, or make significant solid and hazardous waste impacts more severe.

6.2.5.3 Cumulative Solid and Hazardous Waste Impacts

6.2.5.3.1 May 2017 Final EIR

The cumulative solid and hazardous waste impacts from the LARIC Project were determined to be not cumulatively considerable and would not contribute to a significant adverse cumulative construction solid and hazardous waste or operational solid and hazardous waste impacts.

6.2.5.3.2 Currently Proposed Modifications

The May 2017 Final EIR solid and hazardous waste analyses encompass the currently proposed modifications and are representative of the expected impacts. Therefore, no change to the cumulative analysis for solid and hazardous waste impacts will occur from implementation of the currently proposed modifications. The cumulative solid and hazardous waste impacts from construction and operation of the currently proposed modifications will remain less than significant.

6.2.6 Transportation and Traffic

The September 2014 NOP/IS concluded that the traffic and parking impacts associated with the construction phase of the LARIC Project were potentially significant and would be evaluated in the Draft EIR. The other transportation and traffic issues were determined to be less than significant and did not require additional environmental review. Potential traffic impacts associated with the LARIC Project construction activities were evaluated in Section 4.7 of the May 2017 Final EIR.

The LARIC Project will occur at the Refinery. For intersections under City of Los Angeles and Carson jurisdictions, a project's impacts on transportation and traffic would be considered significant if any of the following significance criteria occurs (using the Intersection Capacity Utilization methodology):

- Peak period levels on major arterials are disrupted to a point where the Level of Service (LOS) is reduced to D, E, or F for more than one month.
- An intersection's volume to capacity (Vehicle/Capacity) ratio increases by 0.02 (two percent) or more when the LOS is already D, E, or F.

For freeway ramp intersections, a project's impacts on transportation and traffic would be considered significant if the following significance criteria occur (using the Highway Capacity Manual methodology):

• Peak period levels on major arterials are disrupted to a point where the LOS is reduced to D, E, or F for more than one month.

The following significance thresholds apply to all portions of a project, regardless of the jurisdiction:

- The project conflicts with applicable policies, plans or programs establishing measures of effectiveness, thereby decreasing the performance or safety of any mode of transportation.
- A major roadway is closed to all through traffic and no alternate route is available.
- The demand for parking facilities is substantially increased.

6.2.6.1 May 2017 Final EIR

The traffic analysis in the May 2017 Final EIR determined that during the construction phase of the LARIC Project one intersection (Interstate 405/Wilmington Avenue Southbound Ramps prior

to the completions of the Interstate 405/Wilmington Avenue Interchange project) could potentially be significantly impacted. Peak construction activities would require about 1,060 construction workers on a peak day. Therefore, the construction activities associated with the LARIC Project were determined to result in significant adverse traffic impacts during the construction phase.

Operational phase truck traffic to the Refinery was determined to be less than significant in the September 2014 NOP/IS.

Mitigation was imposed requiring a traffic management plan and restricting access to the Refinery to routes avoiding the Interstate 405/Wilmington Avenue Southbound Ramps. The traffic impacts of the LARIC Project during construction were mitigated to less than significant.

6.2.6.2 Currently Proposed Modifications

The currently proposed modifications are not expected to impact transportation and traffic during construction. First, the intersection of Wilmington Avenue and the 405 freeway, which was under construction at the time of the May 2017 Final EIR preparation, has been completed. Second, only the Carson Operations C3 Splitter Unit modifications require construction and the level of effort to complete that proposed modification is less than that analyzed for the approved Carson Operations Naphtha Isomerization Unit (i.e., less excavation and grading and less installation of equipment, so fewer construction workers and deliveries). Finally, the peak construction month for the LARIC Project occurred in November 2017, so the construction of the currently proposed Carson Operations C3 Splitter Unit modifications is not expected to occur during peak construction activities. Therefore, the construction transportation and traffic analyzed in the May 2017 Final EIR conservatively represents the transportation and traffic expected to occur with the currently proposed modifications.

The currently proposed modifications are not expected to impact transportation and traffic during operation. The proposed change in TAC speciation for the CCT crude oil storage tanks and the replacement of the approved Carson Operations Naphtha Isomerization Unit modifications with the proposed Carson Operations C3 Splitter Unit modifications do not involve operational activities that generate any additional products or waste for transport. The increase in throughput of the Carson Operations Tank 35 does not affect transportation because it does not increase jet fuel production and jet fuel is and will continue to be transferred to the airports via pipeline, not by truck or rail. Therefore, the operational transportation and traffic impacts analyzed in the May 2017 Final EIR represents the transportation and traffic impacts expected to occur with the currently proposed modifications.

The May 2017 Final EIR determined LARIC Project transportation and traffic impacts to be less than significant after mitigation was imposed. The currently proposed modifications will not change the conclusions in the May 2017 Final EIR. The currently proposed modifications would not create new significant transportation and traffic impacts, or make significant transportation and traffic impacts more severe.

6.2.6.3 Cumulative Transportation and Traffic Impacts

6.2.6.3.1 May 2017 Final EIR

The cumulative transportation and traffic impacts from the LARIC Project were determined to be not cumulatively considerable and would not contribute to a significant adverse cumulative construction transportation and traffic or operational transportation and traffic impacts.

6.2.6.3.2 Currently Proposed Modifications

The May 2017 Final EIR transportation and traffic analysis encompasses the currently proposed modifications and is representative of the expected impacts. Therefore, no change to the cumulative transportation and traffic impacts will occur from implementation of the currently proposed modifications. The cumulative transportation and traffic impacts from construction and operation of the currently proposed modifications will remain less than significant.

7.0 POTENTIAL ENVIRONMENTAL IMPACTS IN ORIGINAL NOP/IS FOUND TO BE NOT SIGNIFICANT

This section discusses the remaining 11 environmental topic areas found not to be potentially significantly affected by the LARIC Project in the September 2014 NOP/IS and the May 2017 Final EIR, or as a result of the currently proposed modifications to the LARIC Project. The effect of the currently proposed modifications on the conclusions relating to each of these environmental topic areas is discussed in the following sections.

Neither the proposed change in TAC speciation for the CCT crude oil storage tanks nor the throughput increase for the Carson Operations Tank 35 involve physical modifications. The replacement of the approved Carson Operations Naphtha Isomerization Unit modifications with the proposed Carson Operations C3 Splitter Unit modifications for propane recovery will require less equipment changes and less construction. The currently proposed modifications do not affect the potential environmental impacts of the LARIC Project to the resources discussed in this section.

7.1 **AESTHETICS**

7.1.1 May 2017 Final EIR

As discussed in the September 2014 NOP/IS and the May 2017 Final EIR, the LARIC Project is zoned for industrial use. The existing Refinery configuration will not appear substantially different after implementation of the LARIC Project. There are no scenic vistas in the vicinity of the LARIC Project. New structures that will be built as the result of the LARIC Project are largely of similar height or smaller than existing structures. Some structures are higher than existing adjacent units; however, the overall visual characteristics of the integrated Refinery are expected to be the same or similar to the existing configuration at the Refinery.

Additionally, no significant light or glare was anticipated from the LARIC Project. Therefore, the LARIC Project was not expected to have significant aesthetics impacts.

7.1.2 Currently Proposed Modifications

The proposed change in TAC speciation for the CCT crude oil storage tanks and the proposed throughput increase for the Carson Operations Tank 35 do not involve physical modifications. The replacement of the approved Carson Operations Naphtha Isomerization Unit modifications with the proposed Carson Operations C3 Splitter Unit modifications for propane recovery will require less equipment (i.e., piping modifications and a heat exchanger). The proposed modifications at the Carson C3 Splitter Unit are not expected to be discernible from the existing equipment. Therefore, the aesthetic impacts are expected to be the same as previously analyzed in the May 2017 Final EIR.

The currently proposed modifications will not cause significant adverse impacts to aesthetics or change the conclusions in the May 2017 Final EIR.

7.2 AGRICULTURAL AND FORESTRY RESOURCES

7.2.1 May 2017 Final EIR

As discussed in the September 2014 NOP/IS and the May 2017 Final EIR, there are no agricultural or forest resources, such as, food crops grown for commercial purposes, located in or near the vicinity of the Refinery. The LARIC Project is located in a heavy industrial zoned area. Except for the Interconnecting Pipelines and electrical intertie construction, the LARIC Project would not involve construction or operation outside of the existing boundaries of the integrated Refinery. As such, no farmland or forest resources would be converted to non-agricultural use and the LARIC Project would not conflict with agricultural land uses, Williamson Act contracts or forest resources. Therefore, no significant impacts on agricultural or forest resources are expected from the LARIC Project.

7.2.2 Currently Proposed Modifications

The currently proposed modifications only affect existing equipment within the existing Refinery and do not involve any construction outside the existing boundaries of the Carson Operations and CCT, so no agricultural or forest resources will be affected. No existing agricultural or forest land will be converted to non-agricultural land uses. Further, the currently proposed modifications will not conflict with a Williamson Act contract. Therefore, the agricultural and forestry resources impacts are expected to be the same as previously analyzed in the May 2017 Final EIR.

The currently proposed modifications will not cause significant adverse impacts to agricultural and forestry resources or change the conclusions from the May 2017 Final EIR.

7.3 BIOLOGICAL RESOURCES

7.3.1 May 2017 Final EIR

As discussed in the September 2014 NOP/IS and the May 2017 Final EIR, the LARIC Project would be located in a heavy industrial zoned area and, with the exception of the Interconnecting Pipelines and electrical intertie construction, would be within the boundaries of the existing Refinery. The area has already been graded and developed and the area is devoid of vegetation and wildlife, with the exception of landscape vegetation near the administration buildings.

The September 2014 NOP/IS concluded that the LARIC Project was not expected to adversely affect plant species or other biological resources (riparian habitats, wetlands, or migratory corridors); or conflict with ordinances or conservation plans.

7.3.2 Currently Proposed Modifications

None of the currently proposed modifications would have potential impact to have an impact on biological resources. The currently proposed modifications would take place within the confines

of the Refinery and the CCT, which are devoid of vegetation and wildlife. Therefore, the biological resource impacts are expected to be the same as previously analyzed in the May 2017 Final EIR.

The currently proposed modifications will not cause significant adverse impacts to biological resources or change the conclusions from the May 2017 Final EIR.

7.4 CULTURAL RESOURCES

7.4.1 May 2017 Final EIR

As discussed in the September 2014 NOP/IS and the May 2017 Final EIR, the buildings, structures, and equipment associated with the LARIC Project were not listed on registers of historic resources, and did not meet any of the eligibility criteria as cultural resources. The entire active portions of the Wilmington and Carson Operations have been previously graded and developed. LARIC Project activities will occur in areas of the integrated Refinery and CCT where the ground surface has already been disturbed, within or adjacent to existing refining and other units. This past disturbance reduces the likelihood that previously unknown cultural resources will be encountered. Further, the Refinery site does not contain known paleontological resources and, thus, the LARIC Project also is not expected to impact any sites of paleontological value. It was concluded that the LARIC Project would not cause significant adverse impacts to cultural resources.

During the public comment period for the Draft EIR, the South Coast AQMD consulted with the Tribal Administrator of the Tongva Ancestral Territorial Tribal Nation. No issues were raised that would change the conclusion in the September 2014 NOP/IS that impacts on cultural resources were considered less than significant.

7.4.2 Currently Proposed Modifications

CEQA Guidelines §15064.5(3) states that, "generally, a resource shall be considered "historically significant" if the resource meets the criteria for listing in the California Register of Historical Resources including the following:

- A) Is associated with events that have made a significant contribution to the broad patterns of California's history and cultural heritage;
- B) Is associated with the lives of persons important in our past;
- C) Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values;
- D) Has yielded or may be likely to yield information important in prehistory or history."

Generally, resources (buildings, structures, equipment) that are less than 50 years old are excluded from listing in the National Register of Historic Places unless they can be shown to be exceptionally important. The currently proposed modifications do not involve the removal of any existing structures and the areas have been previously graded. The currently proposed modifications do not involve grading outside areas that were analyzed in the May 2017 Final EIR. Implementing the currently proposed modifications would not change the determination that no significant impacts to cultural resources would occur due to the LARIC Project.

Cultural resources have not been encountered unexpectedly during ground disturbance associated with construction related to the LARIC Project, so the standard protective measures included in the May 2017 Final EIR were not employed. Further, the Refinery does not contain known paleontological resources and thus the LARIC Project, including the currently proposed modifications, are not expected to impact any sites of paleontological value. No significant adverse impacts to cultural resources are expected. Standard protective measures will be implemented if any cultural resources are encountered.

The currently proposed modifications will not cause significant adverse impacts to cultural resources or change the conclusions from the May 2017 Final EIR.

7.5 ENERGY

7.5.1 May 2017 Final EIR

As discussed in the September 2014 NOP/IS and the May 2017 Final EIR, the LARIC Project was not expected to conflict with any adopted energy conservation plan or existing energy standard. There are no known energy conservation plans or existing energy standards that would apply to either the existing Wilmington and Carson Operations or the LARIC Project, as it primarily involves new and modified equipment that will allow the Refinery to operate more efficiently. Electricity for the Carson Operations is provided by the existing Watson Cogeneration Facility. The Watson Cogeneration Facility produces excess electricity that it sells to Southern California Edison. Under the LARIC Project, the amount of electricity that would be sold would be reduced and used to provide the electricity requirements associated with the LARIC Project. Therefore, no significant adverse impacts on electricity production are expected as a result of the LARIC Project.

As evaluated in the September 2014 NOP/IS, construction of the LARIC Project was estimated to require about 64,000 gallons of diesel fuel per year. In 2011, the Los Angeles region used 4,892 million gallons of gasoline and 281 million gallons of diesel. The fuel associated with construction of the entire project represents less than one percent of the total annual demand in the Los Angeles region, is a negligible fraction of the total use of fuel in California, and is not considered to be a wasteful use of fuel. Therefore, less than significant adverse energy impacts are expected during the construction period. Additionally, no additional permanent employees are anticipated to be needed to operate the Refinery once construction of the LARIC Project is completed, so no additional demand for gasoline fuel is expected.

7.5.2 Currently Proposed Modifications

The proposed change in TAC speciation for the CCT crude oil storage tanks and throughput increase for the Carson Operations Tank 35 do not involve physical modifications. replacement of the approved Carson Operations Naphtha Isomerization Unit modifications with the proposed Carson Operations C3 Splitter Unit modifications for propane recovery will require less equipment changes and construction. The increased throughput of the Carson Operations Tank 35 is not expected to increase electricity demand from operation of the pump because the pump operates continuously to support the variable flow-through activity of the tank. increased throughput in Carson Operations Tank 35 would be accommodated by the adjustment of a control valve that does not require electricity. The currently proposed modifications in the Carson Operations C3 Splitter Unit are piping modifications and a heat exchanger and do not involve equipment that uses electricity. Because the currently proposed modifications do not change the electricity demand of the LARIC Project of the Refinery, no change to purchased electricity would occur and no change to electricity produced for the region would occur. Therefore, no change in energy use is expected from the currently proposed modifications and the analysis presented in the May 2017 Final EIR conservatively represents the energy demand of the currently proposed modifications. Thus, the conclusions in the May 2017 Final EIR would not change and energy impacts would remain less than significant.

The currently proposed modifications will not cause significant adverse impacts to energy or change the conclusions in the May 2017 Final EIR.

7.6 GEOLOGY AND SOILS

7.6.1 May 2017 Final EIR

As discussed in the September 2014 NOP/IS and the May 2017 Final EIR, the LARIC Project would be constructed in an area of known seismic activity. The most significant potential geologic hazard is estimated to be seismic shaking from future earthquakes generated by active or potentially active faults in the region. Past experience indicates that there has not been any substantial damage, structural or otherwise, to the Wilmington and Carson Operations as a result of earthquakes. No faults or fault-related features are known to exist at the Refinery. The closest fault zone to the Refinery is the Newport-Inglewood Fault Zone, which is located approximately 1.5 to 2.0 miles northeast of the Refinery.

New and modified equipment and structures at the Refinery associated with the LARIC Project will require building permits, as applicable from the City of Los Angeles and the City of Carson. Issuance of building permits from the local authority will assure compliance with the California Building Code requirements, which include requirements for building within seismic hazard zones. No significant adverse impacts from seismic hazards are expected since the LARIC Project will be required to comply with the California Building Codes, including those addressing seismic effects.

The LARIC Project would not alter the exposure of people or property to geological hazards such as earthquakes, landslides, mudslides, ground failure, or other natural hazards. As a result, substantial exposure of people or structures to the risk of loss, injury, or death involving the rupture of an earthquake fault, seismic ground shaking, ground failure or landslides is not anticipated.

7.6.2 Currently Proposed Modifications

The currently proposed modifications require less construction and equipment installation than the LARIC Project as proposed in the May 2017 Final EIR. The currently proposed modifications at the Carson C3 Splitter Unit require the piping modifications and a heat exchanger that would not require the installation of foundations. Therefore, no grading activities are expected and, thus, the currently proposed modifications would not result in any changes to geology and soils impacts that were evaluated in the May 2017 Final EIR.

The currently proposed modifications will not alter the conclusions from the May 2017 Final EIR and no significant adverse impacts to geology and soils are expected.

7.7 LAND USE AND PLANNING

7.7.1 May 2017 Final EIR

As discussed in the September 2014 NOP/IS and the May 2017 Final EIR, the LARIC Project includes improvements and modifications within an existing industrial facility zoned for heavy industrial uses. The construction and operation of the LARIC Project will occur primarily within the confines of the existing Wilmington and Carson Operations, except for the Interconnecting Pipelines and electrical intertie construction that will also occur in the heavy industrial use zone. As a result, no component of the LARIC Project would result in physically dividing any established communities, but will continue the use of the site as a Refinery.

The LARIC Project is consistent with the heavy industrial land use designation of the Refinery and no land use or planning requirements would be altered by the LARIC Project. Therefore, present or planned land uses in the region would not be affected as a result of the LARIC Project. No significant adverse land use or planning impacts are expected from the implementation of the LARIC Project.

7.7.2 Currently Proposed Modifications

The currently proposed modifications occur within the confines of the Carson Operations and the CCT and do not divide an established community. The currently proposed modifications are consistent with the activities and uses currently ongoing at the Refinery and CCT and would not require a zoning or land use change. The crude oil storage tanks at the CCT have been approved through a Conditional Use Permit from the City of Carson and the currently proposed modifications would not require additional land-use approval. As such, the currently proposed modifications are not expected to have significant adverse impacts on land use. Therefore, the

land use and planning impacts are expected to be the same as previously analyzed in the May 2017 Final EIR.

The currently proposed modifications will not alter the conclusions from the May 2017 Final EIR and no significant adverse impacts to land use and planning are expected.

7.8 MINERAL RESOURCES

7.8.1 May 2017 Final EIR

As discussed in the September 2014 NOP/IS and the May 2017 Final EIR, construction and operation of the LARIC Project would occur entirely within the boundaries of the existing Refinery and adjacent industrial areas, all of which are zoned for heavy industrial uses. According to the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources (DOGGR) online data, there are no oil wells (active or abandoned) located within the confines of the LARIC Project. The nearest oil and gas wells are located adjacent to the southwestern property line and are either idle or abandoned wells in the Wilmington Oil Field. Thus, the LARIC Project would not affect the availability of known crude oil or other mineral resources (no other known mineral resources are expected to be required for the LARIC Project).

There are no provisions of the LARIC Project that would result in the loss of availability of a known mineral resource of value to the region and the residents of the State of California, such as aggregate, coal, clay, shale, etc., or of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan. Thus, no significant impacts to mineral resources are expected.

7.8.2 Currently Proposed Modifications

There are no known mineral resources currently on the Refinery property. Therefore, the currently proposed modifications will not to be located on a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan. Furthermore, the currently proposed modifications do not involve any known mineral resources (i.e., aggregate, coal, clay, shale, etc.), the currently proposed modifications to the LARIC Project will not result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the State of California. No significant adverse impacts to mineral resources are expected due to the currently proposed modifications. Therefore, the mineral resource impacts are expected to be the same as previously analyzed in the May 2017 Final EIR.

The currently proposed modifications will not alter the conclusions from the May 2017 Final EIR and no significant adverse impacts to mineral resources are expected.

7.9 POPULATION AND HOUSING

7.9.1 May 2017 Final EIR

As discussed in the September 2014 NOP/IS and the May 2017 Final EIR, construction and operational activities associated with the LARIC Project are not expected to involve the relocation of individuals, adversely impact housing or commercial facilities, or change the distribution of the population in the region. It is estimated that as many as 1,060 construction workers are expected to be needed during peak construction activities for the LARIC Project and most of the workers are expected to come from the large labor pool in southern California (over five million workers). No increase in the permanent number of workers at the Refinery is expected following the construction phase of the LARIC Project and no operational impacts to population and housing are expected. The LARIC Project is not expected to affect population growth, directly or indirectly induce the construction of single- or multiple-family units, or require the displacement of people or housing elsewhere in the region.

7.9.2 Currently Proposed Modifications

The currently proposed modifications involve less physical modifications to Refinery equipment and do not require the need for additional construction workers beyond what was previously analyzed in the May 2017 Final EIR. The May 2017 Final EIR determined that no additional housing was necessary for construction workers because they were expected to be drawn from the local pool of workers. Since no additional construction workers are needed for the currently proposed modifications, no additional housing is needed. Construction activities for the currently proposed modifications will not involve the relocation of individuals, impact housing or commercial facilities, or change the distribution of the population because the currently proposed modifications would occur completely within the boundaries of the existing Refinery. No displacement of existing housing or people will occur and the currently proposed modifications would not change the less than significant determination of the May 2017 Final EIR.

Additionally, no new operational employees will be needed as a result of the currently proposed modifications. Therefore, the population and housing impacts are expected to be the same as previously analyzed in the May 2017 Final EIR.

The currently proposed modifications will not alter the conclusions from the May 2017 Final EIR and no significant adverse impacts to population and housing are expected.

7.10 PUBLIC SERVICES

7.10.1 May 2017 Final EIR

As discussed in the September 2014 NOP/IS and the May 2017 Final EIR, the LARIC Project would not substantially change the load on the Refinery's firefighting and emergency response

resources and would not be expected to create the need for additional fire protection services or resources by Tesoro or the City of Carson or the City of Los Angeles.

Both the Wilmington and Carson Operations maintain their own emergency response teams to respond to emergencies. Each Operation maintains fully trained 24-hour emergency response team and equipment to protect against flammable and combustible materials. The LARIC Project is not expected to increase the need or demand for additional services from the fire department above current levels because on-site firefighting and emergency response capabilities and personnel will be maintained and are expected to be able to continue to respond to potential emergencies in the future, while maintaining acceptable service ratios, response times, or other performance objectives.

The existing Wilmington and Carson Operations have security departments that provide 24-hour protective services for people and property within the fenced boundaries of each facility. The LARIC Project is not expected to require additional staffing at the security department as the security needs at the integrated Refinery are not expected to change. Thus, no additional or altered police protection would be required for the LARIC Project once it becomes operational.

As previously discussed in Section 7.9.1, the LARIC Project is not expected to induce population growth in any way. The existing labor pool in southern California is expected to be sufficient to fulfill the labor requirements for construction of the LARIC Project. There would be no increase in population and, therefore, there would be no need for physically altered government facilities.

7.10.2 Currently Proposed Modifications

No physical modifications are needed for the currently proposed increased throughput in the Carson Operations Tank 35 or the change in TAC speciation for the CCT crude oil storage tanks. The replacement of the approved Carson Operations Naphtha Isomerization Unit modifications with the proposed Carson Operations C3 Splitter Unit modifications would involve less physical modifications to the Refinery equipment and less construction. The currently proposed modifications will not alter the existing on-site emergency response requirements or capabilities nor increase the requirements for additional or altered fire protection. No additional fire response capabilities are expected for the currently proposed physical modifications because they occur in an existing unit.

The currently proposed modifications occur within the boundaries of the Refinery and CCT, which is already equipped with 24-hour security, fencing, and controlled access. Thus, no additional or altered police protection is required for the currently proposed modifications. The currently proposed modifications are not expected to increase the number of long-term staff at the Refinery. Therefore, no impacts are expected to schools, parks, or other public facilities, such as government services, as a result of implementing the currently proposed modifications.

No significant adverse impacts to public services are expected from the currently proposed modifications. Therefore, the analysis presented in the May 2017 Final EIR conservatively represents the currently proposed modifications and the conclusions are unchanged.

7.11 RECREATION

7.11.1 May 2017 Final EIR

As discussed in the September 2014 NOP/IS and the May 2017 Final EIR and summarized in Section 7.9 of this document, the LARIC Project is expected to draw from the existing construction labor pool and no permanent workers are expected. Therefore, implementation of the LARIC Project is not expected to increase the demand for neighborhood or regional parks or other recreational facilities and it would not adversely affect existing recreational facilities.

Additionally, the LARIC Project does not include new recreational facilities or require expansion of existing recreational facilities and, thus, would not have an adverse physical effect on recreation resources.

7.11.2 Currently Proposed Modifications

As discussed in Section 7.9, the existing labor pool in southern California is sufficient to fulfill the labor requirements of the LARIC Project and no additional housing is required for the currently proposed modifications. The operation of the currently proposed modifications will not require additional workers above the levels estimated in the May 2017 Final EIR. Therefore, there would be no significant changes in population densities resulting from the currently proposed modifications, and thus, no increase in the use of existing neighborhood and regional parks or other recreational facilities.

The currently proposed modifications do not include recreational facilities or require the construction or expansion of existing recreational facilities. No significant adverse impacts to recreational facilities are expected. Therefore, the analysis presented in the May 2017 Final EIR conservatively represents the currently proposed modifications.

The currently proposed modifications will not alter the conclusions from the May 2017 Final EIR and will not cause significant adverse impacts to recreation.

8.0 CONCLUSIONS

As shown in Sections 6.0 and 7.0, the analysis of the currently proposed modifications indicate that no new significant adverse impacts would be created for any environmental areas analyzed in the May 2017 Final EIR, nor would the modifications make substantially worse any existing significant adverse impacts. Based on the environmental analysis prepared for the currently proposed modifications, the South Coast AQMD has quantitatively and qualitatively demonstrated that the currently proposed modifications qualify for an Addendum to the previously certified May 2017 Final EIR.


9.0 REFERENCES

- Federal Transit Administration (FTA), 2006. Transit Noise and Vibration Impact Assessment. Office of Planning and Environment, Federal Transit Administration, FTA-VA-90-1003-06, May 2006. http://www.fta.dot.gov/documents/FTA_Noise_and_Vibration_Manual.pdf
- Los Angeles, City of, 2006. L.A. CEQA Thresholds Guide: Your Resource for Preparing CEQA Analyses in Los Angeles. http://environmentla.org/programs/thresholdsguide.htm
- South Coast Air Quality Management District (South Coast AQMD), 1993. CEQA Air Quality Handbook, SOUTH COAST AQMD, May 1993. http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/ceqa-air-quality-handbook-(1993). April 2019 CEQA Significance Thresholds, http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf
- South Coast AQMD, 2005. Staff Report, Proposed Amended Rule 463 Organic Liquid Storage, SOUTH COAST AQMD, March 2005. http://www.aqmd.gov/nav/about/governing-board/agendas-minutes
- South Coast AQMD, 2006. Methodology to Calculate Particulate Matter (PM) 2.5 and PM 2.5 CEQA Significance Thresholds. SOUTH COAST AQMD, October 2006. http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/particulate-matter-(pm)-2.5-sig nificance-thresholds-and-calculation-methodology/final pm2 5methodology.pdf?sfvrsn=2.
- South Coast AQMD, 2016. Air Quality Data Tables. http://www.aqmd.gov/home/library/air-quality-data-studies/historical-data-by-year
- South Coast AQMD, 2017. Tesoro Los Angeles Refinery Integration and Compliance Project Final Environmental Impact Report. May 2017. http://www.aqmd.gov/docs/default-source/ceqa/documents/permit-projects/2017/tesorolaric/tesoro_feir.pdf?sfvrsn=2

m:\DBS\2844\FEIR\2018 Addendum\2844 Addendum CCT TK35 C3 Split -10-2019 (rev7).doc

APPENDIX A

MAY 2017 FINAL EIR - CHAPTER 1 - INTRODUCTION AND EXECUTIVE SUMMARY

CHAPTER 1

INTRODUCTION AND EXECUTIVE SUMMARY

Introduction
Purpose/Legal Requirements
Scope and Content
Responsible and Other Agencies
Intended Uses of the EIR
Areas of Controversy

Executive Summary – Chapter 2: Project Description

Executive Summary – Chapter 3: Existing Environmental Setting Executive Summary – Chapter 4: Environmental Impacts and Mitigation Measures

Executive Summary – Chapter 5: Cumulative Impacts Executive Summary – Chapter 6: Alternatives Analysis

Executive Summary – Chapter 7, 8, and 9: References Acronyms and Glossary

[This page intentionally left blank.]

1.0 INTRODUCTION AND EXECUTIVE SUMMARY

1.1 INTRODUCTION

The Tesoro Refining & Marketing Company LLC (Tesoro) is proposing the Los Angeles Refinery Integration and Compliance Project (proposed project). In June 2013, Tesoro purchased the adjacent BP West Coast Products LLC (BP) Carson Refinery which, as part of the proposed project, will be more fully integrated with the Tesoro Los Angeles Refinery – Wilmington Operations to form the Tesoro Los Angeles Refinery (Refinery). The Refinery includes: (1) the Wilmington Operations located at 2101 East Pacific Coast Highway in the Wilmington District of the City of Los Angeles; and (2) the Carson Operations, which is the former BP Carson Refinery located at 2350 East 223rd Street in the City of Carson.

In addition to further Refinery integration, the proposed project is designed to comply with the federally-mandated Tier 3 gasoline specifications and with State and local regulations mandating emission reductions. The Los Angeles Refinery Integration and Compliance Project is expected to substantially reduce greenhouse gas (GHG), sulfur oxides (SOx), nitrogen oxides (NOx), and carbon monoxide (CO) at the Refinery. This will be accomplished by reconfiguring the combined Refinery complex to enable shutting down the Fluid Catalytic Cracking Unit (FCCU) at the Wilmington Operations, and by reconfiguring the combined Refinery complex to improve the gasoline to distillate production ratio from the integrated Refinery in order to expeditiously respond and adjust to ongoing changes in market demand for various types of petroleum products. Additionally, heat recovery will be optimized by installing new heat exchangers and modifying specified units to further minimize criteria pollutant and GHG emissions. All new and modified stationary sources with emissions increases will be required to comply with Best Available Control Technology (BACT) requirements in South Coast Air Quality Management District (SCAQMD) Rule 1303.

1.2 PURPOSE/LEGAL REQUIREMENTS

The California Environmental Quality Act (CEQA) (Public Resources Code §21000 et seq., and California Code of Regulations, Title 14, Division 6, Chapter 3) requires that the environmental impacts of proposed projects be evaluated and that feasible methods to reduce, avoid or eliminate significant adverse impacts of these projects be identified and implemented. The lead agency is the public agency that has the principal responsibility for carrying out or approving a project that may have a significant effect upon the environment (Public Resources Code §21067). The proposed project requires discretionary approvals from the SCAQMD, City of Carson, and the Alameda Corridor Transportation Authority and, therefore, it is subject to the requirements of CEQA (Public Resources Code, §21080 (a)). If a proposed project is to be carried out by a nongovernmental person or entity, such as the proposed project, the lead agency will normally be the agency with general governmental powers, such as a city or county (CEQA Guidelines §15051(b)(1)). However, because the proposed project modifications will be located within both the cities of Carson and Los Angeles, each of these public agencies would only have discretionary approval authority for the components of the proposed project in their jurisdictions.

The SCAQMD has discretionary approval authority of the project components within both the City of Los Angeles and City of Carson. Because the SCAQMD is the public agency with the greatest responsibility for supervising or approving the project as a whole, it is the most appropriate public agency to act as lead agency (CEQA Guidelines §15051(b)). Therefore, as lead agency, the SCAQMD is responsible for preparing the Environmental Impact Report (EIR) for the proposed project.

In accordance with §15121(a) of the CEQA Guidelines, the purpose of an EIR is to serve as an informational document that: "will inform public agency decision-makers and the public generally of the significant environmental effect of a project, identify possible ways to minimize the significant effects, and describe reasonable alternatives to the project."

To fulfill the purpose and intent of CEQA, as the lead agency for the proposed project, the SCAQMD prepared and released a Notice of Preparation and Initial Study (NOP/IS) for a 30-day public review and comment period beginning on September 10, 2014 through October 10, 2014. The NOP/IS was circulated to responsible agencies, neighboring jurisdictions, other public agencies, and interested individuals in order to solicit input on the scope of the environmental analysis to be included in the EIR.

The NOP/IS provided a preliminary analysis of environmental impacts that may be associated with the Tesoro Integration and Compliance Project (see Appendix A). Potentially significant adverse environmental impacts from the proposed project identified in the NOP/IS form the basis for and focus of the technical analyses in this EIR.

The NOP/IS concluded that the proposed project would not create significant adverse environmental impacts to the following areas: aesthetics, agricultural and forestry resources, biological resources, cultural resources, energy, geology and soils, land use and planning, mineral resources, population and housing, public services, and recreation.

A total of 93 comment letters were received on the NOP/IS during the public comment period, 85 of which expressed support for the proposed project. A copy of the comment letters received and responses to individual comments are provided in Appendix A. No comments were received on the NOP/IS that identified new potentially significant environmental topics or disputed any of the conclusions for each environmental topic.

1.3 SCOPE AND CONTENT

The following discussion summarizes the scope and content of this EIR. This chapter contains a summary of the proposed actions and its consequences (CEQA Guidelines §15123), Chapter 2 contains a complete and comprehensive project description (CEQA Guidelines §15124), and Chapter 3 contains the environmental setting which describes the physical environmental conditions in the vicinity of the project and normally constitutes the baseline physical conditions by which a lead agency determines whether an impact is significant (CEQA Guidelines §15125). The following environmental resources were identified in the NOP/IS as being potentially significant and are further analyzed (CEQA Guidelines §15126.2) in Chapter 4 of this document:

CHAPTER 1: INTRODUCTION AND EXECUTIVE SUMMARY

- Air Quality and Greenhouse Gas Emissions¹
- Hazards and Hazardous Materials
- Hydrology and Water Quality
- Noise
- Solid and Hazardous Waste
- Transportation and Traffic

Mitigation measures have been identified in Chapter 4 for any adverse impacts that exceed applicable significance thresholds (CEQA Guidelines §15126.4). Pursuant to CEQA Guidelines §15130, a discussion of potential cumulative impacts has been prepared and is provided in Chapter 5. Alternatives to the proposed project in Chapter 6 of this Draft EIR were prepared in accordance with §15126.6 of the CEQA Guidelines. Chapter 6 describes a range of reasonable alternatives that could feasibly attain the basic objectives of the proposed project as a means of eliminating or reducing some of the significant adverse environmental effects associated with the proposed project.

1.4 RESPONSIBLE AND OTHER AGENCIES

CEQA Guidelines §15381 define a "responsible agency" as: "a public agency which proposes to carry out or approve a project, for which a Lead Agency is preparing or has prepared an EIR or Negative Declaration. For purposes of CEQA, responsible agencies include all public agencies other than the lead agency that have discretionary approval authority over the project." The SCAQMD is the lead agency for the proposed project. The City of Carson is a responsible agency and has discretionary authority for some aspects of the proposed project within its jurisdiction and has also been given an opportunity to review and comment of the NOP/IS and EIR for the proposed project. The Alameda Corridor Transportation Authority (ACTA), a joint powers authority of the cities of Los Angeles and Long Beach, is also a responsible agency over the proposed project as permits will be required from ACTA for the construction of pipelines along the Alameda Corridor and has also been given an opportunity to review and comment on the NOP/IS and EIR for the proposed project. While a portion of the proposed project is located in the Wilmington District of the City of Los Angeles, only ministerial permits with no discretionary approval are necessary for the proposed project from the City of Los Angeles.

No trustee agencies as defined by CEQA Guidelines §15386 have been identified with respect to the proposed project. However, notice of the proposed project has been sent to the Office of Planning and Research pursuant to Public Resources Code §21080.4 for distribution in the event trustee or other responsible agencies are identified for the proposed project. Agencies with

¹ Due to the complex physical, chemical, and atmospheric mechanisms involved in global climate change, the project's GHG emissions and the resulting significance of potential impacts are more properly assessed on a cumulative basis. Therefore, the environmental setting and the significance of potential impacts from the proposed project's GHG emissions is determined on a cumulative basis in Chapter 5 - Cumulative Impacts.

discretionary permitting responsibilities for the proposed project have been identified and are listed in Table 2.10-1.

1.5 INTENDED USES OF THE EIR

The Draft EIR is intended to be a decision-making tool that provides full disclosure of the environmental consequences associated with implementing the proposed project. Additionally, CEQA Guidelines §15124(d)(1) requires a public agency to identify the following specific types of intended uses:

- A list of the agencies that are expected to use the Draft EIR in their decision-making;
- A list of permits and other approvals required to implement the project; and,
- A list of related environmental review and consultation requirements required by federal, state, or local laws, regulations, or policies.

To the extent that local public agencies, such as the City of Carson, City of Los Angeles, and ACTA, are responsible for making land use and planning decisions related to the proposed project, it is expected that they will rely on this EIR during their decision-making process. See the preceding section for the public agencies, currently identified as responsible agencies, whose approval may be required and who may also be expected to use this EIR in their decision-making process. See also Table 2.10-1 in Chapter 2 for a list of discretionary permits and other approvals required to implement the proposed project.

1.6 AREAS OF CONTROVERSY

In accordance with CEQA Guidelines §15123(b)(2), the areas of controversy known to the lead agency, including issues raised by agencies and the public, shall be identified in the CEQA document. "Controversy" is defined as a difference in opinion or a dispute. Consistent with the purpose of the NOP/IS to solicit comments or other information, responses to individual issues raised in the comment letters that are related specifically to potential impacts from the proposed project were prepared. As necessary, some issues were further addressed in this EIR. Of the 93 comment letters, 85 were letters in support of the proposed project.

Eight letters were received that provided specific comments on the NOP/IS. Comment letters were received from the City of Carson, the California Department of Transportation (Caltrans), and the Native American Heritage Commission (NAHC). The City of Carson and attorneys representing the City of Carson, requested clarification of the lead agency and asked that certain information and analyses be included in the EIR. Caltrans provided guidance on addressing construction traffic impacts. The NAHC provided guidance for evaluation of historical resources. Finally, four letters were received regarding the storage and transportation of liquid petroleum gas (LPG) in the vicinity of the Tesoro Refinery and at third party storage facilities. The NOP/IS, the comment letters received on that document, and responses to individual comments can be found in Appendix A of this EIR.

The SCAQMD held a public scoping meeting on September 24, 2014 on the proposed project at the Carson Community Center at 801 E. Carson Street, Carson, California. An additional six comment letters expressing support for the proposed project, were received at the public scoping meeting. The issues that could be considered controversial are provided in Table 1.6-1. Table 1.6-1 contains only areas of controversy raised in the comments on the NOP/IS or at the scoping meeting. No other areas of controversy have been communicated to the SCAQMD prior to release of this EIR for public comment.

TABLE 1.6-1
Summary of Potentially Controversial Topics

Key Issues Raised	EIR Sections Where Addressed
Concerns regarding the storage and transport of LPG.	Section 4.3
Air quality and greenhouse gas analysis	Section 4.2 and Section 5.3

1.7 EXECUTIVE SUMMARY – CHAPTER 2: PROJECT DESCRIPTION

1.7.1 INTRODUCTION

Tesoro is proposing the Los Angeles Refinery Integration and Compliance Project (proposed project). The proposed project is designed to better integrate the Wilmington Operations and Carson Operations. In addition, the proposed project is designed to comply with the new federally-mandated Tier 3 gasoline specifications and with State and local regulations mandating emission reductions.

On April 23, 2014, the SCAQMD released a Notice of Intent to adopt a Draft Negative Declaration for the Tesoro Storage Tank Replacement and Modification project. The tank replacement modification project was considered to be a separate project from the Tesoro Refinery Integration and Compliance Project because it could go forward with or without the currently proposed project; that is, neither project relies on the other project to be implemented and both have independent utility. However, because of the timing of construction and implementation of the two projects, it was decided to incorporate the Tesoro Storage Tank Replacement and Modification project into the currently proposed project to provide a cohesive analysis of all environmental impacts from the two projects.

1.7.2 PROJECT OBJECTIVES

There are multiple objectives for this project that include modifications to further integrate Carson and Wilmington Operations so that consolidated operation can be optimized for improved operation, reduction of GHG emissions and criteria pollutants, improved energy

recovery, and environmental compliance requirements. The project objectives include the following:

- Improving process efficiency through integration while maintaining the overall production capability of transportation fuels. Making process modifications that improve efficiency and enable shutdown of the Wilmington Operations FCCU prior to the next scheduled FCCU turnaround expected to occur in 2017, providing substantial emission reductions and reducing carbon intensity.
- Recovering and upgrading distillate range material from FCCU feeds. Tesoro proposes to achieve this objective by modifying 51 Vacuum Unit, the Mid-Barrel Distillate Treater and the Hydrocracker Unit at Carson Operations, and Hydrotreater Unit No. 4, and Hydrocracker Unit modifications at Wilmington Operations. Recovering distillate from FCCU feed enables shut down of the Wilmington Operations FCCU since the Carson Operations FCCU has sufficient capacity to process the FCCU feed that remains after distillate recovery.
- Complying with federal, state, and local regulations. Tesoro proposes to achieve this objective by: (1) meeting the U.S. EPA Tier 3 gasoline specifications; and (2) reducing Refinery NOx, SOx, and GHG emissions through proposed process modifications that improve efficiency, enable shutdown of the Wilmington Operations FCCU and lower carbon intensity.
- Improving financial viability for the newly integrated Tesoro Los Angeles Refinery and the local community. Tesoro proposes to achieve this objective by: (1) reducing future operating, capital, turnaround, and environmental compliance costs, primarily by shutting down the Wilmington Operations FCCU; (2) improving electrical supply reliability; (3) improving integrated Refinery transportation fuel production flexibility between gasoline and distillate products to respond to changes in market demand, including the capability to produce 100 percent of the Refinery gasoline production as CARB compliant gasoline; and (4) providing sustainable local jobs and tax revenue for the community.
- Integrating Carson and Wilmington Operations. Tesoro proposes to achieve this objective by installing the Interconnecting Pipelines to allow efficient transfer of hydrocarbons between the facilities to allow gasoline blending optimization, process unit feedstock optimization, and increased diesel production.
- Increasing overall Refinery processing efficiency. Tesoro proposes to achieve this objective by: (1) adding a Sulfuric Acid Regeneration Plant at the Wilmington Operations to regenerate sulfuric acid on-site; (2) adding a Wet Jet Treater to improve jet fuel quality; (3) upgrading and adding facilities to recover and treat propane for commercial sales, and (4) upgrading existing LPG rail facilities to enable fast unloading of railcars.
- Improving efficiency of water-borne crude oil receipt and marine vessel unloading. Unloading crude oil from marine vessels without delay will reduce vessel emissions at the

Port of Long Beach. Tesoro proposes to achieve this objective by constructing six new 500,000 barrel tanks at the Carson Crude Terminal and replacing two existing 80,000 barrel crude oil tanks at the Wilmington Operations with two 300,000 barrel tanks. Piping within the Carson Crude Terminal will be installed to connect the six new 500,000 barrel tanks to existing pipelines to the Carson Operations and Marine Terminal 1. The two new 300,000 barrel tanks will be connected to existing pipelines from the Wilmington Long Beach Terminal. Within the confines of the Wilmington Operations, the existing 12-inch diameter piping will be replaced with 24-inch diameter piping to connect the replacement tanks to the Wilmington Operations.

1.7.3 PROJECT LOCATION

The proposed project will occur at both the Wilmington and Carson Operations of the Tesoro Los Angeles Refinery. The Wilmington Operations are located within Wilmington, a community under the jurisdiction of the City of Los Angeles, at 2101 East Pacific Coast Highway, Wilmington, Los Angeles County, California 90744. The Carson Operations are located at 2350 East 223rd Street, Carson, California, 90810. Additionally, the Sulfur Recovery Plant (SRP) (considered to be a portion of the Wilmington Operations) is located at 23208 South Alameda Street in the City of Carson. The proposed project would include installing pipelines within the Refinery as well as under the Alameda Street and Sepulveda Boulevard adjacent to the Refinery to connect pipelines between the Wilmington and Carson Operations.

1.7.4 LAND USE AND ZONING

Implementation of the proposed project at the Wilmington and Carson Operations of the Tesoro Los Angeles Refinery will occur within an industrial area. Land uses in the vicinity of the Refinery include oil production facilities, refineries, hydrogen plants, coke handling facilities, terminals. transportation corridors. container storage tank farms. automobile wrecking/dismantling facilities, and other industrial operations. The Wilmington Operations are bounded to the north by Sepulveda Boulevard, to the west by Alameda Street; to the south by railroad tracks and to the east by the Dominguez Channel. The Wilmington Operations are zoned heavy industrial (M3-1). The Carson Operations and all adjacent properties are zoned manufacturing heavy (MH). The closest residential area is approximately 100 feet from the property line across Wilmington Avenue to the southwest of the Refinery (adjacent to the Carson Crude Terminal). The closest residential area to the proposed project locations within the Refinery is about 1,300 feet.

1.7.5 OVERVIEW OF PETROLEUM REFINING

Crude oil is a mixture of hydrocarbon compounds and relatively small amounts of other materials, such as oxygen, nitrogen, sulfur, salt, sediment, and water. Petroleum refining is a coordinated arrangement of manufacturing processes designed to produce physical and chemical changes in the crude oil to remove most of the non-hydrocarbon substances, break the crude oil into its various components, and blend them into various useful products. The overall refining process uses four kinds of techniques: 1) separation, including distilling hydrocarbon liquids

into gases, gasoline, diesel fuel, fuel oil, gas oils, and heavier residual materials; 2) cracking or breaking large hydrocarbon molecules into smaller ones by thermal or catalytic processes; 3) reforming using heat and catalysts to rearrange the chemical structure of a particular oil stream to improve its quality; and, 4) chemically combining two or more hydrocarbons to produce high-grade gasoline. Specific topics discussed in detail include types of crude oil, the refining process, and refinery optimization (see Section 2.5.1 through 2.5.3).

1.7.6 TESORO REFINERY EXISTING OPERATIONS

Currently, the Wilmington and Carson Operations function as two separate and distinct facilities with some limited integration.

1.7.6.1 Wilmington Operations

Crude oil for the Wilmington Operations is delivered via ship using the pipeline from the Tesoro Marine Terminal at the Port of Long Beach. Crude oil can also be delivered via pipeline from other onshore locations. No crude oil is transported to the Wilmington Operations via rail and there are no facilities to receive crude oil deliveries by railcar. The Wilmington Operations currently utilize 20 storage tanks to store crude oil and other heavy petroleum liquids. Crude oil is processed in the Crude Unit where it is heated and distilled into various hydrocarbon components, which are further processed in downstream Wilmington Operations units. The Wilmington Operations also receive, process, and transport other petroleum products (crude oil not included) to and from the Wilmington Operations by ship, truck, and railcar. These petroleum products include residuum, gas oil, diesel, gasoline, naphtha, transmix, and LPG.

1.7.6.2 Carson Operations

Crude oil for Carson Operations is unloaded from tankers at terminals located in the Port of Long Beach and then transferred via pipeline and stored at Port of Long Beach Terminals or the Carson Crude Terminal. No crude oil is transported to the Carson Operations via rail and there are no facilities to receive crude oil deliveries by railcar. Crude oil is sent via pipeline from the marine terminals to Carson Operations for further storage in any of nine Refinery crude oil storage tanks and then processed in the Crude Units. Crude oil can also be delivered via pipeline from other onshore locations. The Carson Operations also receive, process, and transport other petroleum products (crude oil not included) to and from the Carson Operations by ship, truck, and railcar. These petroleum products include residuum, gas oil, diesel, gasoline, naphtha, and LPG. Additionally, the Carson Operations has the Watson Cogeneration Facility that currently produces excess power, beyond the Carson Operations' needs, and sells the excess power to Southern California Edison.

1.7.6.3 Tesoro Los Angeles Refinery

The Tesoro Los Angeles Refinery consists of two adjacent facilities, Carson Operations and Wilmington Operations, which are managed as one Refinery. The Carson and Wilmington Operations have in the past and continue to produce a variety of products including unleaded gasoline, jet fuel, diesel fuel, fuel oil, petroleum gases, petroleum coke and sulfur. The Carson

Operations also produces high purity propylene as feedstock to the adjacent Ineos Polypropylene Plant, and calcined coke. Elemental sulfur and petroleum coke are produced as by-products of the refining process. Major processing units at both the Carson and Wilmington Operations include the Crude Units, the Vacuum Units, the Delayed Coker Units, hydrotreating units, reforming units, the FCCUs, the Alkylation Unit, hydrogen plants, the Sulfur Recovery Plants, and the Cogeneration Plants. The major differences between the Carson and Wilmington Operations is that the Carson Operations is a larger operation with three crude, two vacuum, and two coker units whereas the Wilmington Operations only has one crude, one vacuum, and one coker unit.

1.7.6.4 Current Los Angeles Refinery Integration

Currently Carson and Wilmington Operations are connected via Tesoro and third party pipelines that enable the transfer of intermediate and finished products between the two facilities. The Refinery optimizes crude oil and other refinery feedstock processing to produce the mixture of refined products that are marketed from the Tesoro Los Angeles Refinery. Unit turnarounds are aligned between the Carson and Wilmington Operations to minimize economic and local area impacts from shutdowns. Hydrogen use is balanced and managed across the Los Angeles Refinery for hydrotreating purposes and output of clean fuel products. Crude oil, intermediate feedstocks and products are transferred between Carson and Wilmington Operations via pipeline, as required, to optimize Refinery production to meet market demand.

1.7.6.5 Marine Terminals Associated with Los Angeles Refinery

The Refinery receives crude oil from ships which unload at three marine terminals operated by Tesoro Logistics Operations, LLC (Tesoro Logistics) in the Port of Long Beach (POLB). The unloaded crude oil is then piped to the Refinery for processing. The proposed project is not expected to result in any physical changes to the existing marine terminals. Additionally, no changes to the pipelines connecting the marine terminal to the Refinery are planned as a result of the proposed project.

1.7.7 PROPOSED PROJECT

The crude oil and feedstock processing capability at the integrated Refinery has the potential to increase by approximately two percent or 6,000 bbls/day as a result of the proposed project due to a revision of the described duty of the Wilmington Operations Coker fresh feed heater in the existing permit to conform with SCAQMD and industry standards. This permit revision has the potential to enable an increase of 6,000 bbls/day in crude oil processing capacity. To increase crude throughput capacity beyond the 6,000 bbls/day, the Refinery would need to physically modify equipment such as the Crude Units or Delayed Coker Units. No physical modifications to the Crude Units or Delayed Coker Units are included as part of the proposed project; therefore, crude throughput capacity is constrained, so no other increase in crude capacity will occur.

Modifications will be made to recover diesel and jet fuel boiling point range material, also known as distillate, from gas oil that is currently fed to the FCCUs at both Wilmington and Carson Operations. This will enable the remaining gas oil feed from the Wilmington Operations FCCU to be diverted via the proposed interconnecting piping to the Carson Operations FCCU, while maintaining the same overall level of transportation fuels production. In addition, facilities will be added to remove impurities such as sulfur, nitrogen compounds, and organic acids from distillates in order to make on-specification products. The modifications will be designed so that the combined Refinery operates within the existing capacity of the SRPs. Following project completion, when the diesel and jet range material are recovered and the remaining gas oil feed is diverted to the Carson Operations FCCU, the FCCU at Wilmington Operations will be shut down and the Refinery will be integrated as one operating Refinery.

1.7.7.1 Wilmington Operations

Process modifications to improve efficiency and achieve integration will enable shutting down the Wilmington Operations FCCU which is expected to substantially reduce emissions at the integrated Refinery. Reconfiguring the combined Refinery complex is expected to improve the gasoline to distillate production ratio and is anticipated to result in minor increases in air pollutant emissions. However, the net effect on overall emissions from the proposed project is expected to be emissions reductions at the Refinery, primarily associated with process modifications to improve efficiency and integration, enabling the shutdown of the Wilmington Operations FCCU, as well as shutdown or reduced operations of other equipment at the Refinery. Additionally, equipment production efficiency and heat recovery will be optimized for new and modified units to further reduce overall emissions and optimize energy utilization.

1.7.7.1.1 Wilmington Operations FCCU Shutdown

An FCCU cracks or converts heavy hydrocarbons into lighter, gasoline and distillate range hydrocarbons in the presence of fine particles of catalyst that are circulated throughout the process. The Refinery will modify other units to ensure there will be no loss in overall production due to the FCCU shutdown, prior to taking the FCCU offline. Midway through the proposed project, the Wilmington Operations FCCU will be shut down, the equipment will be permanently removed from service in compliance with SCAQMD-requirements, abandoned in place, and Tesoro will relinquish all relevant permits.

1.7.7.1.2 Hydrocracker Unit (HCU) Modifications

The Wilmington Operations HCU capacity is being increased to accommodate conversion of the distillate material previously routed to the Wilmington Operations FCCU. It will be recovered as HCU feed in order to reduce the amount of gas oil feed produced and to enable the shutdown of the Wilmington Operations FCCU. The reactor and fractionation sections will be modified to increase the production of ultra-low sulfur diesel and gasoline. The Wilmington Operations HCU modification will include adding new nozzles to two existing vessels, modifying the hydrogen recycle compressor internals to accommodate higher unit capacity, installing a small hydrogen booster compressor, installing or modifying as many as three heat exchangers to provide improved heat integration, installing two new electrically driven pumps, and associated

piping and instrumentation. The proposed project currently includes increasing the permitted firing duty of two existing heaters in the Wilmington Operations HCU, with a common stack and SCR, by a total of 25 mmBtu/hr. While the Wilmington Operations HCU capacity would be increased approximately 15 percent, this modification will have no impact on the overall integrated Refinery crude throughput capacity.

To recover propane for the proposed new Propane Sales Treating Unit (PSTU) described below, the Wilmington Operations HCU fractionation section will also be modified by installing two new water cooled exchangers, one knockout drum, and associated piping and instrumentation. An existing reflux pump and two heat exchangers in the fractionation section will be removed.

1.7.7.1.3 Delayed Coker Unit (DCU) Fresh Feed Heater H-100

The Wilmington DCU fresh feed heater H-100 heats DCU charge, a mixture of crude oil, residual from the Crude Unit, slop oil (internally recycled oil and off-specification products) and FCCU main fractionator bottoms. H-100 provides heat to separate the DCU chargethat are fed into the unit so they can be fractionated into feedstock streams for other refinery process units. The heater has 36 burners. Each burner can operate up to a maximum heat release of 8.4 mmBtu/hr. Thus, the maximum heat release of the heater as a whole is 302.4 mmBtu/hr (36 x 8.4 = 302.4). The heater manufacturer, however, only guarantees that each burner will operate up to 7 mmBtu/hr. Thus, the guaranteed heat release of the heater as a whole is 252 mmBtu/hr (36 x 7 = 252). The existing equipment description of the Fresh Feed Heater in the Title V permit will be revised to conform to SCAQMD/Industry standards. The description will be changed from the 'design heat release' basis (252 mmBtu/hr) to the industry standard 'maximum heat release basis (302.4 mmBtu/hr). Revising the equipment description to maximum heat release will ensure that operating the heater at maximum heat released conforms with the SCAQMD's expectation that equipment is operated within the maximum heat release described in the permit.

The Refinery has at times operated Heater H-100 above the guaranteed heat release level of 252 mmBtu/hr when it needed Additional heat is needed at times to either lift more gas oil out of the Coker feed in downstream distillation columns or simply to process more feed through the DCU, to the physical limits of the downstream units. For example, during a Coker shutdown, residuum and crude oil inventory that are normally processed in the unit accumulate. After a shutdown, it is necessary to process feedstocks at a higher rate in order to process the inventory gains of excess feedstock that accumulated during a shutdown.

The current Title V permit describes the H-100 heater based on the heater's guaranteed heat release of 252 mmBtu/hr. As part of the proposed project, this description will be revised to reflect the heater's actual maximum level of operation (302.4 mmBtu/hr) rather than the lower guaranteed level of operation (252 mmBtu/hr). Heater H-100 will not be physically modified in any way as part of the project. And, as described above, the heater has operated above 252 mmBtu/hr in the past. Nonetheless, the DEIR made the conservative assumption that the change in permit description would allow Tesoro to increase the maximum operation of heater H-100 from 252 mmBtu/hr to 302.4 mmBtu/hr. In order to ensure that this assumed increase in operations would not result in any increase in emissions, the SCAQMD imposed a new permit

condition that limits daily emissions of criteria pollutants from the H-100 heater to levels that would be generated if the heater were never operated above 252 mmBtu/hr. This would be achieved through efficient maintenance and operation of air pollution control equipment. These limits apply to mass emissions of CO, NOx, SOx, particulate matter less than ten microns in diameter (PM10), and volatile organic compounds (VOC).

Alternatively, higher crude rates may be processed in the DCU heater as analyzed herein. No physical modifications are planned to be made to the heater. However, modifications may be required during the permit review process. The maximum heater firing capability will remain unchanged. The number of burners (36) and the maximum heat release (8.4 mmBtu/hr) of each burner in the heater will remain the same. Although the described duty of the heater will increase to 302.4 mmBtu/hr, there will be no increase in emissions as permit conditions will be imposed to limit criteria pollutant emissions. Mass emissions of CO, NOx, SOx, particulate matter less than ten microns in diameter (PM10), and volatile organic compounds (VOC) will be restricted in the revised permit.

The application to revise the permit description of H-100 heater was submitted in early 2014, independent of the proposed project. As a result, this component of the proposed project was not described in the NOP/IS. But upon further review, it was concluded that this description change had the potential toeould create adverse environmental impacts that would likely occur simultaneously with the proposed project because, for example, it could enable a slight this revision to the heater equipment description has the potential to increase thein crude oil throughput to the Refinery by a small amount of up to two percent (or up to 6,000 bbl/day). While the Refinery could opt to process either a small increase in crude oil throughput or slightly heavier crude oil blend, the processing of additional crude oil blend—would result in greater environmental impacts downstream of the DCU, as described in Section 4.1.2.1. Therefore, for purposes of analyzing the worst-case impacts, this document assesses an increase in crude oil throughput capacity. The increased heat release from the H-100 heater and/or increased crude oil throughput is anticipated to occur once the modified permit is issued. Including the permit revision as part of the proposed project ensures that all possible impacts from the modification of the Refinery are fully analyzed.

1.7.7.1.4 Catalytic Reformer Unit (CRU)-3 Modifications

The CRU-3 fractionation section will be modified to enable recovery of Hydrocracker propane from the refinery fuel gas system. The modifications to CRU-3 will include installing one new depropanizer tower that is larger than the existing tower, as many as three heat exchangers, as many as four electrically driven pumps, and associated piping and instrumentation.

1.7.7.1.5 Propane Sales Treating Unit (PSTU)

A new PSTU will be constructed at the Wilmington Operations to enable the process efficiency improvement to treat propane for sale. A PSTU conditions liquid propane for sale using absorbers and dryers to meet sales specifications. The PSTU will treat approximately 2,000 bbl/day of propane and will include eight vessels and four pumps that will be installed to purify recovered propane from the Wilmington Operations HCU and CRU-3.

1.7.7.1.6 Hydrotreater Units 1 and 2 (HTU-1 and 2) Modifications

The HTU-1 will be modified to hydrotreat approximately 7,000 bbl/day of FCCU gasoline to comply with the new federally-mandated Tier 3 gasoline specifications and to hydrotreat jet range components. The modifications to HTU-1 will include modifying or installing as many as five heat exchangers, and adding a pump and associated piping and instrumentation. Because the HTU-2 will continue to produce the same types of feedstock that it currently produces, its feedstock will be separated from HTU-1's feedstock. The HTU-2 feedstock separation modifications will include repurposing an existing diesel salt dryer to be used as a feed surge drum, installing as many as two electrically driven pumps, and associated piping and instrumentation.

The proposed modifications to HTU-1 will also allow it to start hydrotreating jet fuel, treating approximately 12,000 bbl/day to remove sulfur impurities. The modifications will include installing one new stripping steam nozzle on the stabilizer, one coalescer, one salt dryer, and condensate pot, and associated piping and instrumentation.

1.7.7.1.7 Hydrotreater (HTU-4) Modifications

HTU-4 will be modified as part of the proposed project to increase distillate yield and must be completed in order to allow for the shutdown of the Wilmington Operations FCCU, and to fully utilize the existing hydrotreating capacity to produce ultra-low sulfur diesel. There will also be modifications to recover jet fuel, and added heat integration equipment to reduce energy consumption by producing steam in heat exchangers, providing process heat to two strippers and preheating boiler feed water. HTU-4 will process either gas oil or high sulfur diesel. The proposed modification to the HTU-4 will allow the Refinery to minimize motor fuels production disruptions during both planned and unplanned outages. Other modifications to HTU-4 include adding new nozzles on the fractionator, modifying the product coolers, installing a new surge drum, a salt dryer, a coalescer, a condensate pot, as many as four new electrically driven pumps and eleven heat exchangers, and associated piping and instrumentation.

1.7.7.1.8 New Sulfuric Acid Regeneration Plant (SARP)

The proposed new Sulfuric Acid Regeneration Plant (SARP) will be constructed at the Wilmington Operations and will remove impurities from and recycle the Wilmington and Carson Operations spent sulfuric acid to produce fresh sulfuric acid on-site rather than sending it off-site for treatment. The SARP is sized for an approximate throughput of 400 tons/day of sulfuric acid production and regeneration and will include three tanks, as many as eight electrically driven pumps, a natural gas fired 42 mmBtu/hr Decomposition furnace, a five mmBtu/hr Converter heater, a natural gas fired 20 mmBtu/hr Process Air Heater, a waste heat steam generator, as many as four blowers, as many as eight heat exchangers, four towers, one reactor, one stripper, three scrubbers, one electrically driven compressor, three drums, and associated piping and instrumentation. The fresh sulfuric acid will be sent back to the Alkylation Units for reuse. Spent sulfuric acid is currently transported off-site for recycling at a third-party vendor.

1.7.7.1.9 Wilmington Replacement Crude Oil Tanks and Other Tank Modifications

To improve the efficiency of water-borne crude oil receipt and marine vessel unloading, two new 300,000 bbl internal floating roof storage tanks (Tanks 300035 and 300036) will replace two existing 80,000 bbl fixed-roof storage tanks (Tanks 80035 and 80036) in the north tank area of Wilmington Operations. The new larger tanks will allow marine vessels to unload without undue delay, thereby reducing the time vessels are required to wait at anchorage until sufficient tankage is available for vessel discharge. The new tanks will be permitted to store the same types of products as the existing tanks. Storage capacity does not affect Refinery throughput, which is based on processing capabilities as described in Section 2.5.4.1.

The scope of this part of the proposed project will include demolishing two existing storage tanks, installing two new larger tanks in the same location as the tanks being removed, replacing 5,000 feet of 12-inch diameter piping with 24-inch diameter piping within the Wilmington Operations to allow the tank loading rate to increase from 5,000 bbl/hr to 15,000 bbl/hr. The scope includes modifying one existing tank (Tank 80038) by connecting it to a vapor recovery system. Existing Tanks 80038, 80060, 80067, and 80079 will require change of service permit modifications and annual throughput increases for each tank.

1.7.7.2 Carson Operations

The proposed Tesoro Los Angeles Refinery Integration and Compliance Project includes modifications at the Carson Operations, resulting in a combined Refinery complex and improving the gasoline to distillate production ratio. Additionally, equipment energy efficiency and heat recovery will be optimized for new or modified units, resulting in lower overall emissions.

In the NOP/IS the project description for the Carson Operations included modifications to the No. 1 and No. 2 Cokers to comply with SCAQMD Rule 1114 – Petroleum Refinery Coking Operations, which requires recovery of additional vent gases during coke drum deheading operations. Rule 1114 requires that the ejector system be installed at the next scheduled turnaround for each Coker unit. Compliance is required beginning in January 2016 for No. 2 Coker. The impacts of the Rule 1114 compliance projects were analyzed separately in the Environmental Assessment for Rule 1114 adoption (SCAQMD, 2013). As a result, because the Rule 1114 component has already been analyzed for potential environmental impacts and does not rely on any components of the proposed project, it has been removed from the proposed project. To the extent that the Rule 1114 component of the proposed project contributes to cumulative impacts, they will be evaluated in Chapter 5 of this EIR.

1.7.7.2.1 No. 51 Vacuum Unit Modifications

The No. 51 Vacuum Unit will be modified to allow increased distillate yield, or diesel production, which will require reducing vacuum gas oil production as much as 8,000 bbl/day. The No. 51 Vacuum Unit modifications will include modifying the feed heater's Title V permit described duty from 300 to 360 mmBtu/hr, installing one new sixteen-inch nozzle on the vacuum tower, as many as five new exchangers, two strainers, as many as three new electrically driven

pumps, and associated piping and instrumentation. No substantial heater modifications are required to achieve a firing rate of 360 mmBtu/hr; however, burner tips may be replaced with a different design. The heater duty increase will enable increased recovery of distillate out of gas oil in the vacuum column.

1.7.7.2.2 Carson Operations FCCU Modifications

The NOP/IS presented two types of modifications to the Carson Operations FCCU, physical and operational. The physical modifications (i.e., installing a feed surge drum, as many as two pumps and two heat exchangers, and associated piping and instrumentation) have been canceled and removed from the proposed project. However, the proposed process modifications to improve efficiency and achieve integration will still be included. This will enable shutdown of the Wilmington Operations FCCU, and allow the Carson Operations FCCU to accept a portion of the Wilmington Operations gas oil feed. The throughput capability of the Carson Operations FCCU will remain unchanged. New pipelines will be routed between the Wilmington Operations and the Carson Operations FCCU feed tanks. Although physical modifications to the Carson Operations FCCU are no longer proposed, the impacts from the potential increase in utilization of the Carson Operations FCCU have been addressed in Chapter 4.

1.7.7.2.3 New Wet Jet Treater

One new 50,000 bbl/day Wet Jet Treater will be installed at Carson Operations to treat jet fuel by removing mercaptans and reducing the total acid number (TAN), or organic acid content, in the jet fuel produced in upstream units. The Wet Jet Treater will increase Refinery operating efficiency. The Wet Jet Treater includes one mercaptan removal reactor, one TAN removal reactor, two product separators, one spent caustic loading facility, as many as six associated electrically driven pumps, two salt dryers, two clay filters, and associated piping and instrumentation. Feed and fresh caustic will be routed to the new Wet Jet Treater and spent caustic and treated jet fuel will be routed to existing storage tanks. The spent caustic flow rate is conservatively estimated at approximately 11 gallons per minute (gpm). Approximately four additional railcar loads per week of spent caustic will be generated and shipped to the Gulf Coast for recycling.

1.7.7.2.4 Hydrocracker Unit (HCU) Modifications

The Carson Operations HCU capacity will be increased by approximately 10 percent. The Carson Operations HCU will be modified as part of the proposed project to increase distillate yield to allow for the shutdown the Wilmington Operations FCCU by enabling it to process the distillate recovered from the No. 51 Vacuum Unit. Processing the recovered distillate feed will require increased hydrogen gas usage to allow the modified HCU to comply with existing low sulfur diesel product specifications. The increased hydrogen gas capacity will be provided by increasing the recycle gas compressor speed. In addition, the Carson Operations HCU energy utilization efficiency will be improved by installing a steam generator. The HCU modification will include installing one new steam generator heat exchanger, an air cooler, and associated piping and instrumentation.

1.7.7.2.5 Light Hydrotreating Unit (LHU) Modifications

The LHU will be modified to more effectively remove sulfur from FCCU gasoline to comply with the new federally-mandated Tier 3 gasoline sulfur specifications. The LHU will process a higher sulfur feed material derived from existing fractionation equipment. The proposed modifications will include installing one new stripping steam nozzle on the stabilizer, as many as five new heat exchangers, one coalescer, a condensate pot, and associated piping and instrumentation.

1.7.7.2.6 Naphtha Hydrodesulfurization (NHDS) Unit Modifications

The existing Carson Operations Naphtha Hydrodesulfurization (NHDS) Unit will be modified with the installation of new equipment to allow removal of contaminants from unit feed and sulfur from pentanes. This enables flexibility for additional gasoline production to partially compensate for lost production from the Wilmington Operations FCCU. The existing Reactor Feed Heater will be retrofitted with new ultra-low NOx burners to reduce emissions. The modifications will include repurposing and modifying the existing Isooctene debutanizer tower to separate isopentane from the Carson Operations NHDS feed. The modifications include the addition of eight new nozzles on the debutanizer tower, installation of a caustic scrubber, two knockout drums, a product coalescer, an air cooler, an accumulator, a condensate pot, as many as 14 new heat exchangers, six electrically driven pumps, and associated piping and instrumentation.

1.7.7.2.7 Naphtha Isomerization Unit Modifications

The existing Carson Operations Naphtha Isomerization Unit will be modified to recover propane and heavier material from the Unit off-gas, enabling additional product sales. The Naphtha Isomerization Unit modifications include addition of an off gas caustic scrubber, two reactor effluent flash drums, up to two heat exchangers, four pumps, and associated piping and instrumentation.

1.7.7.2.8 Alkylation Modifications

Amylenes (C5 olefins) will be recovered from FCCU gasoline in an existing fractionation tower and converted to low vapor pressure gasoline in the modified Alkylation Unit. Alkylation Unit capacity will remain unchanged. The modifications to process amylenes will include repurposing the Depentanizer column, replacing one existing four inch nozzle with an eight-inch nozzle on the olefin feed surge drum, installing as many as six heat exchangers, one filter/coalescer, one truck loading rack, two electrically driven pumps, and associated piping and instrumentation. The modifications to process propylene and butylene will include the installation of a propylene chiller and associated piping and instrumentation.

1.7.7.2.9 Mid-Barrel Distillate Treater

The existing Mid-Barrel Distillate Treater incorporates a hydrotreater to remove sulfur from straight run diesel and converts it to ultra-low sulfur diesel. To ensure compliance with U.S.

CHAPTER 1: INTRODUCTION AND EXECUTIVE SUMMARY

EPA mandated Tier 3 gasoline specifications, the Mid-Barrel Distillate Treater will be modified to enable it to desulfurize heavy FCCU naphtha. Interconnecting Pipelines to/from the LHU and Mid Barrel Distillate Treater will be installed. New bypass piping to recycle a portion of the product stream back to the feed system will also be installed.

1.7.7.2.10 Steam System Balance Modifications

The Carson Operations steam system demand will increase due to compliance with new federally-mandated Tier 3 gasoline specifications and amylene alkylation. The increased steam demand will be met by a combination of: installing waste heat steam generators (heat exchangers), generating more steam from the existing Watson Cogeneration Facility, and reducing steam demand from existing steam turbines.

1.7.7.2.11 New Crude Tankage

To improve the efficiency of water-borne crude oil receipt and marine vessel unloading, up to six new 500,000 barrel floating roof crude oil storage tanks will be constructed adjacent to the Carson Crude Terminal. The new tanks will allow marine vessels to unload crude oil without undue delay, thereby reducing the time vessels are required to wait at anchorage until sufficient tankage is available for vessel discharge. This portion of the project will reduce the amount of time that vessels spend within the port and increase the amount of crude oil that can be unloaded and stored. Decreasing the amount of time the vessels spend within the port and at anchor will substantially reduce annual ship emissions. Storage capacity does not affect Refinery throughput, which is based on processing capabilities as described in Section 2.5.4.1.

1.7.7.3 Modifications to Supporting Equipment

1.7.7.3.1 Interconnecting Pipelines

To more fully integrate the Refinery, this element of the proposed project includes pipelines to transport materials to and from various refinery units, e.g., new units, and storage facilities, as well as pipelines to transport materials between the Carson Operations and Wilmington Operations. Up to 15 new pipelines are expected to transport gasoline and gasoline blending components, crude oil, gas oil, butylene, propylene, and liquid petroleum gases.

The proposed project would include installing a bundle of pipes under the Alameda Corridor and Sepulveda Boulevard as part of the work that will connect pipelines between the Wilmington and Carson Operations. The pipe "bundle" is where the pipelines come together in one place and go underground to cross adjacent streets. The pipe bundle will require a 54-inch bore using horizontal directional drilling (HDD). HDD would be used to bore underneath (approximately 80 feet in depth) South Alameda Street and East Sepulveda Boulevard.

With the exception of pipelines that will be routed underground near the Carson and Wilmington Operations Coke Barns, pipelines located outside of the HDD bore, would then be routed above

ground on pipe racks or ground level pipeline supports into the respective product and supply manifolds within the Refinery property.

1.7.7.3.2 Electrical Connection to Wilmington

To more fully integrate the Refinery, up to six new 69 kV electrical cables and two new 13.8 kV cables will be routed via conduit systems and overhead transmission lines from the Carson Watson Cogeneration Facility located at the Carson Operations to the Sulfur Recovery Plant (see Figure 2-17) and Wilmington Operations. One new 69 kV substation, and at least two new transformers with associated cabling, are proposed to be installed at the Watson Cogeneration Facility. One 69 kV substation with two new 13.8 kV main substations with at least four transformers and associated switch gear and wiring will be installed at the Wilmington Operations. This portion of the proposed project will allow electricity generated at Carson Operations to be used at the Wilmington Operations.

1.7.7.3.3 LPG Rail Unloading

LPG Rail Car Unloading facilities will be modified at Carson Operations to allow increased deliveries of approximately 4,000 bbl/day of Alkylation Unit feedstocks (LPG including propane, propylene, etc.). LPG Rail Unloading facilities will be used to transfer LPG to the Refinery to replace a portion of the Alkylation Unit feed lost by the closure of the Wilmington Operations FCCU. LPG handling at the Refinery may increase by up to ten railcars per day. Increased production of alkylate is critical for blending clean-burning gasoline due to its properties, such as low benzene and sulfur content and high octane content. The scope of work will include installing a vaporizer, a surge drum, a knockout pot, as many as four electrically driven transfer pumps, and associated piping and instrumentation. Currently, Carson Operations unloads up to 11,000 bbls/day of LPG into on-site pressurized tankage for use in the refining process. The LPG rail loading modifications will allow the Refinery to import up to about 15,000 bbl/ day of LPG, resulting in the increase of about 4,000 bbl/day or 10 railcars per day at the Refinery.

1.7.8 CONSTRUCTION OF THE PROPOSED PROJECT

Construction activities for the proposed project wereare expected to begin in the first half of 2016 and wereare expected to be completed by March 2021. The construction schedule is expected to commence following certification of the FEIR and issuance of permits. The dates used here and shown in Figure 2-18 will adjust accordingly. The construction activities for most of the components are expected to overlap from about the third quarter of 2016 to second quarter 2017. Most construction activities are expected to be completed by the end of 2018. Construction activities associated with the crude oil storage tanks are not expected to be completed until March 2021. Construction work shifts are expected to last about ten hours per day during most portions of the construction schedule. During normal construction periods, one work shift per day is expected beginning at 7:00 a.m. and ending at 5:30 p.m. During Refinery turnaround periods, two work shifts are expected and work may be conducted 24 hours per day. Shifts would operate from 6:00 a.m. to 6:00 p.m. and 6:00 p.m. to 6:00 a.m.

1.7.9 OPERATION OF THE PROPOSED PROJECT

Construction of the project will not affect where the Refinery obtains crude oil. The project is not designed to enable the Refinery to change its feedstock or crude oil blend. The Refinery will continue its practice of seeking cost-effective crude oils that can be blended with other crude oils and feedstocks to create the necessary blends suitable for Refinery operations (see Section 2.5.4.1 for additional detail).

Once construction of the proposed project is completed, the existing work force at the Refinery is not expected to increase or substantially change the volume of traffic. No increase in permanent workers is expected so no increase in worker traffic is expected. Construction of the Sulfuric Acid Regeneration Plant will decrease traffic in the area because spent sulfuric acid is currently transported off-site for recycling. While truck transport will continue, installing the Sulfuric Acid Regeneration Plant will eliminate approximately 6,000 acid transport truck trip miles per month year that are currently used to transport spent and regenerated sulfuric acid to and from Wilmington Operations due to the reduced distance traveled. Additionally, there will be no daily increase over baseline peak day activity of coke transport trucks to the Port of Long Beach. However, annual coke production may increase as result of the potential increase of up to 6,000 bbl/day in crude oil processed at the Wilmington Operations DCU. Therefore, the annual coke truck trips to the Port are expected to increase by 1,460.

1.7.10 PERMITS AND APPROVALS

The proposed project will require approvals from a variety of federal, state, and local agencies as detailed in Section 2.10.

1.8 EXECUTIVE SUMMARY – CHAPTER 3: EXISTING ENVIRONMENTAL SETTING

1.8.1 INTRODUCTION

This chapter describes the existing environment in the vicinity of the Refinery that could be adversely affected by the proposed project. This EIR is focused only on the environmental topics identified in the NOP/IS (see Appendix A) that could be significantly adversely affected by the proposed project. The environmental topics identified in Chapter 3 include both a regional and local setting.

1.8.2 AIR QUALITY AND GREENHOUSE GAS EMISSIONS

Chapter 3 discusses the effects of meteorological conditions, temperature and rainfall, and wind flow patterns on the existing air quality conditions in the South Coast Air Basin (Basin). Existing air quality is examined for criteria pollutants, regional air quality, local air quality, the Refinery's criteria pollutant emissions, toxic air contaminants (TACs), as well as the regulatory setting.

The Tesoro Los Angeles Refinery is located within the SCAQMD's jurisdiction. Over the last two decades, air quality has substantially improved within the district. Nevertheless, several air quality standards continue to be regularly exceeded. Of the National Ambient Air Quality Standards (NAAQS) established for criteria pollutants, the Basin is designated as non-attainment for PM2.5, and ozone for both state and federal standards. The Basin, including the proposed project area, is classified as attainment for the state and federal standards for nitrogen dioxide (NO₂), sulfur dioxide (SO₂), CO, sulfates, and lead except in Los Angeles County, and is classified as attainment for the federal PM10 standards but non-attainment for the state PM10 standards and lead in Los Angeles County. This section also shows 2012 – 2013 criteria pollutants emitted by the Refinery. This section also provides information on local toxic air contaminant concentrations in the vicinity of the Refinery and an inventory of GHG emissions in the Basin. Finally, federal, state, and local air quality regulations are identified.

1.8.3 HAZARDS AND HAZARDOUS MATERIALS

The Tesoro Los Angeles Refinery handles hazardous materials with the potential to impact people, property, or the environment. An accidental release of hazardous materials at a facility can occur due to natural events, such as earthquakes, and non-natural events, such as mechanical failure or human error. Potential existing hazards from the Refinery are those associated with accidental releases of toxic/flammable gas, toxic/flammable liquefied gas, and flammable liquids. Potential hazards at a refinery include toxic gas clouds, fires, vapor cloud explosions, thermal radiation, and overpressure. Risks are also associated with transportation, including truck transport, rail transport, and pipeline transport. This section describes existing risks at the Refinery from units that will be affected by the proposed project.

Historic operations at the Refinery have resulted in accidental releases of hazardous materials (primarily petroleum hydrocarbons) to soil and groundwater in some areas of the Refinery. State and federal laws require detailed planning to ensure that hazardous materials are properly handled, used, stored, and disposed of to prevent or mitigate injury to human health or the environment in the event that such materials are accidentally released. Local laws and regulations that address accidental release, storing, transport, and handling are also describe in the section.

1.8.4 HYDROLOGY AND WATER QUALITY

Water issues in Los Angeles County are complex and affect supply, demand and quality of water for domestic, commercial, industrial and agricultural use. Extensive urbanization in the Carson/Wilmington area has resulted in significant alteration and deterioration of the natural hydrologic environment. The Tesoro Los Angeles Refinery consumed approximately 18 million gallons of water per day in 2012/2013 from potable water, Refinery owned wells, and recycled water (see Table 3.4-1 for use details).

Wastewater streams from the Carson Operations include process wastewater, boiler and cooling tower blowdown, sanitary wastewater, and surface runoff. Process wastewater streams are treated by the Carson Operation's existing wastewater treatment facilities prior to discharge to the Los Angeles County Sanitation District (LACSD) sewer system. Wastewater from the

CHAPTER 1: INTRODUCTION AND EXECUTIVE SUMMARY

Carson Operations is treated and sampled in compliance with the LACSD Industrial Wastewater Discharge Permit. The LACSD places limitations on wastewater parameters such as oil and grease contents, pH levels, temperature, heavy metals, organic compounds and other constituents. Wastewater that complies with the LACSD permit requirements is discharged to the sewer. Wastewater that does not comply is returned to the wastewater treatment system for further treatment. The Carson Operations is also permitted to discharge stormwater commingled with treated process water to Dominguez Channel.

The Carson Operations discharged an average of 4.07 million gallons per day of wastewater during 2012 and 2013 to the sewer system. The Carson Operation's current Industrial Wastewater Discharge Permit allows discharge of up to 5.25 million gallons per day to the LACSD sewer system.

The Wilmington Operations discharged an average of 2.88 million gallons per day of wastewater based on a 2012/2013 average. The Wilmington Operation's current Industrial Wastewater Discharge Permit allows discharge of 3.24 million gallons per day. The Wilmington Operations maintains on-site wastewater treatment equipment. Wastewater from the Wilmington Operations is treated and sampled in compliance with the LACSD Industrial Wastewater Discharge Permit.

The Tesoro Los Angeles Refinery is located on the Dominguez Channel and approximately 1.5 miles west of the Los Angeles River. The Los Angeles River and the Dominguez Channel are the major drainages that flow into the Los Angeles-Long Beach Harbor complex. Sediments and contaminants are transported into the harbor with the flows from the Los Angeles River and, to a lesser degree, the Dominguez Channel.

Runoff from the Wilmington and Carson Operations is collected, treated (if applicable), and discharged under the requirements of the existing storm water permit, National Pollutant Discharge Elimination System (NPDES) permit or the Industrial Wastewater Discharge Permit.

1.8.5 NOISE

The existing noise environment at the Refinery and in the vicinity of the Refinery is dominated by refining operations and mobile sources including trucks, cranes, locomotive engines, and other heavy industrial activities. Noise sources in the area currently include: (1) mobile and stationary sources at the Wilmington and Carson Operations; (2) rail traffic and related maintenance and service activities at adjacent rail yards; (3) noise from adjacent industrial facilities; (4) the Alameda Corridor; and (5) traffic along the State Route 102, Interstate 405, Pacific Coast Highway, and other local streets, e.g., Alameda Street, Wilmington Avenue, and Sepulveda Boulevard.

Noise-sensitive receptors are defined as residences, schools, hospitals, libraries, places of worship, and public parks. Although there are numerous sources of noise in the area, there are few sensitive receptors. The closest noise sensitive receptors to the proposed project locations within the Refinery include: (1) a residential area on the corner of Merimac Avenue and West Willard Street approximately 2,000 feet east of the Tesoro Wilmington Operations; (2)

residential area near Mauretania Street and Goodrich Avenue; (3) residential areas west of the Drumm Avenue/East Sandison Street intersection; and (4) residential areas west of Wilmington Avenue near East Pacific Street. There are numerous commercial receptors located adjacent to both Wilmington and Carson Operations, as well as numerous industrial receptors.

Based on a recent noise survey conducted during August and September 2014 to determine the existing ambient noise levels in the vicinity of the Refinery, the Community Noise Equivalent Level (CNEL) in the vicinity of the closest residential areas ranges between 68 and 73 decibels (dBA). The existing CNEL at an industrial area, adjacent to the Wilmington Operations is about 76 dBA. This section also describes the various state and local noise regulations, as well as, criteria in the Noise elements in the General Plans for the cities of Los Angeles and Carson to limit excessive noise levels for a variety of land uses.

1.8.6 SOLID AND HAZARDOUS WASTE

A total of 11 Class III active landfills and two transformation facilities are located within Los Angeles County with a total disposal capacity of 43,648 tons per day and 3,240 tons per day, respectively.

In 2012, residents and businesses in Los Angeles County disposed of 8.72 million tons of solid waste at Class III landfills and transformation (i.e., refuse to energy) facilities located in and out of the County. In addition, the amount of inert waste disposed at permitted inert waste landfills totaled 89,142 tons.

Presently, two transformation facilities operate in Los Angeles County with a combined average daily tonnage of 1,825 tons per day in 2012, or about 569,539 tons per year. It is expected that these two facilities will continue to operate at their current permitted daily capacity during the planning period of 2012 through 2027.

Los Angeles County Department of Public Works conducted a survey requesting landfill operators in the County to provide updates to their estimated remaining disposal capacity. Based on the results of the survey and considering permit restrictions, the total remaining permitted Class III landfill capacity in the County is estimated at 129.2 million tons as of December 31, 2012.

The average amount of solid waste generated by the Tesoro Carson and Wilmington Operations during 2012/2013 was an average of 39,09914,874 tons per year of solid waste during 2012/2013.

Two hazardous waste landfill facilities within California are the Chemical Waste Management (CWM) Kettleman Hills facility in King's County, and the Clean Harbors Environmental Services facility in Buttonwillow (Kern County). On May 21, 2014 DTSC finalized a permit modification which allowed the Kettleman Hills facility to increase its capacity by about five million cubic yards. Buttonwillow is a 320-acre landfill operated by Clean Harbors Environmental Services Environmental Services and can accept in excess of 200 loads of waste

per day. Buttonwillow has a remaining capacity of approximately 8,890,000 cubic yards or approximately 40 years.

1.8.7 TRANSPORTATION AND TRAFFIC

This section provides an overview of regional and local traffic circulation and facilities in the vicinity of the proposed project. The operating characteristics of an intersection are defined in terms of the level of service (LOS), as represented by intersection volume to capacity (V/C) ratio. LOS describes the quality of traffic flow based on variations in traffic volume and other variables such as the number of signal phases. For signalized intersections, it is measured from LOS A (excellent conditions) to LOS F (very poor conditions). Intersections that operate at LOS A to C operate well. Level C normally is taken as the design level in urban areas outside a regional core. Level D typically is the level for which a metropolitan area street system is designed. Level E represents volumes at or near the capacity of the highway which will result in possible stoppages of momentary duration and fairly unstable traffic flow. Level F occurs when a facility is overloaded and is characterized by stop-and-go (forced flow) traffic with stoppages of long duration.

Peak hour LOS analyses were developed for 13 intersections in the vicinity of the Refinery. The LOS analysis indicates typical urban traffic conditions in the area surrounding the Refinery, with all intersections operating at Levels A to D during morning and evening peak hours. One intersection currently operates at LOS D (without the proposed project), Wilmington Avenue/Interstate 405 southbound ramps during the morning peak hour. All other intersections operate at LOS A to C during both morning and evening peak hours. This section also provides an overview of applicable state and local traffic laws, ordinances, and General Plan goals.

1.9 EXECUTIVE SUMMARY – CHAPTER 4: ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Chapter 4 assesses the potential environmental impacts of the construction and operation of the Tesoro Los Angeles Refinery Integration and Compliance Project. Chapter 4 evaluates those impacts that are considered potentially significant under the requirements of CEQA, as determined by the NOP/IS (see Appendix A). Specifically, an impact is considered significant under CEQA if it leads to a "substantial, or potentially substantial, adverse change in the environment." Table 1.9-1 (located at the end of this chapter) summarizes the impacts of the proposed project.

The proposed project has potential direct impacts to environmental resources (i.e., air quality, hazards and hazardous materials, hydrology and water quality, noise, solid and hazardous waste, and transportation and traffic). In addition, the proposed project may have indirect impacts on upstream or downstream equipment by causing increased utilization from operational changes, even though the equipment is operating within permit limits and no permit modification would be required. Due to the nature of Refinery operations, all equipment activity levels may continue to fluctuate on a monthly or even daily basis. As discussed in Section 2.5.4 and associated subsections, while the proposed project does not affect the types of crude oils processed at the

Refinery and thus will not have impacts due to changes in crude oils, the proposed project may affect downstream unit processing rates. Those indirect impacts are expected to occur in the following units; Wilmington Operations units downstream of the Coker (from H-100 duty increase and potential crude capacity increase), Hydrotreating Unit No. 3, Catalytic Reforming Unit No. 2, and tanks; and, Carson Operations FCCU, Cogen, and tanks. The impacts associated with these indirect impacts are also evaluated in the EIR.

1.9.1 AIR QUALITY

1.9.1.1 Environmental Impacts

Project-specific air quality impacts associated with increases and decreases in emissions of air contaminants (both criteria air pollutants and TACs) during the construction and operation phases of the proposed project are discussed in Chapter 4, as well as impacts to sensitive receptors.

Construction emissions were calculated for peak day construction activities in each month construction is expected to occur. Construction activities associated with the modifications to the Refinery would result in emissions of CO, VOC, NOx, SOx, PM10, and PM2.5. The peak construction phase of the proposed project will exceed the regional significance threshold for VOC and NOx. The largest source of emissions is associated with construction equipment. Therefore, unmitigated air quality impacts associated with construction are considered significant.

The Localized Significance Threshold (LST) analysis at sensitive receptors for construction CO, NO₂, PM10, and PM2.5 emissions was conducted and indicates that NO₂ emissions are expected to exceed significance thresholds due to construction activities associated with the proposed project. The maximum exceedances occur approximately 1,300 feet west of the Wilmington Operations. Therefore, the localized air impacts from proposed project would be considered significant during construction.

Operational emissions associated with the proposed project include stationary and mobile source emissions. Emission increases are expected from the new SARP, PSTU, crude storage tanks, as well as fugitive emissions associated with modifications to existing units (e.g., HTU-1, HTU-2, HTU-4, No. 51 Vacuum Unit, LPG Rail Unloading, etc.). Emission increases are also associated with mobile sources including locomotive engine and truck emissions. The proposed project includes the shutdown of the Wilmington Operations FCCU, which is a major source of emissions. The proposed project is expected to generate emission reductions of CO providing an emissions benefit and a less than significant increase in VOC, NOx, SOx, PM10, and PM2.5 emissions. Additionally, mobile source criteria pollutant and GHG emission reductions from marine vessels are expected to occur from improving the unloading rate of crude oil deliveries at the Marine Terminal. Therefore, no significant adverse operational air quality impacts are expected from the proposed project.

Due to the complexity and duration of the Refinery integration, some project components are expected to be implemented prior to the shutdown of the Wilmington Operations FCCU (referred

CHAPTER 1: INTRODUCTION AND EXECUTIVE SUMMARY

to as the Interim Operations Scenario). To assess the interim impact of the proposed project, the project components that will be operational in advance of the shutdown of the Wilmington Operations FCCU have been evaluated. Project components included in the Interim Operations Scenario include the Wilmington Operations DCU H-100 Heater Duty Bump, and fugitive emissions from the Wilmington Operations HCU and Carson HCU Mods, LHU Mods, and Mid Barrel Distillate Treater. The expected interim emissions are less than significant.

An additional transitional period is expected to occur to facilitate the integration of the Refinery and the shutdown of the Wilmington Operations FCCU. The transitional period is expected to be approximately 90 days prior to the Wilmington Operations FCCU shutdown, when Refinery units will become operational while the Wilmington Operations FCCU remains operating. The transitional period is expected to create a temporary increase in emissions that when combined with the concurrent on-going construction of other portions of the proposed project will have significant air quality impacts). The transitional period operational emissions increase will cease and become the reduced emissions discussed previously following the shutdown of the Wilmington Operations FCCU and completion of the proposed project.

There are substantial emission reductions in CO from the proposed project, which will provide a beneficial air quality impact. NOx, SOx, PM10, and PM2.5 will have local emissions benefits, but will be regionally neutral as RECLAIM (RTCs) and Emission Reduction Credits (ERCs) will be retained or generated. VOC emission increases from direct stationary sources associated with the proposed project will be offset using concurrent emission reductions or ERCs as required by SCAQMD Regulation XIII for emission increases greater than one pound per day from newly permitted and modified existing permitted emission sources. Use of emission offsets will reduce potential air quality impacts associated with emission increases from stationary sources, including fugitive emissions. Equipment that will use concurrent emission reductions will be restricted by SCAQMD permit conditions to ensure the Wilmington Operations FCCU is shutdown to provide the necessary offsets.

Dispersion modeling was used to calculate ambient air concentrations of the criteria pollutants from the project sources which emit CO, NOx, SOx, PM10, and PM2.5 emissions during operation of the proposed project and to determine the localized impacts. Based on the AERMOD air dispersion model results, the ground-level concentrations of the criteria pollutants of concern will be below SCAQMD CEQA significance thresholds. Therefore, no significant adverse localized air quality impacts are anticipated to occur from the operation of the proposed project.

To provide a comprehensive analysis of toxic air contaminants and non-cancer toxic air contaminant impacts, risks were calculated using currently adopted guidance. Based on the air quality modeling and related assumptions, the incremental cancer risk to the Maximum Exposed Individual Worker (MEIW) associated with TAC emissions from the proposed project was calculated to be 9.32 in one million. The incremental cancer risk to the Maximum Exposed Individual Resident (MEIR) associated with TAC emissions from the proposed project was calculated to be 3.76 in one million. The incremental cancer risk to the nearest non-residential sensitive receptor associated with the proposed project was calculated to be 2.1 in one million.

The predicted cancer risks does not exceed the cancer risk significance threshold of 10 per million; therefore, the carcinogenic health risks are considered to be less than significant.

The maximum chronic hazard index (MCHI) is located just east of the southern portion of the facility. The MCHI for the proposed project is 0.106127, which is below the 1.0 significance threshold. Therefore, the chronic hazards generated by the proposed project are considered to be less than significant.

The maximum 8-hour chronic hazard index is located on the northwestern boundary of the Wilmington Operations. The maximum 8-hour chronic hazard index for the proposed project is 0.108, which is below SCAQMD's chronic hazard index significance threshold of 1.0. Therefore, the peak chronic non-cancer health hazards generated by the proposed project are considered to be less than significant.

The maximum acute hazard index (MAHI) is located just west of the southern portion of the facility. The MAHI for the proposed project is 0.052, which is below the 1.0 significance threshold. Therefore, the acute hazards generated by the proposed project are considered to be less than significant.

1.9.1.2 Mitigation Measures

Feasible mitigation measures are required to minimize the significant air quality impacts associated with the construction phase of the proposed project as the emissions of VOC, CO, and NOx are considered significant. Mitigation measures A-1 through A-9 have been imposed which include maintaining a Construction Management Program that incorporates the imposed mitigation measures and Best Management Practices. Mitigation measures include requirements for: prohibiting truck and construction equipment idling in excess of five minutes at the Refinery, maintaining construction equipment to optimize emissions, requiring the use of onroad heavy-duty trucks greater than 19,500 pounds or greater that are compliant with EPA 2007 on-road emissions standards, utilizing electric welders where feasible, utilizing on-site power where available, using equipment rated 50 and greater equipped with Tier 4 or equivalent engines, and suspending all construction activities that generate air pollutant emissions during first stage smog alerts. Additionally, Tesoro will implement selective catalytic reduction catalyst change outs as specified in mitigation measure A-9. The mitigation measures are expected to reduce construction emissions; however, construction emissions are expected to remain significant.

During the 90-day transitional period, when construction activities are on-going, VOC, CO, and NOx emissions will remain significant. Therefore, the 90-day transitional period combined with construction activities associated with the proposed project are expected to cause significant adverse construction air quality impacts and no additional feasible mitigation has been identified that would reduce the localized impacts during construction.

No mitigation measures are required for the operational phase because no significant air quality impacts were identified. Emissions of CO were calculated to be emission reductions. VOC,

CHAPTER 1: INTRODUCTION AND EXECUTIVE SUMMARY

NOx, and SOx, PM10, and PM2.5 emissions were calculated to be less than significant. BACT will be required for all new and modified sources with emissions increases.

1.9.1.3 Level of Significance after Mitigation

Regional construction emissions for the proposed project for VOC and NOx are expected to remain significant following mitigation. The regional construction emissions associated with CO, SOx, PM10, and PM2.5 are expected to remain less than significant following mitigation. Construction emissions are expected to be short-term and they will be eliminated following completion of the construction phase.

Localized significant impacts from construction activities were analyzed for CO, NO₂, PM10, and PM2.5. The construction activities associated with the proposed project are expected to cause a significant impact on ambient air quality. While mitigation measures have been imposed, construction air quality impacts would remain significant.

The proposed project is not expected to have significant adverse CO, NOx, SOx, VOC, PM10, or PM2.5 emission impacts during operation. Further, ambient air quality modeling indicates that the proposed project emissions of CO, NO₂, PM10, and PM2.5 during operation of the proposed project would not cause or contribute to an exceedance of any ambient air quality standard. Therefore, the operation of the proposed project is not expected to cause a significant adverse impact on ambient air quality and no mitigation measures are required.

The proposed project was analyzed for cancer and non-cancer human health impacts and determined to be less than significant. The estimated cancer risk due to the operation of the proposed project is expected to be less than the significance criterion of 10 in one million. The chronic and acute hazard indices are expected to be below 1.0. Therefore, the proposed project is not expected to cause a potentially significant adverse impact associated with exposure to TAC.

1.9.2 HAZARDS AND HAZARDOUS MATERIALS

1.9.2.1 Environmental Impacts

1.9.2.1.1 On-site Hazards

The potential hazards associated with the proposed project are common to most oil processing facilities worldwide, and are a function of the materials being processed, processing systems, procedures used for operating and maintaining the facility, and hazard detection and mitigation systems. The hazards that are likely to exist are identified by the physical and chemical properties of the materials being handled and the process conditions. For hydrocarbon fuel and petrochemical facilities, the possible hazards are: toxic gas clouds (e.g., gas with hydrogen sulfide, sulfur dioxide, or sulfur trioxide); flash fires; torch fires; pool fires; boiling liquid expanding vapor explosions (BLEVEs); and, vapor cloud explosions.

In order to determine the hazards from the existing and proposed units and modifications, the CANARY consequence analysis models were used. See Chapter 3.3 and Appendix C for more details on the model and related assumptions. The maximum vulnerability zones (also referred to as hazard zones) for the existing equipment and proposed changes were evaluated for the new or modified units associated with the proposed project. The maximum hazard zone identifies the area where the injury thresholds would be potentially exceeded in the event of an upset. For each potential release, the distance to the significance threshold level was determined before and after the proposed project modifications (where applicable). For new units, the distance to the threshold level for each release was determined.

The new and modified units that have the ability to create a hazard that could extend further off-site include the Naphtha Isomerization Unit and new crude tanks at the Carson Operations, and the Sulfuric Acid Recovery Plant at the Wilmington Operations. The hazards associated with the Interconnecting Pipelines would also extend off-site as portions of the pipeline are located off-site. The hazards associated with the Naphtha Isomerization Unit, new crude tanks, and Interconnecting Pipelines would only impact the roadways adjacent to the Refinery or other industrial areas (e.g., other refineries, rail yards). The hazards associated with the Sulfuric Acid Regeneration Plant are potentially significant in the event of a worst-case release of sulfur dioxide and could extend up to about 1,905 feet. Although the hazard would avoid residential areas, several houses are located within industrial areas and the projected sulfur dioxide hazard zone, so there could be impacts to residents in the event of a worst-case release. Therefore, the hazard impacts associated with the proposed project are potentially significant.

1.9.2.1.2 Transportation Hazards

The proposed project would increase the transport of fresh and spent caustic trucks using trucks and railcars specifically designed for caustic transport. Using the maximum estimated total combined truck mileage of 45 miles per day, the potential for an accident involving a caustic truck is 0.000002 (45 miles per day / 1 million miles x 0.04 accidents/million miles driven) or approximately one accident every 555,556 years. Though it is difficult to compare hazardous and non-hazardous transport risk, the differences appear to be significant enough to conclude that the magnitude of non-hazardous transport accidents dominates highway transport risk. The specific hazardous material trucking regulations discussed in Section 3.3.7 and additional care provided by carriers and shippers of hazardous materials appear to be reducing the accident rate for hazardous material shipments. Because hazardous materials are currently transported by truck, the consequences of an accident would not change. Therefore, the probability for an adverse impact from truck transport of hazardous materials is extremely low and the potential hazard impact related to truck transport from the proposed project is less than significant.

The proposed project is expected to increase the shipment of caustic by rail. The approximately 110,880 gallons (2,640 barrels) of spent caustic per week will be loaded onto railcars for transport to the Gulf Coast for regeneration. Therefore, the proposed project will add about four railcars per week of spent caustic acid to existing trains that are currently transporting spent caustic from the Refinery. Using the maximum estimated trips travel to the state line of 277 miles per railcar for four railcars, the potential for a serious incident involving a caustic railcar is 0.00007 (1,110 miles per day / 1 million miles x 0.08 accidents/million railcar miles) or

approximately one accident every 11,760 years. Because hazardous materials are currently transported by rail, the consequences of an accident would not change. Therefore, the probability for an adverse impact from rail transport of spent or fresh caustic from the proposed project is extremely low and less than significant.

The proposed project is also expected to increase the number of LPG railcars by a maximum of 10 per day. These additional LPG railcars will be transported in railcars specifically designed to transport LPG and added to existing rail shipments. Using the maximum estimated trips travel of 605 miles per day per railcar for 10 railcars, the potential for a serious incident involving a LPG railcar is 0.0002 (6,050 miles per day / 1 million miles x 0.03 accidents/million railcar miles) or approximately one accident every 6,081 years. Therefore, the probability for an adverse impact from rail transport of LPG is extremely low and the potential hazard impact related to rail transport from the proposed project is less than significant.

1.9.2.1.3 Hazard Impacts During Construction

In the event contaminated soil or groundwater is encountered, exposure is expected to be limited to on-site construction workers. Construction workers at the Refinery and other locations are protected by numerous existing rules, regulations and requirements and have been professionally trained to safely work around the potentially hazardous conditions that exist within a refinery. Compliance with these laws and internal Refinery safety procedures will ensure that any worker exposure is less than significant. Because the nearest residential receptors are located 1,000 and 2,000 feet from the two locations where hydrocarbon exceeds the SCAQMD Rule 1166 50 ppm requirement, it is unlikely that they will be exposed to hydrocarbons exceeding 50 ppm.

1.9.2.2 Mitigation Measures

There are a number of rules, regulations, and laws governing the refinery operations that will minimize the potential adverse impacts associated with hazards at the facility and which would minimize the hazards associated with the Naphtha Isomerization Unit, new crude storage tanks, SARP, and Interconnecting Pipelines. Mitigation measure HHM-1 would require the applicant to demonstrate compliance with applicable hazardous material rules and regulations prior to the startup of the new or modified units, to include, at minimum, an Emergency Action Plan as required by the Fire Department addressing spill, fire, and explosion hazards and relative risk of upset to adjacent land uses; PSM requirements under 40 CFR Part 1910, Section 119, and Title 8, CCR, Section 5189; and Article 2, Chapter 6.95 of the California Health and Safety Code that require facilities that handle listed regulated substances to develop RMPs to prevent accidental releases of these substances prior to commencement of operations. Other than mitigation measure HHM-1, no other feasible mitigation measures have been identified, over and above the extensive safety regulations that currently apply to the Tesoro Refinery.

1.9.2.3 Level of Significance after Mitigation

The impacts of the proposed project on hazards associated with the Naphtha Isomerization Unit, new crude tanks, SARP, and Interconnecting Pipelines are expected to be significant.

Compliance with existing PSM, RMP, and CalARP regulations and implementation of the recommended safety measures would minimize the potential impacts associated with a release, but are not expected to eliminate the potential hazard impacts. No feasible mitigation measures were identified to further reduce significant adverse hazard impacts. Therefore, hazards and hazardous material impacts generated by the proposed project are expected to remain significant.

With respect to potential worker exposure to soil and groundwater contamination, compliance with existing regulations and implementation of the proposed project safety measures are intended to minimize the potential impacts associated with excavation. Such compliance is expected to reduce the potential hazard impacts associated with hydrocarbon-contaminated soil and groundwater. Therefore, hazards and hazardous material impacts generated by excavation activities associated with the proposed project are expected to be less than significant.

1.9.3 HYDROLOGY AND WATER QUALITY

1.9.3.1 Environmental Impacts

Water demand during construction is limited to water applied for dust suppression and water needed to perform hydrostatic testing. The maximum total daily potable water demand during construction is expected to be a maximum of 40,000 gallons per day (gpd), which is less than the significance threshold of 262,820 gpd. Therefore, the proposed project will have less than significant impacts on water supply during construction.

The water used for the hydrostatic testing tanks and associated piping will be Refinery wastewater that is diverted for testing prior to discharge to the industrial sewer system. Using diverted wastewater will not increase the amount of wastewater generated by the Refinery, but will vary the discharge rate during construction. It is expected that for a total of approximately four to six weeks distributed over the construction period, a temporary daily increase in water discharge will occur at the completion of hydrostatic testing. No permit modification or new wastewater treatment facilities are needed to accommodate the temporary increase in discharge of wastewater during testing from the Carson or Wilmington Operations.

The Refinery currently uses on average about 13.8 million gpd of fresh/potable water and about 4.5 million gpd of reclaimed water in its operations. The direct water demand of the proposed project is expected to require an estimated increase in water demand of 76.5 gallons per minute (110,160 gpd). An additional 81,115 gpd of water demand is associated with the indirect effects of the proposed project. The combined total of the proposed project direct and indirect water demand is 191,275 gpd which is less than the significance threshold of 262,820 gpd. The Refinery has adjudicated water rights that allow the production of up to 2.8 billion gallons of water per year from its wells. Therefore, the proposed water supply impacts are expected to be less than significant.

The proposed project is expected to reduce overall wastewater generated during operation at the Refinery by an estimated 55.1 gpm (77,344 gpd). This is due, in large part, to the shutdown of the Wilmington Operations FCCU. While there will be wastewater increases from some operations, such as the SARP, the proposed project will reduce wastewater generation, and

adequate capacity in the existing wastewater treatment facilities is available. Therefore, no new wastewater treatment facilities are needed and the existing facilities are adequate to meet the needs of the proposed project. As such, the proposed project impacts to water quality would be less than significant.

1.9.3.2 Mitigation Measures

No significant impacts associated with water demand and wastewater discharge are expected from the proposed project, so no mitigation measures are required.

1.9.3.3 Level of Significance after Mitigation

The proposed project impacts on hydrology and water quality are expected to be less than significant.

1.9.4 NOISE

1.9.4.1 Environmental Impacts

Proposed project construction is anticipated to increase noise levels temporarily at noise-sensitive receptors in the vicinity of the Tesoro Los Angeles Refinery, as heavy construction equipment is required during construction activities associated with the proposed project. Noise from construction activities is generated by a broad array of construction equipment. These noise sources will operate primarily during daylight hours and will be a source of noise over the construction period.

Three dimensional noise models of the proposed project were created using the noise modeling software, SoundPLAN. Actual noise monitoring in the vicinity of the Refinery was used to estimate baseline noise levels. The noise model was used to determine the potential proposed project noise impacts during construction and operational activities.

The noise impacts associated with construction activities would add less than 3.0 dBA to the adjacent residential communities, including all noise-sensitive receptors. The noise levels at the closest residential areas are expected to increase from 0.1 to 0.9 dBA depending on the location and the time of day. An increase of 0.9 dBA is less than the significance threshold of 3.0 dBA. The proposed project noise impacts during the construction phase are expected to be less than significant.

The proposed project will add equipment to the existing Refinery so that there will be additional noise sources at the facility. Additional noise sources associated with the proposed project generally include process equipment components such as valves, flanges, vents, pumps, air coolers, scrubber, as well as new equipment associated with the Wet Jet Treater, PSTU and SARP.

The noise model predicted that the CNEL levels within residential areas would increase by less than 3.0 dBA as a result of the operation of the proposed project. The only noise increase (0.1 dBA) is the residential area west of Alameda Street, north of Pacific Coast Highway. The noise levels associated with the operation of the proposed project is expected to be similar or the same as existing noise levels at all residential receptors adjacent to the Refinery. The noise increases at all receptor locations are predicted to be less than 3.0 dBA and, therefore, noise impacts associated with the operation of the proposed project would be less than significant.

Construction of the proposed project would involve equipment and activities that may have the potential to generate groundborne vibration. Vibration impacts were evaluated using the Federal Transit Administration published standard vibration levels and peak particle velocities for construction equipment operations. The estimated vibration from construction activities is less than the FTA vibration impact level, so no significant vibration impacts are expected during the construction period. Equipment associated with operation of the proposed project is not expected to generate detectable groundborne vibration during normal operation because new and modified equipment is not expected to have oscillating parts that have the potential to generate groundborne vibration.

1.9.4.2 Mitigation Measures

No significant adverse impacts associated with noise or vibration are expected from the proposed project during construction or operational phases, so no mitigation measures are required.

1.9.4.3 Level of Significance after Mitigation

The noise and vibration impacts of the proposed project during construction and operational activities are expected to be less than significant.

1.9.5 SOLID AND HAZARDOUS WASTE

1.9.5.1 Environmental Impacts

Solid waste (i.e., construction debris and uncontaminated soil) generated during construction of the proposed project that may require disposal will be stored on the Refinery property prior to disposal at one of the landfills in southern California. The landfills in southern California have the capacity to accept the solid waste produced during the construction phase of the proposed project on a one-time basis. In addition, because a percentage of this solid waste has economic value (steel) or can be recycled (concrete), the amount of solid waste generated on a daily basis is expected to be relatively small compared to the total amount of solid waste generated in Los Angeles County. Therefore, the proposed project is not expected to result in a significant impact on solid waste during the construction phase.

Site preparation, grading, and construction activities for the proposed project have the potential to encounter contaminated soils. The project estimates that a total of approximately 290,148 cubic yards of contaminated soil may require removal and disposal: of that, approximately 83,213 cubic yards would be hazardous materials, and approximately 206,953 cubic yards would

be non-hazardous materials. In the event that the material still requires disposal (i.e., cannot be treated/remediated), the Kettleman Hills facility has sufficient available capacity (5,000,000 cubic yards) and the Clean Harbors Buttonwillow facility has available capacity (over 8,000,000 cubic yards) to accept the total amount of estimated one-time contaminated soil waste generated by construction activities associated with the proposed project. Since the amount of disposal capacity necessary to dispose of contaminated soils is well below the capacity of the available Class I landfills, no significant adverse hazardous waste impacts will occur from the proposed project.

Once the proposed project becomes operational, the average annual amounts of solid waste are not expected to change because there would be no increase in the number of workers and refinery units do not typically generate solid waste.

Operation of the proposed project may generate solid or hazardous waste streams; however, those waste streams are expected to be reused or recycled. Spent caustic will be generated by the Wet Jet Treater and from scrubbers on the SARP. Spent caustic will be recycled off-site and would not require disposal.

Periodic maintenance of the storage tanks could generate sludge during tank cleaning operations which occur once every ten to 20 years. The sludge would be recycled on-site in the DCU; therefore, no increase in waste disposal would be expected from operation of the new and modified storage tanks.

While operation of the proposed project may generate solid or hazardous waste streams, those waste streams are expected to be reused or recycled. Therefore, operation of the proposed project is not expected to require additional waste disposal capacity and will not interfere with the Tesoro Refinery's ability to comply with existing federal, state, and local regulations for solid and hazardous waste handling and disposal. Therefore, significant solid and hazardous waste impacts are not expected from construction and operation of the proposed project

1.9.5.2 Mitigation Measures

No significant adverse impacts associated with solid or hazardous waste are expected from the proposed project during construction or operational phases, so no mitigation measures are required.

1.9.5.3 Level of Significance after Mitigation

No significant adverse solid or hazardous waste impacts are expected.

1.9.6 TRANSPORTATION AND TRAFFIC

1.9.6.1 Environmental Impacts

Initial construction activities for the proposed project are expected to begin in the third quarter of 2016 and are expected to be completed by second quarter of 2021. The construction activities for most of the components of the proposed project are expected to overlap in the first three years (peak construction period). Construction work shifts are expected to last about ten hours per day during most portions of the construction schedule. During normal construction periods, one work shift per day is expected. During Refinery turnaround periods (when some of the Refinery Units are shut down), two work shifts are expected and work may be conducted 24 hours per day. Shifts would operate from 6:00 a.m. to 6:00 p.m. and 6:00 p.m. to 6:00 a.m.

Construction conditions are analyzed for the construction phase with the maximum number of construction trips during the construction period. The traffic analysis is based on the preliminary construction schedule that included a total of 950 workers, 875 day shift workers and 75 night shift workers. Following the traffic study, the construction schedule has been refined and the number of workers has decreased to 696. The decrease in total trips is within the margin of accuracy. The traffic analysis is based on up to 950 construction workers travelling to and from the proposed project site during the highest trip-generation phase of construction of the proposed project. In addition to worker trips, 120 truck trips would be generated during the peak trip-generating construction phase throughout the work day.

Caltrans began a major construction project to modify the Interstate 405/Wilmington Avenue interchange starting November 2013, and continuing during the baseline conditions of the proposed project. The interchange construction is expected to finish in late 2016 or early 2017, potentially overlapping with the near-term construction period of the proposed project, which would result in significant construction traffic impacts. LOS analysis was conducted to evaluate existing plus construction intersection conditions during the a.m. and p.m. peak hours. The LOS at all intersections is expected to be LOS A, B or C at all intersections, except Wilmington Ave./Interstate 405 Southbound Ramps during the morning peak hour. The construction-related trips are forecast to result in a significant impact during construction conditions at the Wilmington Ave/Interstate 405 Southbound Ramps.

Following construction, no increase in the number of workers required to operate the Refinery is expected. Therefore, there would be no long-term parking or traffic impacts associated with the proposed project.

1.9.6.2 Mitigation Measures

Mitigation measure TT-1 will be imposed to reduce the proposed project's construction-related trips on the Wilmington Avenue/Interstate 405 Southbound Ramps intersection prior to the completion of the Interstate 405/Wilmington Avenue Interchange Project. Mitigation measure TT-1 requires the applicant to implement a traffic management plan to address project traffic impacts prior to the completion of the improvements at the Wilmington Avenue/Interstate 405

Southbound Ramps intersection. The traffic plan will require that project workers be advised of the construction schedule and potential restrictions and closures associated with the Interchange Modification Project and will be required to avoid the Wilmington Avenue/Interstate 405 Southbound Ramps intersection during morning peak travel periods by traveling either outside of the morning peak travel time or along alternative routes. Additionally, construction workers shall be encouraged to participate in ridesharing to lessen the number of vehicles transiting to the Refinery.

1.9.6.3 Level of Significance after Mitigation

The impacts of the proposed project on traffic and circulation are expected to be less than significant following implementation of mitigation measure TT-1 because traffic will be routed to avoid the Interstate 405/Wilmington Avenue Interchange Project.

1.9.7 SIGNIFICANT UNAVOIDABLE IMPACTS

CEQA requires an EIR to discuss significant environmental effects and irreversible environmental changes which would result from a proposed project, should it be implemented. It was determined that implementation of the proposed project would result in potentially significant adverse impacts on air quality during construction and temporary exceedance of the localized significance thresholds. Long-term operational air quality impacts are not expected to have a significant adverse impact on the environment but would, in fact, provide beneficial local air quality impacts by reducing overall emissions of CO, NOx, and SOx, as well as GHG emissions. Therefore, the proposed project is not expected to have long-term adverse environmental impacts on air quality.

The proposed project could result in significant impacts related to the "worst case" hazard impacts associated with the proposed modifications to the Naphtha Isomerization Unit, the proposed new crude tanks, SARP, and Interconnecting Pipelines. Compliance with existing PSM, RMP, and CalARP regulations and implementation of the recommended safety measures would minimize the potential impacts associated with a release, but are not expected to eliminate the potential hazard impacts. The feasible mitigation measures identified would not reduce the significant adverse hazard impacts to less than significant.

Traffic levels are expected to increase during construction and generate potentially significant adverse traffic impacts. Feasible mitigation measures are expected to reduce traffic impacts to less than significant. Operational traffic levels are expected to remain essentially the same as existing levels. Therefore, no significant adverse impacts for traffic are expected during operation of the proposed project.

The proposed project involves modifications to an existing Refinery, located within an industrial area, which has been operating since the early 1900s. Therefore, there is no major commitment of nonrenewable resources or changes that would commit future generations to specific uses of the environment associated with the proposed project.

1.9.8 ENVIRONMENTAL EFFECTS FOUND NOT TO BE SIGNIFICANT

The analysis provided in Section 4.10 summarizes the NOP/IS, which concluded that the following environmental topics would be less than significant: aesthetics; agriculture and forestry resources, biological resources, cultural resources; energy; geology and soils; land use and planning; mineral resources; population and housing; public services and recreation.

1.9.9 GROWTH INDUCING IMPACTS

The proposed project would help ensure the efficient manufacture of petroleum products at an existing Refinery that has been used for refining purposes since the early 1900s. As a development project occurring in an urban, industrialized, and generally built-out environment, the proposed project would increase long-term stability and the availability of petroleum products. The proposed project is expected to require up to 696 construction workers that would be largely be drawn from the local existing workforce pool. No new employees are expected during operation of the proposed project. The proposed project could result in an increase in the import or refining of about 6,000 bbl/day of crude oil, but would not result in a substantial increase in the production of petroleum products (e.g., gasoline and diesel fuels) to allow significant population growth. The proposed project would not employ activities or uses that would result in growth inducement, such as the development of new infrastructure (i.e., new roadway access or utilities) that would directly or indirectly cause the growth of new populations, communities, or currently undeveloped areas. Likewise, the proposed project would not result in an expansion of existing public service facilities (e.g., police, fire, libraries, and schools) or the development of public service facilities that do not already exist.

1.10 EXECUTIVE SUMMARY – CHAPTER 5: CUMULATIVE IMPACTS

State CEQA Guidelines §15130 requires that an EIR include a reasonable analysis of the significant cumulative impacts of a proposed project. Cumulative impacts are defined by CEQA as "two or more individual effects which, when considered together, are considerable or which compound or increase other environmental impacts" (State CEQA Guidelines §15355). There are a number of projects proposed for development in the vicinity of the Refinery, which may contribute cumulative impacts to those generated by the proposed Integration and Compliance Project. The discussion in Chapter 5 lists projects which are reasonably expected to proceed in the foreseeable future, i.e., project information has been submitted to a public agency and is publicly available. Identified impacts from cumulative projects listed in Table 5.1.1 were combined with the proposed project's construction and operational impacts to assess cumulative impacts associated with the proposed project. The cumulative analysis is summarized in the following subsections.

1.10.1 AIR QUALITY

1.10.1.1 Environmental Impacts

1.10.1.1.1 Construction Impacts

The proposed project would contribute to potentially significant cumulative construction air quality impacts if project-specific construction emissions are considered to be cumulatively considerable as defined by CEQA Guidelines §15064(h)(1). Because the proposed project's construction emissions exceed the project-specific VOC and NOx thresholds, it is considered cumulatively considerable and cumulatively significant when considered in combination with related projects. Since CO, SOx, PM10, and PM2.5 construction emissions do not exceed their respective project-specific thresholds, they are not considered to be cumulatively considerable and, therefore, are not considered to contribute to cumulative construction impacts. This conclusion is consistent with CEQA Guidelines §15064(h)(4), which states, "The mere existence of significant cumulative impacts caused by other projects alone shall not constitute substantial evidence that the proposed project's incremental effects are cumulatively considerable."

1.10.1.1.2 Operational Impacts

The proposed project includes the shutdown of the Tesoro Wilmington Operations FCCU, which is a major source of emissions. As discussed in Section 4.2.2.2, peak daily emissions associated with the proposed project also would result in emission increases from new and modified units, increased mobile source emissions, and increased utilization of some equipment. The overall change in emissions associated with implementing the proposed project is a reduction in CO emissions and a less than significant increase in VOC, NOx, SOx, PM10 and PM2.5 emissions. As a result, criteria pollutant emissions from the proposed project operation are not considered to be cumulatively considerable and, therefore, are not considered to contribute to cumulative operational emission impacts.

1.10.1.1.3 Toxic Air Contaminants

A health risk assessment was performed to determine if TAC emissions generated by the proposed project would exceed the SCAQMD thresholds of significance for cancer risk and hazard indices. The maximum cancer risk from the proposed project for the resident (MEIR) was determined to be 3.76 in one million. The maximum cancer risk to a sensitive receptor was estimated to be 2.1 in one million. The maximum cancer risk at the worker receptor (MEIW) was estimated to be 9.32 in one million. The estimated cancer risk at all of the receptors was below the 10 in one million threshold. In addition, the noncancer risks were determined to be 0.106127, 0.108, and 0.052 for the maximum chronic, maximum 8-hr chronic, and acute hazard indices, respectively, which were also determined to be below the significance threshold of 1.0. Therefore, TAC emissions from the proposed project operation would not make a cumulatively considerable contribution to cumulatively significant impacts for carcinogenic and noncarcinogenic health impacts. Note that the HRA did not include the emission reductions associated with the shutdown of the Wilmington Operations FCCU and only included estimated

increases associated with the modification of existing and construction of new units, thus providing a conservative analysis of TAC emissions and related health risk. Therefore, the TAC emission impacts associated with the proposed project are not considered to be cumulatively considerable and are not considered to contribute to cumulative health risk impacts.

1.10.1.2 Mitigation Measures and Cumulative Impacts

The proposed project's construction emissions are cumulatively considerable and cumulatively significant when considered in combination with related projects. Mitigation measures A-1 through A-9 will be imposed on construction activities associated with the proposed project. However, after mitigation, construction emissions are expected to remain above SCAQMD thresholds for VOCs and NOx. Therefore, the construction of the proposed project would make a cumulatively considerable and unavoidable contribution to a cumulative significant impact during construction activities. While increases in operational emissions of VOC, NOx, SOx, PM10, and PM2.5 emissions are expected, which are less than significant, the proposed project is expected to result in reductions in CO emissions providing beneficial air quality impacts. Therefore, operation emissions from the proposed project are not significant, not cumulatively considerable, and are not considered to contribute to cumulative significant impacts for operational emissions, ambient air quality, or exposure to TACs and no mitigation measures are required.

1.10.1.3 Greenhouse Gases

1.10.1.3.1 Greenhouse Gas Emissions from Construction

Construction equipment is assumed to be operational up to ten hours per day, five days per week during most of the construction period. Also, during peak construction periods, two 12-hour work shifts are expected seven days per week. Emission factors for construction equipment were taken from the Construction Equipment Emissions tables in CARB's Offroad Inventory Model. Estimated GHG emissions from construction equipment are included in Table 5.2-1, with more detailed calculations in Appendix B-1.

The project will also include construction equipment working off-site. Emission factors for off-site construction equipment were taken from CARB's EMFAC 2011 Inventory Model. The SCAQMD significance threshold for GHG emissions combines construction emissions amortized over 30 years with operational emissions. The total GHG construction emissions associated with the proposed project are estimated to be 23,173 metric tons over the entire construction period, or 772 metric tons per year amortized over 30 years, which is less than significant.

1.10.1.3.2 Greenhouse Gas Emissions from Operations

The proposed project will result in both GHG emission increases and reductions. GHG emission increases would be associated with the DCU H-100 duty bump, increased utilization of HCU H-300/301, the No. 51 Vacuum Unit Heater, the NHDS Heater, and the proposed new SARP. The reduction in GHG emissions are associated with the shutdown of the FCCU at the Wilmington

Operations. Indirect impacts from equipment potentially impacted by the proposed project were also calculated to determine their effect on the proposed project's overall GHG emissions including the annual increase in Wilmington Operations coke delivery emissions from 1,460 trucks per year to the Port of Long Beach. The proposed project is expected to result in an overall GHG emission reduction of approximately 68,17566,139 metric tons per year providing a reduction of local GHG emissions. However, per the requirements of AB 32, the number of GHG allowances in California's Cap- and-Trade Program is reduced each year by the California Air Resources Board. An individual project that reduces GHG emissions may reduce local GHG emissions, but will not have an impact on the overall pool of allowances in the GHG Cap-and-Trade Program. Thus, the proposed project is considered to have no effect on state-wide GHG emissions. CEQA Guideline §15130(a) indicates that an EIR shall discuss cumulative impacts of a project when the project's incremental effect is cumulatively considerable. Where a lead agency is examining a project with an incremental effect that is not cumulatively considerable, a lead agency need not consider the effect significant, but must briefly describe the basis for concluding that the incremental effect is not cumulatively considerable. "The mere existence of cumulative impacts caused by other projects alone shall not constitute substantial evidence that the proposed project's incremental effects are cumulatively considerable" (CEQA Guidelines §15064(h)(4)). Therefore the project's contribution to GHG emissions is not cumulatively considerable and thus not significant because the GHG emissions from the Refinery would be less than the existing emissions if the proposed project is implemented (CEQA Guidelines §15130).

1.10.2 HAZARDS AND HAZARDOUS MATERIALS

1.10.2.1 Environmental Impacts

1.10.2.1.1 Construction

A number of cumulative projects have the potential to uncover contaminated soils during construction activities. The construction hazard impacts were considered to be less than significant or mitigated to less than significant for all of the related cumulative projects.

1.10.2.1.2 Operations

All storage tanks are required to provide secondary containment facilities (e.g., berms) that would contain 110 percent of the volume of the storage tanks, which assures that spills remain on-site and not overlap with hazards at other facilities.

New units have the potential to generate off-site impacts that could potentially expose off-site receptors to new hazards, e.g., the SARP (exposure to SO₂), and the new crude storage tanks at the Carson Operations (pool fire), as well as the new Interconnecting Pipelines (flash fire), and modifications to the Naphtha Isomerization Unit (flash fire). Although the project-related hazard impacts would generally be limited to industrial areas, the hazards are potentially significant. Therefore, hazards from the proposed project are considered to be cumulatively considerable

and, therefore, are considered to contribute to significant adverse cumulative hazard impacts during operation.

The proposed project would decrease the transportation hazards associated with sulfuric acid as sulfuric acid would be regenerated on-site. However, the proposed project will increase the transportation of LPG via rail and increase the transport of caustic and spent caustic via truck and rail. The proposed project was considered to be less than significant for the transport of hazardous materials by truck and rail. Therefore, the proposed project is not cumulatively considerable as it relates to hazardous material transport and does not contribute to significant adverse hazardous material transport impacts.

1.10.2.2 Mitigation Measures and Cumulative Impacts

The impacts of the proposed project on hazards associated with the Naphtha Isomerization Unit, new crude tanks, and Interconnecting Pipelines are considered significant and are cumulatively considerable. Compliance with existing regulations (e.g., PSM, RMP, and CalARP requirements) and implementation of mitigation measure HHM-1 would further minimize the potential impacts associated with a release, but are not expected to eliminate the potential hazard impacts. No feasible mitigation measures were identified to further reduce significant adverse hazard impacts. Therefore, cumulative hazard impacts would remain significant after implementing the mitigation measures identified for the proposed project.

1.10.3 HYDROLOGY AND WATER QUALITY

1.10.3.1 Environmental Impacts

Water quality impacts associated with the related projects are not expected to result in cumulative impacts. All projects would be required to comply with stormwater pollution prevention requirements during project operation and construction as well as NPDES requirements for commercial and industrial facilities required to obtain such permits. Compliance with existing stormwater and wastewater discharge requirements is expected to ensure cumulative water quality impacts are less than significant.

1.10.3.1.1 Water Demand

The proposed project is expected to increase water demand by about 191,275 gpd which is less than the significance threshold of 262,820 gpd. The incremental increase in water use from the proposed project is expected to be produced by the privately-owned wells (i.e., from the available 2.82 billion gallons per year of adjudicated water rights). The existing water supply can meet the water demand of the proposed project and the daily water use associated with the proposed project is less than 262,820 gpd. Therefore, the proposed project water supply impacts are expected to be less than significant.

Since the Refinery has sufficient adjudicated water rights to support the proposed project's increase in water demand and water demand impacts are less than significant, the proposed project's water demand impacts are not cumulatively considerable. Therefore, the proposed

project impacts on water demand are not considered to contribute to cumulative water demand impacts.

1.10.3.1.2 Water Quality

The proposed project is expected to reduce overall wastewater generated at the Refinery. The proposed project will result in an estimated reduction in wastewater of over 79,000 gpd associated with the shutdown of the Wilmington Operations FCCU. Because the proposed project reduces wastewater and demand on wastewater treatment facilities, the proposed project impacts on water quality are not cumulatively considerable and do not contribute to cumulative water quality impacts.

1.10.3.2 Mitigation Measures and Cumulative Impacts

Mitigation is not required because the impacts of the proposed project on water demand and water quality are not cumulatively considerable.

1.10.4 **NOISE**

1.10.4.1 Environmental Impacts

1.10.4.1.1 Construction

Construction noise is generally site-specific and localized to the vicinity of each related project. Construction of some of the cumulative projects that are near the proposed project could occur concurrently. The proposed increase in noise associated with the proposed project construction activities are expected to increase from 0.1 to 0.9 dBA depending on the location of the sensitive receptor (residential areas) and the time of day. The increase in noise would be less than the significance threshold of 3.0 dBA and less than significant. The Wilmington/Carson area in the vicinity of the proposed project contains a number of heavy industrial facilities, as well as transportation corridors that generate noise. Accordingly, because construction noise impacts are substantially less than the 3.0 dBA significance threshold, noise levels decrease with distance, and the cumulative projects are not expected to contribute to significant adverse cumulative construction noise impacts, and are not expected to overlap with noise in the immediate vicinity of the Refinery, construction noise impacts from the proposed project are not considered to be cumulatively considerable and, therefore, do not contribute to significant adverse cumulative construction noise impacts.

1.10.4.1.2 Operations

Operational noise is generally site-specific, and localized to the vicinity of each related project. Although a project's operations could affect the noise environment in its immediate vicinity, the cumulative projects are not expected to have a significant cumulative impact on ambient noise due to the distance between the projects.

The operational noise impacts associated with the proposed project modifications were determined to be less than significant. Equipment and activities related to the proposed project

would increase overall CNEL sound levels by up to 0.1 dBA at the nearest residences, which shows that noise levels from the refinery equipment subsides quickly with distance from the Refinery. Operational noise is generally site-specific, and localized to the vicinity of each related project. Although a project's operations could affect the noise environment in its immediate vicinity, the cumulative projects are not expected to contribute to significant adverse cumulative noise impacts during operation due to the distance between the projects. Because operational noise impacts are substantially less than the 3.0 dBA noise significance threshold, noise impacts from the proposed project are not considered to be cumulatively considerable and do not contribute to significant adverse cumulative noise impacts during operation.

1.10.4.2 Mitigation Measures and Cumulative Impacts

Mitigation is not required because the noise impacts of the proposed project are less than significant. No significant adverse cumulative noise impacts during operation are expected.

1.10.5 SOLID AND HAZARDOUS WASTE

1.10.5.1 Environmental Impacts

1.10.5.1.1 Construction

Solid Waste: The proposed project includes the demolition and removal of two existing storage tanks and affected existing piping at the Wilmington Operations. The tanks and piping are constructed of steel and are expected to be recycled. The concrete foundations that support the existing tanks would generate an estimated 265 cubic yards that would be transported off-site for crushing and recycling or disposal at inert or municipal landfills.

The proposed project has the potential to generate up to 206,953 cubic yards of non-hazardous construction soil waste, which can be disposed of in Class III landfills. The total remaining permitted Class III landfill capacity in southern California is estimated to be approximately 129.2 million tons (about 2,584 million cubic yards). Landfills in southern California have the capacity to accept the solid waste produced during the construction phase of the proposed project on a one-time basis. Therefore, because the proposed project's solid waste impacts during construction activities are less than significant, they are not considered to be cumulatively considerable and are not considered to contribute to significant adverse cumulative solid waste impacts.

Hazardous Waste: An estimated 83,213 cubic yards of soil from the proposed project may be considered hazardous waste. Tesoro would consider the type and extent of contamination and explore the variety of options available for disposal and remediation, which could include in situ, on-site, and off-site treatment (e.g., incineration, soil vapor extraction, bioremediation). In the event that the material still requires disposal (i.e., cannot be treated/remediated), the Kettleman Hills facility has sufficient available capacity (5,000,000 cubic yards) and the Clean Harbors Buttonwillow facility has available capacity (over 8,000,000 cubic yards) to accept the total amount of estimated one-time contaminated soil waste generated by construction activities associated with the proposed project. The proposed project impacts on solid/hazardous waste are

not considered to be cumulatively considerable and are not considered to contribute to cumulative solid/hazardous waste impacts.

1.10.5.1.2 Operations

Solid Waste: The discussion of potential solid waste impacts from the proposed project in Section 4.6.3 indicated that the average annual amounts of solid waste are not expected to change because there would be no change in the number of refinery workers and refinery units do not typically generated solid waste. Therefore, solid waste impacts from the proposed project during operations are not considered to be cumulatively considerable and do not contribute to significant adverse solid waste impacts during operation.

Hazardous Waste: The proposed project will result in an increase in spent catalyst associated with the operation of the SARP and spent caustic associated with operation of the Wet Jet Treater and SARP. Both of these waste streams are expected to be recycled and, therefore, would not impact solid or hazardous waste landfill facilities. The operation of the proposed project may generate solid or hazardous waste streams, but those waste streams are expected to be reused or recycled into the DCUs. The operation of the proposed project is not expected to require additional waste disposal capacity and is not expected to interfere or undermine the Tesoro Refinery's ability to comply with existing federal, state, and local regulations for solid and hazardous waste handling and disposal. Therefore, the proposed project impacts on hazardous waste during operations are not considered to be cumulatively considerable and are not considered to contribute to significant adverse cumulative hazardous waste impacts.

1.10.5.2 Mitigation Measures and Cumulative Impacts

Mitigation is not required because the solid/hazardous waste impacts of the proposed project are less than significant. No significant adverse cumulative solid/hazardous waste impacts are expected.

1.10.6 TRANSPORTATION AND TRAFFIC

1.10.6.1 Environmental Impacts

1.10.6.1.1 Construction

The LOS at all intersections during the proposed project construction activities is expected to be LOS A, B or C at all intersections, except Wilmington Avenue/Interstate 405 SB Ramps during the morning peak hour. The construction-related trips are forecast to result in a significant impact during construction conditions at the Wilmington Avenue/Interstate 405 SB Ramps, as this intersection is currently under construction. Once the construction activities at the Wilmington Avenue/Interstate 405 interchange itself are complete, traffic impacts due to construction of the proposed project would be less than significant. The proposed project assumes the interchange is under construction concurrently with construction of the proposed project, which results in significant impacts and mitigation measure TT-1 has been imposed.

Therefore, the proposed project traffic impacts during construction activities are mitigated to less than significant, are not cumulatively considerable, and are not considered to contribute to significant adverse cumulative traffic impacts during construction.

1.10.6.1.2 Operations

The proposed project operations would not increase the number of on-site workers after the construction phase, however approximately <u>nineten</u> additional truck round-trips per <u>peak</u> work day would result from the proposed project to support its operations. The cumulative impacts of the proposed project and related projects have been estimated in the traffic analysis (see Section 4.7 and Appendix E for further details). In year 2021, assuming a 0.4 percent growth in traffic, no intersections in the traffic study would operate below LOS C. Therefore, the proposed project operational traffic impacts, along with other related projects, are not cumulatively considerable and are not considered to contribute to cumulative significant adverse traffic impacts during operation of the proposed project.

1.10.6.2 Mitigation Measures and Cumulative Impacts

Mitigation measure TT-1 is required in order to reduce the proposed project's construction-related trips on the Wilmington Avenue/Interstate 405 SB Ramps intersection prior to the completion of the Interstate 405/Wilmington Avenue Interchange Project. TT-1 requires the applicant to implement a traffic management plan that requires project workers to avoid the Wilmington Avenue/Interstate 405 SB Ramps intersection during morning peak travel periods (while that onramp is under construction) by traveling either outside of the morning peak travel time or along alternative routes. The impacts of the proposed project on traffic and circulation are expected to be less than significant following implementation of mitigation measure TT-1. Therefore, construction traffic impacts from the proposed project are not cumulatively considerable and would not contribute to significant adverse cumulative construction traffic impacts.

1.11 EXECUTIVE SUMMARY CHAPTER 6: ALTERNATIVES ANALYSIS

1.11.1 ENVIRONMENTAL IMPACTS OF ALTERNATIVES

Alternatives evaluated in the EIR included: Alternative 1 – No Project Alternative; Alternative 2 – Fluid Feed Hydrodesulfurization Fractionator at Carson Operations and a New Diesel Hydrotreater at Wilmington Operations; Alternative 3 – New Carson Hydrotreater at Carson Operations; Alternative 4 – Interconnecting Pipeline and New Gasoline Hydrotreater at Carson Operations; and Alternative 5 – Alternative Construction Schedule.

1.11.1.1 Alternative 1 – No Project Alternative

The No Project Alternative would not result in further integration of the Wilmington and Carson Operations. Under the No Project Alternative, modifications to the Wilmington Operations

would not move forward including modifications to the HCU, CRU-3, HTU-1, HTU-2, HTU-4, DCU Heater H-100, and crude tanks. The new PSTU, and SARP also would not be constructed and the Wilmington Operations FCCU would not be shut down. Modifications to the Carson Operations would also not occur including modifications to No. 51 Vacuum Unit, HCU, LHU, NHDS Unit, Naphtha Isomerization Unit, Alkylation Unit, Mid-Barrel Distillate Treater. The new Wet Jet Treater and six new crude tanks at the Carson Operations would not be installed. Interconnecting pipelines, electrical connections and modifications to the LPG Rail Car Unloading facilities would also not occur.

The No Project Alternative would continue the operation of the Wilmington and Carson Operations under their current configurations and it would not achieve any of the proposed project objectives such as: (1) improving the efficiency of the Refinery, allowing the shutdown of the Wilmington FCCU; (2) reducing overall emissions from the Refinery, including GHG emissions; (3) recovering and upgrading distillate range materials from FCCU feeds; (4) complying with federal, state, and local regulations; (5) improving the financial viability of the Refinery; better integration of the Carson and Wilmington Operations; and (6) improving the efficiency of water-borne crude oil receipt and marine vessel unloading. Not only would Alternative 1 not achieve any of the proposed project objectives, but because portions of Alternative 1 do not include the regulatory compliance projects, it may not be considered a feasible alternative as Tesoro would be in violation of regulatory mandates if not implemented.

Although Alternative 1 would eliminate all the significant and less than significant impacts that would occur under the proposed project, the locally beneficial impacts of the proposed project would also be eliminated. The Wilmington FCCU would not be shut down because none of the refinery modifications needed for that to occur would be implemented. Finally, the beneficial aspects of the proposed project associated with reduced annual ship emissions due to the increased crude offloading rate (see Table 4.2-9 and 4.2-11) would also be eliminated. Similarly, the overall reduction in wastewater generated during operation of the proposed project (over 79,000 gpd reduced) (see Table 4.4-2) would not occur. Consequently, Alternative 1 would continue current operational emissions, which would be substantially higher for most pollutants than operational emissions under the proposed project as the local emission reduction benefits associated with the proposed project would not be achieved (see Table 6.4-2).

1.11.1.2 Alternative 2 – Fluid Feed Hydrodesulfurization Fractionator at Carson Operations and a New Diesel Hydrotreater at Wilmington Operations

Alternative 2 includes installing one new Fractionator at the tail end of the Carson Operations Fluid Feed Hydrodesulfurization (FFHDS) Unit and one new Diesel Hydrotreater at Wilmington Operations to achieve the project objective of recovering and upgrading distillate range material from FCCU feed. The new FFHDS Fractionator and Diesel Hydrotreater would be constructed instead of making modifications to the Wilmington Operations HCU and HTU-4, and No. 51 Vacuum Unit and HCU at the Carson Operations. Under Alternative 2, the remainder of the proposed project components would remain unchanged, including the shutdown of the FCCU at the Wilmington Operations.

Alternative 2 would result in significant adverse impacts to air quality during construction and hazards during operation and would require the construction of two new refinery units (FFHDS Fractionator and Diesel Hydrotreater). Construction of the new Refinery units would potentially result in higher air quality, water quality, and hazard impacts than the proposed project. Alternative 2 would not reduce any of the potentially significant proposed project impacts to less than significant.

Alternative 2 would achieve most of the objectives of the proposed project, including: (1) improving the efficiency of the Refinery, allowing the shutdown of the Wilmington FCCU; (2) reducing overall emissions from the Refinery, including GHG emissions; (3) recovering and upgrading distillate range materials from FCCU feeds; (4) complying with federal, state, and local regulations; (5) improving the financial viability of the Refinery; (6) better integration of the Carson and Wilmington Operations; and (7) improving the efficiency of water-borne crude oil receipt and marine vessel unloading. However, Alternative 2 would not achieve the objectives of reducing overall emissions from the Refinery as a whole, as would the proposed project.

1.11.1.3 Alternative 3 – New Hydrotreater at Carson Operations

Alternative 3 would include the installation of one new Gasoline Hydrotreater at Carson Operations as an option to achieve the project objective of meeting U.S. EPA Tier 3 gasoline specifications of 10 ppm average sulfur content. Under Alternative 3, the new Gasoline Hydrotreater/SHU would be built instead of making modifications to HTU-1 and HTU-2 at the Wilmington Operations and LHU, NHDS Unit, and the Mid-Barrel Treater at the Carson Operations. The remainder of the project components would remain unchanged, including the shutdown of the FCCU at the Wilmington Operations.

Alternative 3 would result in significant impacts to air quality during construction and would result in greater operational GHG and criteria pollutant emissions associated with the two new heaters as compared to the proposed project. In addition, Alternative 3 also would result in significant adverse hazard impacts during operation. Alternative 3 would have greater impacts than the proposed project on operational air quality and wastewater impacts and it would not reduce any of the potentially significant adverse impacts of the proposed project to less than significant.

Alternative 3 would achieve most of the objectives of the proposed project, including: (1) improving the efficiency of the Refinery, allowing the shutdown of the Wilmington FCCU; (2) reducing overall emissions from the Refinery, including GHG emissions; (3) recovering and upgrading distillate range materials from FCCU feeds; (4) complying with federal, state, and local regulations; (5) better integration of the Carson and Wilmington Operations; and (6) improving the efficiency of water-borne crude oil receipt and marine vessel unloading. Alternative 3 would require the installation of two new heaters, which means that this alternative would not achieve as effectively as the proposed project the objective of reducing overall emissions from the Refinery as a whole, including GHG emissions.

1.11.1.4 Alternative 4 – Interconnecting Pipeline and New Gasoline Hydrotreater at Carson Operations

Alternative 4 would include the installation of the Interconnecting Pipeline and one new Gasoline Hydrotreater/SHU at Carson Operations as an option to achieve the project objective of meeting U.S. EPA Tier 3 gasoline specifications of 10 ppm average sulfur content. Alternative 4 would eliminate all of the other proposed project components and the Wilmington Operations FCCU would remain operational.

Alternative 4 would result in significant impacts to air quality during construction and hazards during operation; however, the impacts are expected to be less than the proposed project. Alternative 4 would eliminate the significant VOC construction air quality impacts and most of the hazard impacts. NOx emissions associated with the construction phase would remain significant under Alternative 4. The hazard impacts associated with the Interconnecting Pipelines would remain significant under Alternative 4; however, Alternative 4 would eliminate the potentially significant hazards associated with Naphtha Isomerization Unit, new crude tanks, and SARP. Alternative 4 would have greater impacts than the proposed project on operational air quality and wastewater impacts as the FCCU would not be shut down under Alternative 4 and it would not reduce any of the potentially significant adverse impacts of the proposed project to less than significant.

Alternative 4 would not accomplish the major objectives of the proposed project. Alternative 4 would meet the objective of better integration of the Carson and Wilmington Operations by constructing the Interconnecting Pipeline and complying with federal, state, and local regulations. However, Alternative 4 would not meet any of the other objectives of the proposed project including: (1) improving the efficiency of the Refinery, allowing the shutdown of the Wilmington FCCU; (2) reducing overall emissions from the Refinery, including GHG emissions; (3) recovering and upgrading distillate range materials from FCCU feeds; and (4) improving the efficiency of water-borne crude oil receipt and marine vessel unloading. The beneficial aspects of the proposed project associated with reduced ship emissions due to the increased crude offloading rate (see Table 4.2-9 and 4.2-11) would also be eliminated. Consequently, Alternative 4 would result in increased operational emissions over the proposed project as the local emissions benefits associated with the proposed project would not be achieved.

1.11.1.5 Alternative 5 – Alternative Construction Schedule

Alternative 5 includes a modified construction schedule (compare Figure 6.3-1 with Figure 2-18) so that construction of the proposed project components does not overlap as much as they do under the proposed project. Construction of a number of units would be delayed to later in the proposed project schedule. These units include the LPG Rail Unloading facilities, Naphtha HDS Unit, Mid-Barrel Treater, and HTU-1 and HTU-2 modifications. The shutdown of the Wilmington Operations FCCU would also be delayed another four years.

Alternative 5 would ultimately result in the same impacts as the proposed project in the areas of hazards, hydrology and water quality, noise, traffic and transportation, and solid and hazardous waste. Alternative 5 would reduce the peak construction emission impacts associated with the proposed project, but the construction emission impacts associated with NOx would remain significant. In addition, under Alternative 5 the Wilmington Operations FCCU would be shut down in 2021 instead of 2017, resulting in four additional years of operating the FCCU, which means that emissions from the FCCU would be unchanged from 2017 through 2021 and emissions would be substantially greater than what they would be under the proposed project. Alternative 5 would ultimately result in the same hazard impacts as the proposed project as all project components would be included in Alternative 5. Therefore, hazard impacts would remain significant. After all components of the proposed project are completed in 2021, Alternative 5 would have the same potentially less than significant and significant adverse environmental impacts as the proposed project.

Alternative 5 would achieve most the objectives of the proposed project, although there would be an approximately five-year delay in achieving some of the objectives, which would include: (1) improving the efficiency of the Refinery, allowing the shutdown of the Wilmington FCCU; (2) reducing overall emissions from the Refinery, including GHG emissions; (3) recovering and upgrading distillate range materials from FCCU feeds; (4) better integration of the Carson and Wilmington Operations; and (5) improving the efficiency of water-borne crude oil receipt and marine vessel unloading. Alternative 5 would not achieve the objective of improving the efficiency and enabling the shutdown of the Wilmington Operations FCCU by 2017. It would also delay a significant amount of local emission reductions, resulting in an additional five years of operation at increased emission rates. Under Alternative 5, it is assumed that the project components that would allow for the compliance with the U.S. EPA Tier 3 gasoline sulfur requirements would occur prior to 2017 so this objective would be achieved.

1.11.2 ENVIRONMENTALLY SUPERIOR ALTERNATIVE

CEQA requires identification of the environmentally superior alternative in an EIR. There is no set methodology for comparing the alternatives or determining the environmentally superior alternative under CEQA. Therefore, the number of significant adverse impacts for each of the proposed project and alternatives are compared. The alternative with the least number of significant unavoidable impacts is considered the Environmentally Superior Alternative.

The proposed project and Alternatives 2 through 5 would result in significant adverse impacts on two environmental resource areas (air quality during construction and operational hazard impacts). Alternative 1, the No Project Alternative would eliminate all adverse significant impacts making it the environmentally superior alternative. But none of the project objectives will be achieved, including improving local air quality by shutting down the Wilmington Operations FCCU.

Alternatives 2 and 3 would likely result in equivalent or more significant environmental impacts than the proposed project as additional new Refinery units would be constructed. However, under Alternatives 2 and 3 the Wilmington Operations FCCU would be shutdown, which is expected to provide air emission, GHG, and waste water reductions. Both alternatives would also improve the efficiency of water-borne crude oil receipt and marine vessel unloading

reducing the time it takes for marine vessels to unloading and reducing overall marine vessel emissions. After the No Project Alternative, Alternatives 2 and 3 would be the environmental superior alternatives.

The proposed project is preferred because it would most effectively attain all project objectives. None of the project alternatives would eliminate the potentially significant adverse construction air quality and hazard impacts, except Alternative 1, No Project Alternative. Alternative 3 would be similar in operational impacts to the proposed project and have less construction impacts, but would not eliminate significant project impacts or achieve all the project objectives.

1.12 EXECUTIVE SUMMARY – CHAPTER 7, 8, AND 9: REFERENCES, ACRONYMS AND GLOSSARY

Information on references cited (including organizations and persons consulted) and the acronyms and glossary are presented in Chapters 7 and 8, respectively. Chapter 9 contains a glossary of technical terms used in the EIR.

TABLE 1.9-1

Summary of Environmental Impacts, Mitigation Measures and Residual Impacts

Impact		Mitigation Measures	Residual Impacts
		Air Quality	
The construction phase of the proposed project	A-1	Maintain a Construction Management	Construction emissions for VOC, CO, and
will exceed the regional significance		Program,	NOx are expected to remain significant
thresholds for VOC and NOx.	A-2	Prohibit vehicles from idling in excess	following mitigation.
		of five minutes,	
	A-3	All on-road heavy duty diesel trucks or	
		equipment with a GVWR of 19,500	
		pounds or greater shall comply with	
		EPA 2007 on-road emission standards,	
	A-4	Prohibit construction equipment from	
		idling longer than five minutes,	
	A-5	Utilize electric welders in areas served	
		by electricity. Electric power tools	
		shall be used in areas when feasible and	
		available.	
	9-Y	Utilize on-site power where available	
		instead of temporary generators,	
	A-7	For off-road equipment rated at greater	
		than 50 hp, the project proponent shall	
		use equipment that meets Tier 4	
		emission standards,	
	A-8	Suspend all construction activities that	
		generate air pollutant emissions during	
		first stage smog alerts, and	
	A-9	Tesoro will implement early SCR	
		catalyst change-outs as specified in	
		Table 4.2-14 to improve NOx	
		reductions.	

Tesoro Los Angeles Refinery Integration and Compliance Project

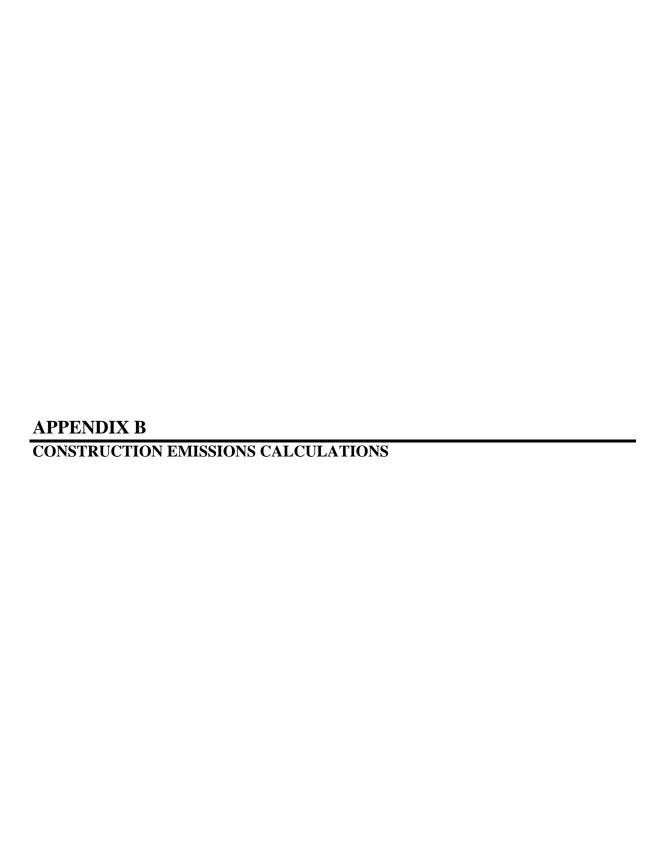
TABLE 1.9-1 (Continued)

Impact	Mitigation Measures	Residual Impacts
The construction emissions of CO, SOx, PM10 and PM2.5 will not exceed SCAQMD CEQA regional significant thresholds and are less than significant.	None required.	Construction emissions of CO, SOx, PM10, and PM2.5 are expected to remain less than significant following mitigation.
Construction impacts for NO ₂ would exceed applicable localized significance thresholds.	See Mitigation Measures A-1 thru A-9 summarized above.	A-9 Concentrations of NO ₂ from construction activities are expected to cause a significant impact to applicable localized significance thresholds and no additional mitigation has been identified that would reduce the localized air quality impacts during construction. Construction impacts for CO, PM10, and PM2.5 would be less than significant.
Operational emissions of CO, VOC, NOx, SOx, PM10 and PM2.5 are less than significant.	None required. Project emissions are controlled through BACT and emission offsets.	
Ambient air quality modeling indicates that the project operational emissions of NO ₂ , CO, PM10, and PM2.5 will be less than the applicable localized significance threshold and are less than significant.	None required.	Project emissions of NO ₂ , CO, PM10, and PM2.5 associated with the operation of the proposed project will be less than the applicable localized significance thresholds and are less than significant.
The cancer risk due to the operation of the proposed project is expected to be less than the significance threshold of 10 per million, so that project impacts are less than significant.	None required.	Cancer risk impacts are less than significant.

TABLE 1.9-1 (Continued)

Impact	Mitigation Measures	Residual Impacts
The proposed project's impacts associated with exposure to non-carcinogenic TACs are expected to be less the chronic hazard index and the acute hazard index significance threshold of 1.0.	None required.	Non-carcinogenic health impacts are less than significant.
	Hazards and Hazardous Materials	
During construction, hazards and hazardous material impacts generated by excavation activities are expected to be less than significant.	None required.	Construction related hazards and hazardous material impacts are expected to be less than significant.
Hazard impacts of the proposed project during operation associated with the Naphtha Isomerization Unit, new crude tanks, SARP, and Interconnecting Pipelines are expected to be significant.	HHM-1 Prior to the commencement of operations associated with new and modified project components, the applicant shall demonstrate to the Los Angeles City and County Fire Departments compliance with applicable hazardous material rules and regulations, to include, at minimum, an Emergency Action Plan as required by the Fire Department addressing spill, fire, and explosion hazards and relative risk of upset to adjacent land uses.	Hazards and hazardous material impacts generated by the proposed project are expected to remain significant after mitigation.
	Hydrology and Water Quality	
Water demand during construction is limited to water applied for dust suppression and water needed to perform hydrostatic testing of new tanks and pipelines, and is expected to be less than significant.	None required.	Construction water demand impacts are less than significant.

Tesoro Los Angeles Refinery Integration and Compliance Project

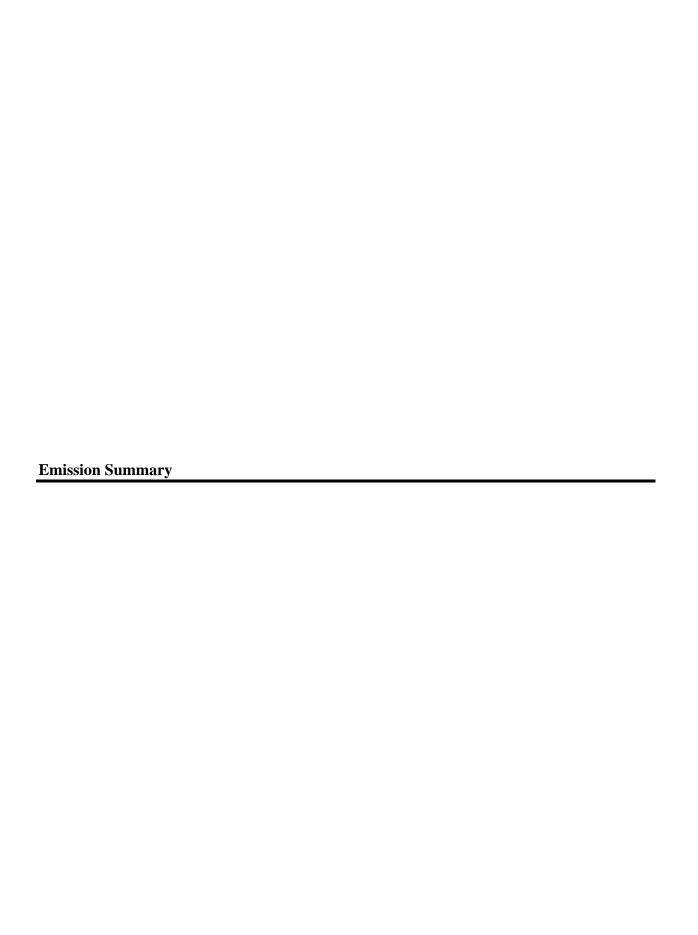

TABLE 1.9-1 (Continued)

Impact	Mitigation Measures	Residual Impacts
The existing water supply can meet the water demand of the proposed project of 191,275 gpd and the daily water demand associated with operation of the proposed project is less than the significance threshold of 262,820 gpd.	None required.	Operational water demand impacts are less than significant.
Wastewater from construction of the proposed project is expected to be discharged in compliance with the existing IWDPs for the Refinery. Therefore, no water quality impacts are expected.	None required.	Construction wastewater impacts are less than significant.
Once operational, the proposed project would result in an overall reduction in wastewater of over 79,000 gpd, primarily due to the shutdown of the Wilmington Operations FCCU.	None required.	Operational wastewater impacts are less than significant.
	Noise	
Construction activities would result in noise increases from 0.1 to 0.9 dBA which is less than the significance threshold of 3.0 dBA.	None required.	Construction noise impacts are less than significant.
Operational noise increases at all receptor locations are predicted to be a maximum of 0.1 dBA which is less than the 3.0 dBA significance threshold. Therefore, noise impacts associated with the operation of the proposed project would be less than significant.	None required.	Operational noise impacts are less than significant.

TABLE 1.9-1 (Concluded)

Impact	Mitigation Measures	Residual Impacts
Vibration impacts during construction and operational activities were evaluated and predicted to be less than the Federal Transit Administration vibration impact threshold.	None required.	Vibration impacts associated with construction and operational equipment are less than significant.
	Solid and Hazardous Waste	
No significant solid or hazardous waste impacts associated with construction activities are expected as local landfills can handle the one-time receipt of solid or hazardous waste from construction.	None required.	Solid and hazardous waste impacts associated with construction activities are less than significant.
The operation of the proposed project may generate solid or hazardous waste streams, which are expected to be reused or recycled. No significant solid and hazardous waste impacts are expected.	None required.	Solid and hazardous waste impacts associated with operation of the proposed project are less than significant.
	Transportation and Traffic	
Construction-related trips are forecast to result in a significant impact during construction conditions at the Wilmington Ave/Interstate 405 SB Ramps under their pre-construction configuration.	TT-1 Requires the Refinery to implement a traffic management plan to address project traffic impacts at the Wilmington Avenue/Interstate 405 Southbound Ramps intersection.	Requires the Refinery to implement a Construction traffic impacts are less than traffic management plan to address significant after mitigation. project traffic impacts at the Wilmington Avenue/Interstate 405 Southbound Ramps intersection.

1. DBS\2844 Tesoro Integration and Compliance\FEIR\2844 FEIR Ch.1 (rev9).doc



Appendix B Construction Emission Calculations

Table of Contents

	Page No.
Emission Summary	B-1
Emission Factors for Single and Double Shift Equipment	B-4
Emission Calculations for Single Shift Equipment	B-7
Emission Calculations for Double Shift Equipment	B-35
Emission Calculations for Onsite Onroad Vehicles	B-63
Emission Calculations for Offsite Onroad Vehicles	B-71
Fugitive Dust Emission Calculations for Offroad Vehicles	B-79
Coating Emissions	B-81
Fugitive Dust Emissions for Earthmoving Operations	B-83
Emission Factors for Carson Crude Terminal Equipment	B-85
Emission Calculations for Carson Crude Terminal Equipment	B-87
Fugitive Dust Emission Calculations for Offroad Vehicles – CCT	

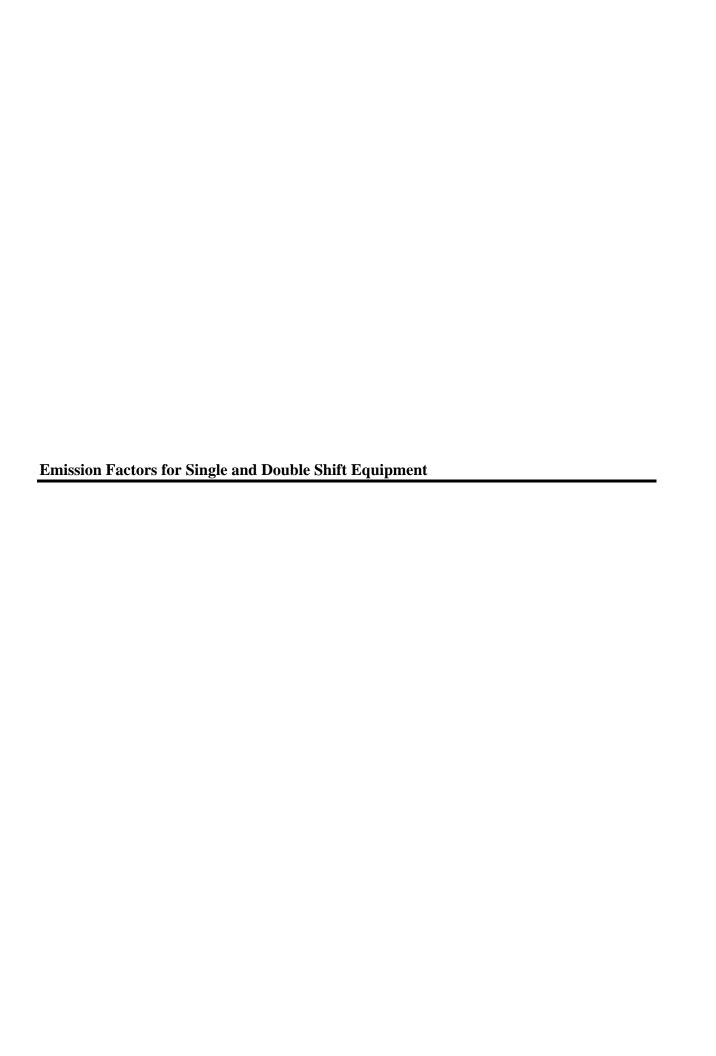
Appendix B Tesoro Integration and Compliance Project Total Project Component **Construction Emission Summary**

Emissions from Equipment	Year 1 Year 2 Year 2 Year 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	35 36
VOC (lb/day)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25.22 23.32 21.24 26.07 28.29 27.86 21.77 21.77 20.01 15.77 13.45 12.27 12.21 13.08 4.70 11.06 10.24 5.17 15.42 15.44 9.65 9.00 6.43 4.12 4.52 4.52 6.71 5.67	
CO (lb/day)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 217.54 190.00 171.22 211.07 233.67 230.01 183.89 183.89 172.24 143.79 117.32 108.27 107.40 116.66 44.05 104.31 101.05 53.46 155.60 160.05 96.04 86.71 59.03 37.96 41.43 41.43 64.39 54.19	
NOx (lb/day)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 242.41 200.39 185.53 241.50 263.03 260.77 193.21 193.21 182.84 159.53 136.48 126.31 125.32 135.10 55.35 115.03 113.01 55.02 147.64 155.07 93.18 86.97 59.48 38.00 40.18 40.18 64.85 53.80	
SOx (lb/day)	0.00 0.	
PM10 (lb/day)	0.00 0.00 0.00 0.00 0.00 0.00 14.04 12.76 11.68 14.55 15.78 15.58 11.66 11.66 10.87 8.94 7.63 7.03 6.99 7.46 2.79 6.20 5.88 2.91 8.18 8.22 5.12 4.82 3.38 2.20 2.38 2.38 3.77 3.08	
PM2.5 (lb/day) ⁽¹⁾	0.00 0.00 0.00 0.00 0.00 0.00 13.90 12.63 11.57 14.41 15.63 15.43 11.54 10.76 8.86 7.55 6.96 6.92 7.38 2.76 6.14 5.82 2.88 8.10 8.14 5.07 4.77 3.34 2.18 2.36 2.36 3.74 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05	
CO ₂ (MT/day)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
CO ₂ (tonnes/yr)	1652.95 2033.89	1302.43
	Year 1 Year 2 Year 3	
Emissions from Short Project Equipment	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	35 36
VOC (lb/day)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 25.22 23.32 21.24 26.07 28.29 27.86 21.77 21.77 20.01 15.77 13.45 12.27 12.21 13.08 4.70 7.10 7.84 5.17 7.42 11.24 9.65 6.43 6.43 4.12 4.52 4.52 2.79 3.10	
CO (lb/day)	0.00 0.	
NOx (lb/day)	0.00 0.	
SOx (lb/day)	0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.43 0.39 0.52 0.57 0.56 0.45 0.45 0.43 0.38 0.31 0.29 0.29 0.31 0.13 0.19 0.21 0.15 0.15 0.15 0.15 0.15 0.10 0.10 0.05 0.060 0.00 0.00 0.00 0.00 0.00 0.	
PM10 (lb/day) PM2.5 (lb/day) ⁽¹⁾	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
CO ₂ (MT/day)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
oo ₂ (mrady)	0.00 0.	1.27 1.2
	Year 1 Year 2 Year 3	
Emissions from TAR Equipment	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
VOC (lb/day)	0.00 0.00	
CO (lb/day)	0.00 0.	
NOx (lb/day) SOx (lb/day)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
PM10 (lb/day)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
PM2.5 (lb/day) ⁽¹⁾	0.00 0.	
CO ₂ (MT/day)	0.00 0.	
21 1177		
	Year 1 Year 2 Year 3	
Emissions from Carson Tanks	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
VOC (lb/day) CO (lb/day)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
NOx (lb/day)	0.00 0.	
SOx (lb/day)	0.00 0.	
PM10 (lb/day)	0.00 0.00	0.00 0.00
PM2.5 (lb/day) ⁽¹⁾	0.00 0.00	
CO ₂ (MT/day)	$oxed{1}{0.00}$ 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00
CO ₂ (MT/day)		0 0.00 0.00
Emission from Trips - Onsite/Offsite	0.00 0.00	35 36
Emission from Trips - Onsite/Offsite VOC (lb/day)	Year 1 Year 2 Year 2 Year 3 Ye	35 36 79 0.51 0.51
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day)	Year 1 Year 2 Year 2 Year 2 Year 2 Year 3	35 36 79 0.51 0.51 09 12.13 12.13
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOC (lb/day)	Year1 Year2 Year3 Yea	35 36 79 0.51 0.51 09 12.13 12.13 19 6.93 6.93
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day)	Year 1 Year 2 Year 2 Year 2 Year 2 Year 3	35 36 79 0.51 0.51 99 12.13 12.13 199 6.93 6.93 08 0.06 0.06
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOC (lb/day)	Year 1 Year 2 Year 3 Year 4 Year 5 Formal 7 Year 6 Year 7 Year 7 Year 7 Year 8 Year 9 Year 1 Year 8 Year 9 Year 1 Year 8 Year 9 Year 1 Year 9 Year 1 Year 9 Year 1 Year 1 Year 9 Year 1	35 36 79 0.51 0.5 99 12.13 12.13 19 6.93 6.93 08 0.06 0.06 99 2.88 2.88 20 0.69 0.66
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fuglitive PM (lb/day)	Year 1 Year 2 Year 3 Year 4 Year 5 Far 7 S Par 8 Par 1 Year 1 Year 2 Year 3 Year 2 Year 3 Year 3 Year 2 Year 3	35 36 79 0.51 0.51 12.13 12.13 19 12.13 12.13 19 6.93 6.93 18 0.06 0.06 19 2.88 2.88 2.88 0.69 0.69 19 2.18 2.18
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugltive PM (lb/day) PM2.5 (lb/day)	Year 1 Year 1 Year 1 Year 1 Year 2 Year 1 Year 3 Year 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	35 36 79 0.51 0.51 99 12.13 12.13 19. 6.93 6.93 88 0.06 0.06 29 2.88 2.88 00 0.69 0.66 99 2.18 2.18 88 1.06 1.06
Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) SOX (Ib/day) SOX (Ib/day) PM10 (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) PM2.5 (Ib/day) Exhuast PM (Ib/day)	Year 1 Year 2 Year 3 Year 4 Year 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 34 34 34 34 34	35 36 99 0.51 0.5: 99 6.93 6.93 80 0.06 0.06 29 2.88 2.88 90 0.69 0.69 91 2.18 2.18 81 1.06 1.06 90 0.69 0.69
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOX (lb/day) SOX (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) PM2.5 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day)	Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Y	35 36 79 0.51 0.51 99 12.13 12.11 99 6.93 6.93 08 0.06 0.06 99 2.88 2.88 00 0.69 0.66 39 2.18 2.18 1.06 1.06 1.06 0.69 0.66 1.06 0.69 0.68 1.06 0.69 0.68
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOX (lb/day) SOX (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day)	Year	35 36 79 0.51 0.51 12.13 12.13 19 12.13 12.13 18 0.06 0.06 29 2.88 2.88 20 0.69 0.69 19 2.18 2.14 10 0.69 0.69 20 0.69 0.69
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOX (lb/day) SOX (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) PM2.5 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day)	Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Y	35 36 79 0.51 0.51 99 12.13 12.11 99 6.93 6.93 08 0.06 0.06 99 2.88 2.88 00 0.69 0.66 39 2.18 2.18 1.06 1.06 1.06 0.69 0.66 1.06 0.69 0.68 1.06 0.69 0.68
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOX (lb/day) SOX (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day)	Year	35 36 79 0.51 0.51 12.13 12.13 19 12.13 12.13 18 0.06 0.06 29 2.88 2.88 20 0.69 0.69 19 2.18 2.14 10 0.69 0.69 20 0.69 0.69
Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) NOX (Ib/day) SOX (Ib/day) SOX (Ib/day) SOX (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) CO ₂ (Ib/day) CO ₂ (Ib/day) Fugitive Earthmoving PM - Peak	Year	35 36 99 0.51 0.5: 99 12.13 12.13 199 6.93 6.93 189 0.06 0.06 29 2.88 2.88 20 0.69 0.69 199 2.18 2.18 18 1.06 1.06 20 0.69 0.69 38 0.37 0.37 00 6037.46 1754.55
Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) NOx (Ib/day) SOx (Ib/day) SOx (Ib/day) PM10 (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) PM2.5 (Ib/day) ⁽¹⁾ Exhuast PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) CO ₂ (Ib/day) CO ₂ (tonnes/yr) Fugitive Earthmoving PM - Peak PM10 (Ib/day) ⁽²⁾	Year	35 36 99 0.51 0.5: 99 6.93 6.93 80 0.06 0.06 29 2.88 2.86 90 0.69 0.69 90 2.18 2.18 1.06 1.06 90 0.69 0.68 90 0.69 0.68 90 0.69 0.68 100 0.69 0.68 100 0.69 0.68 100 0.69 0.68 100 0.69 0.68 100 0.69 0.68 1754.5;
Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) NOX (Ib/day) SOX (Ib/day) SOX (Ib/day) SOX (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) CO ₂ (Ib/day) CO ₂ (Ib/day) Fugitive Earthmoving PM - Peak	Year	35 36 99 0.51 0.5: 99 6.93 6.93 80 0.06 0.06 29 2.88 2.86 90 0.69 0.69 90 2.18 2.18 1.06 1.06 90 0.69 0.68 90 0.69 0.68 90 0.69 0.68 100 0.69 0.68 100 0.69 0.68 100 0.69 0.68 100 0.69 0.68 100 0.69 0.68 1754.5;
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOC (lb/day) SOX (lb/day) SOX (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fuglitive PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) Fuglitive PM (lb/day) Fuglitive PM (lb/day) CO ₂ (lb/day) CO ₂ (tonnes/yr) Fuglitive Earthmoving PM - Peak PM10 (lb/day) ⁽²⁾	Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 6 Year 6 Year 6 Year 7 Year 7 Year 7 Year 7 Year 8 Year 9 Y	35 36 99 0.51 0.5: 99 6.93 6.93 80 0.06 0.06 29 2.88 2.86 90 0.69 0.69 90 2.18 2.18 1.06 1.06 90 0.69 0.68 90 0.69 0.68 90 0.69 0.68 100 0.69 0.68 100 0.69 0.68 100 0.69 0.68 100 0.69 0.68 100 0.69 0.68 1754.5;
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOC (lb/day) SOX (lb/day) SOX (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fuglitive PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) Fuglitive PM (lb/day) Fuglitive PM (lb/day) CO ₂ (lb/day) CO ₂ (tonnes/yr) Fuglitive Earthmoving PM - Peak PM10 (lb/day) ⁽²⁾	Year	35 36 99 0.51 0.5: 99 12.13 12.13 199 6.93 6.93 180 0.06 0.06 29 2.88 2.86 100 0.69 0.66 100 0.69 0.66 100 0.69 0.66 100 0.69 0.66 100 0.69 0.66 100 0.69 0.66 1754.53 1754.53 35 36 36 2.36 2.36 1.36
Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) NO (Ib/day) SOx (Ib/day) SOx (Ib/day) PM10 (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) Exhuast PM (Ib/day) Exhuast PM (Ib/day) Exhuast PM (Ib/day) CO ₂ (Ib/day) CO ₂ (Ib/day) CO ₂ (Ib/day) Fugitive Earthmoving PM - Peak PM10 (Ib/day) ⁽²⁾ PM2.5 (Ib/day) ⁽³⁾ Offroad Fugitive PM - Peak PM10 (Ib/day) ⁽²⁾	Test	35 36 99 0.51 0.5: 99 12.13 12.13 199 6.93 6.93 180 0.06 0.00 192 2.88 2.88 199 2.18 2.16 199 2.18 2.16 190 0.69 0.69 190 0.69 0.69 100 0.69 0.69 1754.5: 35 36 36 2.36 2.36 1754.5:
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOX (lb/day) SOX (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) Fugitive Earthmoving PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽³⁾ Fugitive Earthmoving PM - Peak PM10 (lb/day) ⁽³⁾ PM2.5 (lb/day) ⁽³⁾ Offroad Fugitive PM - Peak	Table Tabl	35 36 99 0.51 0.5: 99 12.13 12.13 199 6.93 6.93 180 0.06 0.00 192 2.88 2.88 199 2.18 2.16 199 2.18 2.16 190 0.69 0.69 190 0.69 0.69 100 0.69 0.69 1754.5: 35 36 36 2.36 2.36 1754.5:
Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) NOx (Ib/day) SOx (Ib/day) SOx (Ib/day) PM10 (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) Exhuast PM (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) CO ₂ (Ib/day) CO ₂ (Ib/day) CO ₂ (tonnes/yr) Fugitive Earthmoving PM - Peak PM10 (Ib/day) ⁽²⁾ PM2.5 (Ib/day) ⁽³⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (Ib/day) ⁽²⁾	The color The	35 36 99 0.51 0.5: 99 12.13 12.13 199 6.93 6.93 180 0.06 0.00 192 2.88 2.88 199 2.18 2.16 199 2.18 2.16 190 0.69 0.69 190 0.69 0.69 100 0.69 0.69 1754.5: 35 36 36 2.36 2.36 1754.5:
Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) NOx (Ib/day) SOx (Ib/day) SOx (Ib/day) PM10 (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) CO ₂ (Ib/day) CO ₂ (Ib/day) CO ₂ (Ib/day) CO ₂ (tonnes/yr) Fugitive Earthmoving PM - Peak PM10 (Ib/day) ⁽²⁾ PM2.5 (Ib/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (Ib/day) ⁽²⁾ PM2.5 (Ib/day) ⁽¹⁾⁽²⁾	The column The	35 36 9 0.51 0.5 99 12.13 12.13 199 6.93 6.93 180 0.06 0.06 180 0.69 0.66 190 2.18 2.18 181 0.06 1.06 100 0.69 0.66 1754.5 35 36 168 0.68 0.68 1080 0.68 0.68 1080 0.68 0.68 1080 0.68 0.68 1080 0.68 0.68 1080 0.68 0.68
Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) NOx (Ib/day) SOx (Ib/day) PM10 (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) PM2.5 (Ib/day) ⁽¹⁾ Exhuast PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) CO ₂ (Ib/day) CO ₂ (Ib/day) CO ₂ (tonnes/yr) Fugitive Earthmoving PM - Peak PM10 (Ib/day) ⁽²⁾ PM2.5 (Ib/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (Ib/day) ⁽²⁾	The color The	35 36 9 0.51 0.5: 99 12.13 12.13 199 6.93 6.93 180 0.06 0.06 29 2.88 2.86 10 0.69 0.66 199 2.18 2.18 181 1.06 1.06 10 0.69 0.66 183 0.37 0.37 10 6037.46 1754.53 35 36 36 2.36 2.36 38 0.68 0.68 35 36 38 0.80 0.80 38 0.80
Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) NOx (Ib/day) SOx (Ib/day) SOx (Ib/day) PM10 (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) CO ₂ (Ib/day) CO ₂ (Ib/day) Fugitive Earthmoving PM - Peak PM10 (Ib/day) ⁽²⁾ PM2.5 (Ib/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (Ib/day) ⁽²⁾ PM2.5 (Ib/day) ⁽¹⁾⁽²⁾ PM2.5 (Ib/day) ⁽¹⁾⁽²⁾	Year	35 36 9 0.51 0.5: 99 12.13 12.13 199 6.93 6.93 180 0.06 0.06 29 2.88 2.86 10 0.69 0.66 199 2.18 2.18 181 1.06 1.06 10 0.69 0.66 183 0.37 0.37 10 6037.46 1754.53 35 36 36 2.36 2.36 38 0.68 0.68 35 36 38 0.80 0.80 38 0.80
Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) NO (Ib/day) SOx (Ib/day) SOx (Ib/day) PM10 (Ib/day) PM10 (Ib/day) Fugitive PM (Ib/day) PM2.5 (Ib/day) ⁽¹⁾ Exhuast PM (Ib/day) Fugitive PM (Ib/day) CO ₂ (Ib/day) CO ₂ (Ib/day) Fugitive Earthmoving PM - Peak PM10 (Ib/day) ⁽²⁾ PM2.5 (Ib/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (Ib/day) ⁽²⁾ PM2.5 (Ib/day) ⁽¹⁾⁽²⁾ PM2.5 (Ib/day) ⁽¹⁾⁽²⁾ PM2.5 (Ib/day) ⁽¹⁾⁽²⁾ PM2.6 (Ib/day)	Vest	35 36 99 0.51 0.51 199 6.93 6.93 180 0.06 0.06 29 2.88 2.88 190 0.69 0.69 190 2.18 2.18 100 0.69 0.69 181 0.06 0.07 182 0.06 0.07 183 0.07 184 0.07 185 0.07
Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) NOX (Ib/day) SOX (Ib/day) SOX (Ib/day) PM10 (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) CO ₂ (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) CO ₂ (tonnes/yr) Fugitive Earthmoving PM - Peak PM10 (Ib/day) PM2.5 (Ib/day) Offroad Fugitive PM - Peak PM10 (Ib/day) PM2.5 (Ib/day) PM2.5 (Ib/day) Pixi	The color The	35 36 9 0.51 0.5 99 12.13 12.13 199 6.93 6.93 180 0.06 0.00 180 2.88 2.88 280 0.69 0.69 190 2.18 2.16 181 1.06 1.00 100 0.69 0.69 100 0.69 0.6
Emission from Trips - Onsite/Offsite V/OC (lb/day) CO (lb/day) CO (lb/day) NOx (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) Exhuast PM (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) CO ₂ (tonnes/yr) Emissions PM2.5 (lb/day) CO ₂ (tonnes/yr) PM2.5 (lb/day) PM3.5 (l	1	35 36 9 0.51 0.57 99 12.13 12.13 199 6.93 6.93 180 0.06 0.06 180 0.69 0.66 190 2.18 2.18 181 1.06 1.06 100 0.69 0.66 1754 53 1754 53 185 36 186 2.36 2.36 188 0.68 0.68 189 35 36 189 2.18 2.18 180 0.69 0.66 1754 53 180 0.69 0.66 180 0.60
Emission from Trips - Onsite/Offsite	1	35 36 9 0.51 0.51 99 12.13 12.13 99 6.93 6.93 80 0.06 0.06 20 2.88 2.88 20 0.69 0.69 90 2.18 2.18 10.06 0.06 90 0.69 0.68 80 0.37 0.33 00 6037.46 6037.46 1754.53 35 36 2.36 2.36 88 0.68 0.68 35 36 0.68 0.68 35 36 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) Exhuast PM (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) CO ₂ (tonnes/yr) CO ₂ (tonnes/yr) CO ₃ (tonnes/yr) CO ₄ (tonnes/yr) CO ₅ (tonnes/yr) CO ₇ (tonnes/yr) PM2.5 (lb/day) CO ₇ (tonnes/yr) PM2.5 (lb/day) CO ₇ (tonnes/yr) PM2.5 (lb/day) PM2.5 (lb/day) FM2.5 (lb/day) FM2.5 (lb/day) Total Emissions Thresholds CO ₇ (lb/day) Total Emissions Thresholds CO ₇ (lb/day) CO ₇ (lb/day)	The color The	35 36 9 0.51 0.57 90 12.13 12.13 19 6.93 6.93 18 0.06 0.00 18 2.88 2.88 28 2.8
Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) CO (Ib/day) NOX (Ib/day) SOX (Ib/day) SOX (Ib/day) SOX (Ib/day) PM10 (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) CO2 (Ib/day) CO2 (Ib/day) CO3 (Ib/day) CO4 (Ib/day) CO5 (Ib/day) CO	1 2 3 4 5 6 7 8 9 19 11 12 13 14 16 16 17 19 19 19 19 19 19 19	35 36 9 0.51 0.51 12.13 12.13 19 6.93 6.93 18 0.06 0.06 29 2.88 2.88 20 0.69 0.69 19 2.18 2.18 10 0.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 10 6.69 0.69 11 6.69 0.69 12 6.69 0.69 13 5 36 13 6 0.68 0.69 13 5 36 14 6 6.71 6.71 15 6 6.71 6.71 15 6 6.71 6.71 16 6 6.71 6.71 16 6 6.71 6.71 17 71.71 17 6 6.72 18 6 6.77 6 6.72 19 0.20 0.20 18 12.31 12.31 12.33
Emission from Trips - Onsite/Offsite	Total Content Total Conten	35 36 9 0.51 0.5 0.5 12.13 12.13 19 6.93 6.93 6.93 80 0.06 0.06 92 2.88 2.37 0.37
Emission from Trips - Onsite/Offsite	1	35 36 99 0.51 0.57 99 12.13 12.13 199 6.93 6.93 180 0.06 0.06 180 0.69 0.66 190 2.18 2.18 181 0.06 1.06 190 0.69 0.66 1754.53 35 36 166 2.36 2.36 35 36 1754.53 35 36 36 3.80 3.80 38 38 38 38 38 38 38 38 38 38 38 38 38 3
Emission from Trips - Onsite/Offsite	Total Content Total Conten	35 36 9 0.51 0.5 0.5 12.13 12.13 19 6.93 6.93 6.93 80 0.06 0.06 92 2.88 2.37 0.37

⁽¹⁾ https://www.aqmd.gov/ceqa/handbook/PM2_5/pm2_5ratio.xls
(2) Mitigated PM.
Highlighted values are maximums.

Appendix B Tesoro Integration and Compliance Project Total Project Component Construction Emission Summary

Emissions from Equipment	Year 4 Year 5 Year 6 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	71 72
VOC (lb/day)		.86 0.61 0.61
CO (lb/day)	70.78 108.75 114.11 77.06 50.04 51.40 50.22 50.22 50.22 50.22 79.01 50.22 50.22 22.95 19.86 19.86 18.52 13.92 13.92 13.92 16.58 13.75 19.10 22.78 22.78 24.13 22.69 22.69 22.69 22.69 22.69 22.69 22.69 22.69 19.63 19.63 18.3	
NOx (lb/day)		.64 11.31 11.31
SOx (lb/day)	0.21 0.29 0.32 0.21 0.12 0.12 0.12 0.12 0.12 0.12 0.1	
PM10 (lb/day)		.92 4.77 4.77
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day)	100 001 002 100 002 000 002 000 002 000 100 1	.58 1.42 1.42 .22 0.89 0.89
CO ₂ (tonnes/yr)	1133.96 351.03	376.40
	Year 4 Year 5 Year 6	
Emissions from Short Project Equipment	37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	71 72
VOC (lb/day)		.00 0.00 0.00
CO (lb/day)		.00 0.00 0.00
NOx (lb/day) SOx (lb/day)	21.30	.00 0.00 0.00 .00 0.00 0.00
PM10 (lb/day)		.00 0.00 0.00
PM2.5 (lb/day) ⁽¹⁾	1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34	
CO ₂ (MT/day)		.00 0.00 0.00
	Year 4 Year 5 Year 6	
Emissions from TAR Equipment	37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	
VOC (lb/day)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.00 0.00 0.00 .00 0.00 0.00
CO (lb/day) NOx (lb/day)		.00 0.00 0.00
SOx (lb/day)		.00 0.00 0.00
PM10 (lb/day)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.00 0.00 0.00
PM2.5 (lb/day) ⁽¹⁾		.00 0.00 0.00
CO ₂ (MT/day)	0.00	.00 0.00 0.00
	Word	
Emissions from Carson Tanks	Year 4 Year 5 Year 6 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	71 72
VOC (lb/day)	37 30 39 40 41 42 43 44 49 40 47 40 49 30 31 52 53 34 55 60 57 50 57 50 57 50 59 09 0.90 0.90 0.90 0.90 0.90 0.90	
CO (lb/day)		.30 13.75 13.75
NOx (lb/day)	54.76 48.15 56.40 57.84 22.24 22.99 22.10 22.10 22.10 22.10 22.10 22.10 22.10 22.10 22.10 22.10 22.10 22.10 22.10 22.10 15.36 15.36 14.64 11.31 11.31 17.33 11.43 18.88 20.25 20.25 20.27 20.14 2	
SOx (lb/day)	0.15 0.13 0.15 0.16 0.06 0.07	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.92 4.77 4.77
PM10 (lb/day)		
PM2.5 (lb/day) ⁽¹⁾	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	
	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	.58 1.42 1.42 .22 0.89 0.89
PM2.5 (lb/day) ⁽¹⁾	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	71 72
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day)	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	.22 0.89 0.89 .71 72 .16 0.16 0.16
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day)	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	71 72 .16 0.16 0.16 .02 5.02 5.02
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day)	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	.22 0.89 0.89 .10 71 72 .16 0.16 0.16 .02 5.02 5.02 .13 2.13 2.13
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day)	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	71 72 .16 0.16 0.16 .02 5.02 5.02 .13 2.13 2.13 .03 0.03 0.03 .49 1.49 1.49
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day)	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	71 72 16 0.16 0.16 0.16 0.16 0.13 0.2 5.02 5.02 1.3 2.13 2.13 0.3 0.03 0.03 4.9 1.49 1.49 3.6 0.36
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day)	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	71 72 1.16 0.16 0.16 0.02 5.02 5.02 1.3 2.13 2.13 0.03 0.03 0.03 4.9 1.49 1.49 3.6 0.36 0.36 1.3 1.13 1.13
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) PM2.5 (lb/day) ⁽¹⁾	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	71 72 1.6 0.16 0.16 0.16 0.16 0.16 0.13 2.13 2.13 2.13 0.03 0.03 4.9 1.49 1.49 3.6 0.36 0.36 0.36 1.13 1.13 1.13 5.5 0.55 0.55 0.55
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day)	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	71 72 1.6 0.16 0.16 0.16 0.2 5.02 5.02 1.3 2.13 2.13 0.3 0.03 0.03 4.9 1.49 1.49 3.6 0.36 0.36 1.3 1.13 1.13 1.13 1.13 5.5 0.55 0.55 3.6 0.36 0.36
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day)	3.34 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	71 72 16 0.16 0.16 0.16 0.2 5.02 5.02 13 2.13 2.13 0.3 0.03 0.03 49 1.49 1.49 3.36 0.36 0.36 1.3 1.13 1.13 5.55 0.55 0.55 3.36 0.36 0.36 1.9 0.19 0.19
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (b/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Exhuast PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day)	3.4 3.0 3.4 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day)	3.4 3.0 3.4 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	71 72 16 0.16 0.16 0.16 0.2 5.02 5.02 13 2.13 2.13 0.3 0.03 0.03 49 1.49 1.49 3.36 0.36 0.36 1.3 1.13 1.13 5.55 0.55 0.55 3.36 0.36 0.36 1.9 0.19 0.19
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Exhuast PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day) CO ₂ (lb/day)	3.4 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	22 0.89 0.89 71 72 160 0.16 0.16 0.16 0.2 5.02 5.02 13 2.13 2.13 2.13 0.03 4.9 1.49 1.49 3.6 0.36 0.36 1.13 1.13 1.13 1.55 0.55 0.55 3.6 0.36 0.36 0.36 0.36 0.36 0.36 7.6 2681.76 2681.76 2681.76 2681.76
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day) CO ₂ (tonnes/yr)	34 3.0 3.4 3.5 4 198 199 1.93 1.93 1.93 1.93 1.93 1.93 1.93	71 72 16 0.16 0.16 0.16 0.2 5.02 5.02 13 2.13 2.13 0.3 0.03 0.03 49 1.49 1.49 1.49 3.6 0.36 0.36 1.3 1.13 1.13 5.5 0.55 0.55 3.6 0.36 0.38 19 0.19 0.19 76 2681.76 2681.76 2881.76 2881.76
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day) Fugitive Earthmoving PM - Peak PM10 (lb/day) ⁽²⁾	3.4	71 72 16 0.16 0.16 0.16 0.16 0.16 0.25 5.02 5.03 0.36
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day) CO ₂ (tonnes/yr)	3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4	71 72 16 0.16 0.16 0.16 0.2 5.02 5.02 13 2.13 2.13 0.3 0.03 0.03 49 1.49 1.49 1.49 3.6 0.36 0.36 1.3 1.13 1.13 5.5 0.55 0.55 3.6 0.36 0.38 19 0.19 0.19 76 2681.76 2681.76 2881.76 2881.76
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day) Fugitive Earthmoving PM - Peak PM10 (lb/day) ⁽²⁾	334 3.10 3.41 3.54 1.89 1.99 1.59 1.59 1.59 1.59 1.59 1.59 1.5	71 72 16 0.16 0.16 0.16 0.16 0.16 0.25 5.02 5.03 0.36
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Exhuast PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day) CO ₂ (tonnes/yr) Fugitive Earthmoving PM - Peak PM10 (lb/day) ⁽¹⁾ PM2.5 (lb/day) ⁽¹⁾ Offroad Fugitive PM - Peak	334 3.10 3.41 3.54 1.89 1.99 1.59 1.59 1.59 1.59 1.59 1.59 1.5	71 72 73 74 75 75 75 75 75 75 75
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Exhuast PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) CO ₂ (lonnes/yr) Fugitive Earthmoving PM - Peak PM10 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾	338 3.10 3.41 3.84 1.88 1.98 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93	71 72 73 74 75 75 75 75 75 75 75
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Exhuast PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day) CO ₂ (tonnes/yr) Fugitive Earthmoving PM - Peak PM10 (lb/day) ⁽¹⁾ PM2.5 (lb/day) ⁽¹⁾ Offroad Fugitive PM - Peak	334 3.10 3.41 3.54 1.98 1.99 1.93 1.93 1.93 1.93 1.93 1.93 1.93	71 72 74 75 75
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Exhuast PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) CO ₂ (tonnes/yr) Fugitive Earthmoving PM - Peak PM10 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾	334 3.10 3.47 3.49 1.98 1.98 1.98 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90	71 72 73 74 75 75 75 75 75 75 75
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) Fugitive Earthmoving PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽³⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽³⁾ PM2.5 (lb/day) ^(1)/2) PM2.5 (lb/day) ^(1)/2) PM2.5 (lb/day) ^(1)/2) PM2.5 (lb/day) ^(1)/2)	334 3.10 3.74 1.56 1.69 1.96 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95	71 72 16 0.16 0.16 0.16 0.16 0.25 5.02 5.03
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) PM2.5 (lb/day) ⁽¹⁾ Exhuast PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) Fugitive Earthmoving PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾	334 3.10 3.41 3.54 1.98 1.98 1.99 1.90 1.90 1.90 1.90 1.90 1.90 1.90	71 72 16 0.16 0.16 0.16 0.16 0.25 5.02 5.03
PM2.5 (lb/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (lb/day) CO (lb/day) NOx (lb/day) NOx (lb/day) PM10 (lb/day) Exhuast PM (lb/day) Exhuast PM (lb/day) Fugitive PM (lb/day) Fugitive PM (lb/day) CO ₂ (lb/day) CO ₂ (lb/day) Fugitive Earthmoving PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽³⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽³⁾ PM2.5 (lb/day) ⁽³⁾ PM2.5 (lb/day) Offroad Fugitive PM - Peak PM10 (lb/day) ⁽³⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾	334 310 372 374 158 168 198 198 198 198 198 198 198 198 198 19	71 72 16 0.16 0.16 0.16 0.16 0.25 5.02 5.03
PM2.5 (Ib/day) ⁽¹⁾ CO ₂ (MT/day) Emission from Trips - Onsite/Offsite VOC (Ib/day) CO (Ib/day) NOx (Ib/day) NOx (Ib/day) SOx (Ib/day) PM10 (Ib/day) Exhuast PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) Fugitive PM (Ib/day) CO ₂ (Ib/day) CO ₂ (Ib/day) Fugitive Earthmoving PM - Peak PM10 (Ib/day) ⁽²⁾ PM2.5 (Ib/day) ⁽³⁾ Offroad Fugitive PM - Peak PM10 (Ib/day) ⁽³⁾ Offroad Fugitive PM - Peak PM10 (Ib/day) ⁽³⁾ PM2.5 (Ib/day) ⁽¹⁾⁽²⁾	3.56 3.76 3.76 3.76 1.56 1.69 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.9	71 72 13 13 13 13 13 13 13 1
PM2.5 (lb/day) ⁽¹⁾	3.54 3.70 3.74 3.54 1.08 1.09 1.09 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	71 72 100 0.00
PM2.5 (lb/day) ⁽¹⁾	3.56 3.10 3.41 3.56 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98	71 72 72 74 72 75 75 75
PM2.5 (lb/day) ⁽¹⁾	328 3.10 5.41 5.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5	71 72
PM2.5 (lb/day) ⁽¹⁾	3.88 3.10 3.41 3.56 10.00 1.90 1.90 1.90 1.90 1.90 1.90 1.9	71 72 100
PM2.5 (lb/day) ⁽¹⁾	336 346 346 346 186	71 72 72 74 72 75 75 75
PM2.5 (lb/day) ⁽¹⁾	3.28 3.10 3.47 3.56 1 m	71 72
PM2.5 (lb/day) ⁽¹⁾	2 2 3 5 2 4 5 5 5 6 6 7 6 1 5 5 5 6 7 6 1 5 5 7 5 1 5	71 72 73 74 75 75 75 75 75 75 75
PM2.5 (lb/day) ⁽¹⁾	3.28 3.10 3.47 3.56 1 m	71 72


⁽¹⁾ https://www.aqmd.gov/ceqa/handbook/PM2_5/pm2_5ratio.xls
(2) Mitigated PM.
Highlighted values are maximums.

Appendix B Tesoro Integration and Compliance Project Total Project Component Construction Emission Summary

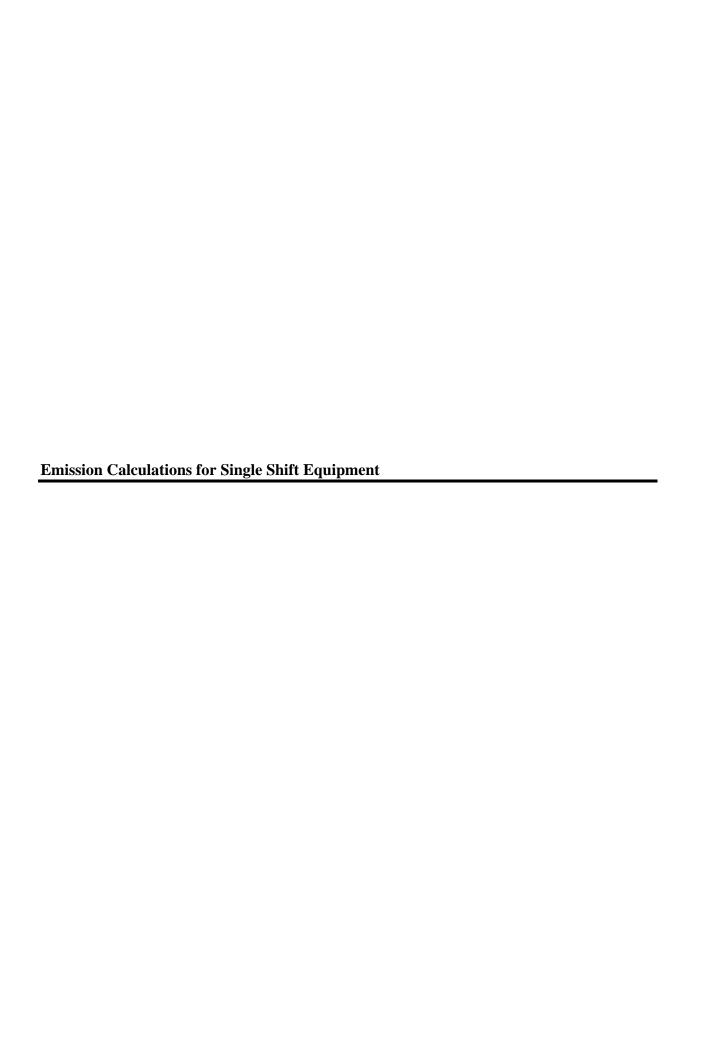
Emissions from Equipment VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day) PM10 (lb/day)							_					
VOC (lb/day) CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day)	73	74	75	76	77	Yea 78	r 7 79	80	81	82	83	84
CO (lb/day) NOx (lb/day) SOx (lb/day) PM10 (lb/day)	0.9		1.04	0.78	0.78	0.82	0.76	0.76	0.76	0.76	0.76	0.76
NOx (lb/day) SOx (lb/day) PM10 (lb/day)	16.3		18.87	22.49	22.49	23.82	22.65	22.65	22.65	22.65	22.65	22.65
SOx (lb/day) PM10 (lb/day)	13.4		14.87	16.45	16.45	17.11	16.40	16.40	16.40	16.40	16.40	16.40
PM10 (lb/day)	0.0		0.06	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.07	0.07
	0.6		0.65	0.74	0.74	0.75	0.70	0.70	0.70	0.70	0.70	0.70
PM2.5 (lb/day) ⁽¹⁾	0.5		0.65	0.73	0.73	0.74	0.70	0.70	0.70	0.70	0.70	0.70
CO ₂ (MT/day)	1.3		1.47	1.55	1.55	1.63	1.59	1.59	1.59	1.59	1.59	1.59
	1.3	0.03	1.47	1.00	1.00	1.00	1.55	1.55	1.00	1.55	1.55	
CO ₂ (tonnes/yr)												403.38
						.,						
						Yea						
Emissions from Short Project Equipment	73	74	75	76	77	78	79	80	81	82	83	84
VOC (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NOx (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SOx (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM10 (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM2.5 (lb/day) ⁽¹⁾	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂ (MT/day)	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						Yea						
Emissions from TAR Equipment	73	74	75	76	77	78	79	80	81	82	83	84
VOC (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NOx (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SOx (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM10 (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM2.5 (lb/day) ⁽¹⁾	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂ (MT/day)	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						Yea						
Emissions from Carson Tanks	73	74	75	76	77	78	79	80	81	82	83	84
VOC (lb/day)	0.9		1.04	0.78	0.78	0.82	0.76	0.76	0.76	0.76	0.76	0.76
CO (lb/day)	16.3		18.87	22.49	22.49	23.82	22.65	22.65	22.65	22.65	22.65	22.65
NOx (lb/day)	13.4		14.87	16.45	16.45	17.11	16.40	16.40	16.40	16.40	16.40	16.40
SOx (lb/day)	0.0		0.06	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.07	0.07
PM10 (lb/day)	0.6		0.65	0.74	0.74	0.75	0.70	0.70	0.70	0.70	0.70	0.70
PM2.5 (lb/day) ⁽¹⁾	0.5	9 0.45	0.65	0.73	0.73	0.74	0.70	0.70	0.70	0.70	0.70	0.70
CO ₂ (MT/day)	1.3	4 0.85	1.47	1.55	1.55	1.63	1.59	1.59	1.59	1.59	1.59	1.59
						Yea						
Emission from Trips - Onsite/Offsite	73	74	75	76	77	78	79	80	81	82	83	84
VOC (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NOx (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SOx (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM10 (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Exhuast PM (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fugitive PM (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM2.5 (lb/day) ⁽¹⁾	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Exhuast PM (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fugitive PM (lb/day)	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂ (lb/day)	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂ (tonnes/yr)	Ī											0.00
						Yea						
(73	74	75	76	77	78	79	80	81	82	83	84
Fugitive Earthmoving PM - Peak			0.00		0.00			0.00	0.00	0.00	0.00	0.00
PM10 (lb/day) ⁽²⁾	0.0		0.00	0.00		0.00	0.00					0.00
	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
PM10 (lb/day) ⁽²⁾						0.00	0.00		0.00	0.00	0.00	
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾	0.0	0.00	0.00	0.00	0.00	0.00 Yea	0.00 r 7	0.00				
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak	73	74	0.00 75	0.00 76	77	0.00 Yea 78	0.00 r 7 79	0.00	81	82	83	84
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾	73 3.8	74 0 3.80	75 3.80	76 3.80	77 3.80	0.00 Yea 78 3.80	0.00 r 7 79 3.80	0.00 80 3.80	81 3.80	82 3.80	83 3.80	84 3.80
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak	73	74 0 3.80	0.00 75	0.00 76	77	0.00 Yea 78	0.00 r 7 79	0.00	81	82	83	84
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾	73 3.8	74 0 3.80	75 3.80	76 3.80	77 3.80	0.00 Yea 78 3.80 0.80	0.00 r 7 79 3.80 0.80	0.00 80 3.80	81 3.80	82 3.80	83 3.80	84 3.80
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾	73 3.8	74 0 3.80	75 3.80	76 3.80	77 3.80	0.00 Yea 78 3.80	0.00 r 7 79 3.80 0.80	0.00 80 3.80	81 3.80	82 3.80	83 3.80	84 3.80
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾	73 3.8 0.8	74 0 3.80 0 0.80	75 3.80 0.80	76 3.80 0.80	77 3.80 0.80	0.00 Yea 78 3.80 0.80 Yea	0.00 r 7 79 3.80 0.80	0.00 80 3.80 0.80	81 3.80 0.80	82 3.80 0.80	83 3.80 0.80	84 3.80 0.80
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾	73 3.8 0.8	74 0 3.80 0 0.80	75 3.80 0.80	76 3.80 0.80	77 3.80 0.80	78 3.80 0.80 Yea 78 0.00	0.00 r7 r9 3.80 0.80 r7 r9 0.00	0.00 80 3.80 0.80	81 3.80 0.80	82 3.80 0.80	83 3.80 0.80	84 3.80 0.80
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Paint VOC (lb/day)	73 3.8 0.8 73 62.2	74 0 3.80 0 0.80 74 5 62.25	75 3.80 0.80 75 62.25	76 3.80 0.80 76 0.00	77 3.80 0.80 77 0.00	0.00 Yea 78 3.80 0.80 Yea 78 0.00 Yea	0.00 r7 r9 3.80 0.80 r7 r9 0.00	0.00 80 3.80 0.80 80 0.00	81 3.80 0.80 81 0.00	82 3.80 0.80	83 3.80 0.80 83 0.00	84 3.80 0.80 84 0.00
PM10 (lb/day) ⁽²⁾	73 3.8 0.8 73 62.2 resholds 73	74 0 3.80 0 0.80 74 5 62.25	75 3.80 0.80 75 62.25	76 3.80 0.80 76 0.00	77 3.80 0.80	0.00 Yea 78 3.80 0.80 Yea 78 0.00 Yea 78	0.00 r 7 79 3.80 0.80 r 7 79 0.00 r 7 79	0.00 80 3.80 0.80 80 0.00	81 3.80 0.80 81 0.00	82 3.80 0.80 82 0.00	83 3.80 0.80 83 0.00	84 3.80 0.80 84 0.00
PM10 (lb/day) ⁽²⁾	73 3.8 0.8 73 62.2 75 63.2	74 0 3.80 0 0.80 74 5 62.25 74 0 62.79	75 3.80 0.80 75 62.25	76 3.80 0.80 76 0.00	77 3.80 0.80 77 0.00	0.00 Yea 78 3.80 0.80 Yea 78 0.00 Yea 78 0.82	0.00 r 7 79 3.80 0.80 r 7 79 0.00 r 7 79 0.00	80 3.80 0.80 80 0.00	81 3.80 0.80 81 0.00	82 3.80 0.80 82 0.00	83 3.80 0.80 83 0.00	84 3.80 0.80 84 0.00
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Paint VOC (lb/day) Total Emissions Thi VOC (lb/day) CO (lb/d	73 3.8 0.8 73 62.2 75 63.2 75 63.2 550 16.3	74 0 3.80 0 0.80 74 62.25 74 0 62.79 8 13.54	75 3.80 0.80 75 62.25 75 63.29 18.87	76 3.80 0.80 76 0.00	77 3.80 0.80 77 0.00 77 0.78 22.49	78 0.80 78 0.80 Yea 78 0.00 Yea 23.82	0.00 r 7 r 9 3.80 0.80 r 7 r 9 0.00 r 7 r 9 0.76 22.65	0.00 80 3.80 0.80 80 0.00 80 0.76 22.65	81 3.80 0.80 81 0.00 81 0.76 22.65	82 3.80 0.80 82 0.00 82 0.76 22.65	83 0.80 0.80 83 0.76 22.65	84 3.80 0.80 84 0.76 22.65
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Paint VOC (lb/day) Total Emissions The VOC (lb/day) CO (lb/day) CO (lb/day) NOX (lb/day) NOX (lb/day) NOX (lb/day) Paint Paint Paint Paint Political Paint Political Paint Political Paint Political Paint Political Paint Paint Political Paint Political Paint Political Paint Paint Political Paint Political Paint Political Paint	73 3.8 0.8 73 62.2 7esholds 75 63.2 550 16.3 100 13.4	74 0 3.80 0 0.80 74 5 62.25 74 62.79 8 13.54 9 9.30	75 3.80 0.80 75 62.25 75 63.29 18.87 14.87	76 3.80 0.80 76 0.00 76 0.78 22.49 16.45	77 3.80 0.80 77 0.00 77 0.78 22.49 16.45	0.00 Yea 78 3.80 0.80 Yea 78 0.00 Yea 78 0.02 23.82 17.11	0.00 r 7 79 3.80 0.80 r 7 79 0.00 r 7 79 0.00 r 7 79 0.76 22.65 16.40	80 3.80 0.80 80 0.00 80 0.76 22.65 16.40	81 0.80 81 0.00 81 0.76 22.65 16.40	82 3.80 0.80 82 0.00 82 0.76 22.65 16.40	83 3.80 0.80 83 0.00 83 0.76 22.65 16.40	84 3.80 0.80 84 0.00 84 0.76 22.65 16.40
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ PM2.5 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ PM3.5 (lb/day) Pm4.5 (lb/day)	73 3.8 0.8 73 62.2 resholds 73 75 63.2 550 16.3 100 13.4 150 0.0	74 0 3.80 0 0.80 74 5 62.25 74 0 62.79 8 13.54 9 9.30 6 0.04	75 3.80 0.80 75 62.25 75 63.29 18.87 0.06	76 3.80 0.80 76 0.00 76 0.78 22.49 16.45 0.06	77 3.80 0.80 77 0.00 77 0.78 22.49 16.45 0.06	78 3.80 0.80 Yea 78 0.00 Yea 78 0.00 Yea 78 1.82 23.82 17.11 0.07	0.00 r7 r9 3.80 0.80 r7 r9 0.00 r7 r9 0.76 22.65 16.40 0.07	80 0.80 80 0.00 80 0.76 22.65 16.40 0.07	81 3.80 0.80 81 0.00 81 0.76 22.65 16.40 0.07	82 3.80 0.80 82 0.00 82 0.76 22.65 16.40 0.07	83 3.80 0.80 83 0.00 83 0.76 22.65 16.40 0.07	84 3.80 0.80 84 0.00 84 0.76 22.65 16.40 0.07
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Paint VOC (lb/day) Total Emissions Thi VOC (lb/day) CO (lb/day) NOx (lb/day) SOX (lb/day) PM10 (lb/day) ⁽²⁾ PM10 (lb/day) ⁽²⁾	73 3.8 0.8 73 62.2 75 63.2 75 63.2 550 16.3 100 13.4 150 0.0 150 4.4	74 3.80 0 0.80 74 5 62.25 74 0 62.79 8 13.54 9 9.30 6 0.04 0 4.25	75 3.80 0.80 75 62.25 75 63.29 18.87 14.87 0.06 4.45	76 3.80 0.80 76 0.00 76 0.78 22.49 16.45 0.006 4.54	77 3.80 0.80 77 0.00 77 0.78 22.49 16.45 0.06 4.54	78 3.80 0.80 Yea 78 0.00 Yea 78 0.00 Yea 78 0.82 23.82 17.11 0.07 4.55	79 3.80 0.80 r7 79 0.000 r7 79 0.76 22.65 16.40 0.07 4.50	80 3.80 0.80 0.00 80 0.00 80 0.76 22.65 16.40 0.07 4.50	81 3.80 0.80 81 0.00 81 0.76 22.65 16.40 0.07 4.50	82 3.80 0.80 82 0.00 82 0.76 22.65 16.40 0.07 4.50	83 3.80 0.80 83 0.00 83 0.76 22.65 16.40 0.07 4.50	84 3.80 0.80 84 0.00 84 0.76 22.65 16.40 0.07 4.50
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ PM2.5 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ PM3.5 (lb/day) Pm4.5 (lb/day)	73 3.8 0.8 73 62.2 resholds 73 75 63.2 550 16.3 100 13.4 150 0.0	74 3.80 0 0.80 74 5 62.25 74 0 62.79 8 13.54 9 9.30 6 0.04 0 4.25	75 3.80 0.80 75 62.25 75 63.29 18.87 0.06	76 3.80 0.80 76 0.00 76 0.78 22.49 16.45 0.06	77 3.80 0.80 77 0.00 77 0.78 22.49 16.45 0.06	78 3.80 0.80 Yea 78 0.00 Yea 78 0.00 Yea 78 1.82 23.82 17.11 0.07	0.00 r7 r9 3.80 0.80 r7 r9 0.00 r7 r9 0.76 22.65 16.40 0.07	80 0.80 80 0.00 80 0.76 22.65 16.40 0.07	81 3.80 0.80 81 0.00 81 0.76 22.65 16.40 0.07	82 3.80 0.80 82 0.00 82 0.76 22.65 16.40 0.07	83 3.80 0.80 83 0.00 83 0.76 22.65 16.40 0.07	84 3.80 0.80 84 0.00 84 0.76 22.65 16.40 0.07
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Paint VOC (lb/day) Total Emissions Thi VOC (lb/day) CO (lb/day) SOx (lb/day) SOx (lb/day) PM10 (lb/day) ⁽²⁾ PM10 (lb/day) ⁽²⁾	73 3.8 0.8 73 62.2 75 63.2 75 63.2 550 16.3 100 13.4 150 0.0 150 4.4	74 0 3.80 0 0.80 74 5 62.25 74 62.25 74 0 62.79 8 13.54 9 9.30 6 0.04 4.25 9 1.25	75 3.80 0.80 75 62.25 75 63.29 18.87 14.87 0.06 4.45	76 3.80 0.80 76 0.00 76 0.78 22.49 16.45 0.006 4.54	77 3.80 0.80 77 0.00 77 0.78 22.49 16.45 0.06 4.54	78 3.80 0.80 Yea 78 0.00 Yea 78 0.00 Yea 78 0.82 23.82 17.11 0.07 4.55	79 3.80 0.80 r7 79 0.000 r7 79 0.76 22.65 16.40 0.07 4.50	80 3.80 0.80 0.00 80 0.00 80 0.76 22.65 16.40 0.07 4.50	81 3.80 0.80 81 0.00 81 0.76 22.65 16.40 0.07 4.50	82 3.80 0.80 82 0.00 82 0.76 22.65 16.40 0.07 4.50	83 3.80 0.80 83 0.00 83 0.76 22.65 16.40 0.07 4.50	84 3.80 0.80 84 0.00 84 0.76 22.65 16.40 0.07 4.50
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Paint VOC (lb/day) Total Emissions Thi VOC (lb/day) VOC (lb/day) VOC (lb/day) SOx (lb/day) PM10 (lb/day) PM10 (lb/day) PM2.5 (lb/day) ⁽¹⁾⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ CO ₂ (tonnes/day)	73 3.8 0.8 73 62.2 75 63.2 550 16.3 100 150 4.4 150 0.0 150 4.4 55 1.3 NA 1.3	74 0 3.80 0 0.80 74 5 62.25 74 62.25 74 0 62.79 8 13.54 9 9.30 6 0.04 2.25 9 1.25	75 3.80 0.80 75 62.25 75 63.29 18.87 14.87 0.06 4.45	76 3.80 0.80 76 0.00 76 0.78 22.49 16.45 0.06 4.54 1.53	77 3.80 0.80 77 0.00 77 0.78 22.49 16.45 0.06 4.54 1.53	Yea 78 3.80 0.80 Yea 78 0.00 Yea 78 0.00 Yea 78 1.11 0.07 4.555 1.54	79 3.80 0.00 r 7 79 0.00 r 7 79 0.00 r 7 9 0.76 22.65 16.40 0.07 4.50 1.49	80 3.80 0.80 0.00 80 0.76 22.65 16.40 0.07 4.50	81 3.80 0.80 81 0.00 81 0.76 22.65 16.40 0.07 4.50 1.49	82 3.80 0.80 82 0.00 82 0.76 22.65 16.40 0.74 4.50 1.49	83 0.80 0.80 83 0.00 83 0.76 22.65 16.40 0.07 4.50 1.49	84 3.80 0.80 84 0.00 84 0.76 22.65 16.40 0.07 4.50 1.49 1.59
PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Offroad Fugitive PM - Peak PM10 (lb/day) ⁽²⁾ PM2.5 (lb/day) ⁽¹⁾⁽²⁾ Paint VOC (lb/day) Total Emissions Thi VOC (lb/day) CO (lb/day) NOx (lb/day) NOx (lb/day) PM10 (lb/day) ⁽²⁾ PM10 (lb/day) ⁽³⁾ PM12.5 (lb/day) ⁽⁴⁾⁽²⁾ PM2.5 (lb/day) ⁽⁴⁾⁽²⁾ PM2.5 (lb/day) ⁽⁴⁾⁽²⁾	73 3.8 0.8 73 62.2 resholds 75 63.2 550 16.3 100 13.4 150 0.0 150 4.4 55 1.3	74 0 3.80 0 0.80 74 5 62.25 74 62.25 74 0 62.79 8 13.54 9 9.30 6 0.04 2.25 9 1.25	75 3.80 0.80 75 62.25 75 63.29 18.87 14.87 0.06 4.45	76 3.80 0.80 76 0.00 76 0.78 22.49 16.45 0.06 4.54 1.53	77 3.80 0.80 77 0.00 77 0.78 22.49 16.45 0.06 4.54 1.53	Yea 78 3.80 0.80 Yea 78 0.00 Yea 78 0.00 Yea 78 1.11 0.07 4.555 1.54	79 3.80 0.00 r 7 79 0.00 r 7 79 0.00 r 7 9 0.76 22.65 16.40 0.07 4.50 1.49	80 3.80 0.80 0.00 80 0.76 22.65 16.40 0.07 4.50	81 3.80 0.80 81 0.00 81 0.76 22.65 16.40 0.07 4.50 1.49	82 3.80 0.80 82 0.00 82 0.76 22.65 16.40 0.74 4.50 1.49	83 0.80 0.80 83 0.00 83 0.76 22.65 16.40 0.07 4.50 1.49	84 0.80 84 0.00 84 0.76 22.65 16.40 0.07 4.50

(1) https://www.aqmd.gov/ceqa/handbook/PM2_5/pm2_5ratio.xls (2) Mitigated PM.

M:\MC\2844 Tesoro - Synergy\Constructiont\2844 - 0-1 - Total Construction Emissions.xlsx: Total Emissions B-3 [This page intentionally left blank]

			2017	Emission	Factors Ib	/hr ⁽¹⁾	
Equipment Type	Нр	VOC	СО	NOx	SOx	PM10	CO2e ⁽²⁾
<40 T Cranes	Composite	0.06537	0.4152	0.90923	0.00147	0.04291	0.03535
>40T Cranes	500	0.07236	0.4243	1.11689	0.00213	0.04535	0.05139
Pile/Drill Rig	Composite	0.04029	0.5013	0.67483	0.00244	0.02483	0.05882
Tractors	Composite	0.03046	0.3666	0.35832	0.00080	0.02366	0.0192
Welders	50	0.03579	0.2408	0.18867	0.00039	0.01662	0.00938
Light Plants	50	0.03579	0.3047	0.18867	0.00039	0.01662	0.00938
Genertors	120	0.04173	0.4728	0.45336	0.00074	0.03547	0.01794
Hydro Vacs/Pumps	120	0.04173	0.4802	0.45336	0.00074	0.03547	0.01794
Fork Lifts	Composite	0.01948	0.4522	0.29726	0.00089	0.01519	0.02146
Loader/Backhoe	Composite	0.03046	0.3666	0.35832	0.00080	0.02366	0.0192
Air Compressors	50	0.03579	0.2209	0.18867	0.00039	0.01662	0.00938
Manlifts	Composite	0.00586	0.1548	0.11635	0.00044	0.00353	0.01066

			2018	Emission	Factors Ib	/hr ⁽¹⁾	
Equipment Type	Нр	VOC	СО	NOx	SOx	PM10	CO2e ⁽²⁾
<40 T Cranes	Composite	0.05782	0.4060	0.80171	0.00147	0.03738	0.03536
>40T Cranes	500	0.06523	0.4085	0.98933	0.00213	0.03992	0.05142
Pile/Drill Rig	Composite	0.03501	0.5011	0.56864	0.00243	0.02055	0.05865
Tractors	Composite	0.02557	0.3647	0.30639	0.00080	0.01923	0.01917
Welders	50	0.03361	0.2339	0.18349	0.00039	0.01563	0.00938
Light Plants	50	0.03361	0.2966	0.18349	0.00039	0.01563	0.00938
Genertors	120	0.03690	0.4694	0.40643	0.00075	0.03112	0.01796
Hydro Vacs/Pumps	120	0.03690	0.4767	0.40643	0.00075	0.03112	0.01796
Fork Lifts	Composite	0.01616	0.2173	0.24736	0.00089	0.01150	0.02146
Loader/Backhoe	Composite	0.02557	0.3647	0.30639	0.00080	0.01923	0.01917
Air Compressors	50	0.03361	0.2142	0.18349	0.00039	0.01563	0.00938
Manlifts	Composite	0.00499	0.1740	0.10274	0.00044	0.00238	0.01066


			2019	Emission	Factors Ib	/hr ⁽¹⁾	
Equipment Type	Нр	VOC	co	NOx	SOx	PM10	CO2e ⁽²⁾
<40 T Cranes	Composite	0.05255	0.3982	0.72435	0.00147	0.03337	0.03536
>40T Cranes	500	0.06159	0.3951	0.91722	0.00213	0.03694	0.05143
Pile/Drill Rig	Composite	0.03316	0.5009	0.51942	0.00243	0.01889	0.05862
Tractors	Composite	0.02277	0.3630	0.27390	0.00080	0.01634	0.01916
Welders	50	0.03313	0.2271	0.18111	0.00039	0.01522	0.00937
Light Plants	50	0.03313	0.2890	0.18111	0.00039	0.01522	0.00937
Genertors	120	0.03398	0.4663	0.37708	0.00075	0.02830	0.01796
Hydro Vacs/Pumps	120	0.03398	0.4736	0.37708	0.00075	0.02830	0.01796
Fork Lifts	Composite	0.01468	0.2166	0.22583	0.00089	0.00988	0.02146
Loader/Backhoe	Composite	0.02277	0.3630	0.27390	0.00080	0.01634	0.01916
Air Compressors	50	0.03313	0.2078	0.18111	0.00039	0.01522	0.00937
Manlifts	Composite	0.00475	0.1715	0.09788	0.00044	0.00194	0.01066

			2020	Emission	Factors Ib	/hr ⁽¹⁾	
Equipment Type	Нр	VOC	CO	NOx	SOx	PM10	CO2e ⁽²⁾
<40 T Cranes	Composite	0.04866	0.3917	0.66105	0.00147	0.03031	0.03535
>40T Cranes	500	0.05656	0.3839	0.82455	0.00213	0.03305	0.05142
Pile/Drill Rig	Composite	0.07483	0.5008	0.93803	0.00277	0.03763	0.0668
Tractors	Composite	0.03343	0.6517	0.33335	0.00120	0.01797	0.029
Welders	50	0.03084	0.2219	0.17530	0.00039	0.01410	0.00937
Light Plants	50	0.03084	0.2833	0.17530	0.00039	0.01410	0.00937
Genertors	120	0.03204	0.4641	0.35638	0.00075	0.02642	0.01798
Hydro Vacs/Pumps	120	0.03204	0.4713	0.35638	0.00075	0.02642	0.01798
Fork Lifts	Composite	0.01383	0.2160	0.21047	0.00089	0.00873	0.02147
Loader/Backhoe	Composite	0.02060	0.3616	0.24635	0.00080	0.01403	0.01915
Air Compressors	50	0.03084	0.2030	0.17530	0.00039	0.01410	0.00937
Manlifts	Composite	0.00463	0.1696	0.09324	0.00044	0.00161	0.01066

 $^{(1) \} Off-Road\ 2011. \ CO\ emissions\ from\ SCAQMD,\ 2006: http://www.aqmd.gov/ceqa/handbook/offroad/offroadEF07_25.xls$

⁽²⁾ Carbon Dioxide Equivalents (CO_{EQ}) are based on default emission factors for diesel. Metric tons per hour.

This page intentionally left blank.

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)												
NOX (lb/day)	2017	1	2	က	4	2	9	7	80	6	10	1	12
<40 T Cranes	606:0	00.00	00.0	00.0	0.00	00.0	0.00	44.55	44.55	44.55	63.65	70.01	70.01
>40T Cranes	1.117	0.00	0.00	00.0	00.0	00.00	00.00	27.92	27.92	27.92	39.09	39.09	39.09
Pile/Drill Rig	0.675	0.00	0.00	00.0	00.0	00.00	00.00	53.99	5.40	5.40	16.20	16.20	16.20
Tractors	0.358	0.00	0.00	00.0	00.0	00.0	00.0	5.37	5.37	5.37	5.37	5.37	5.37
Welders	0.189	0.00	0.00	00.0	00.0	00.0	00.0	64.90	66.41	28.87	64.90	70.94	70.94
Light Plants	0.189	0.00	0.00	00.0	00.0	00.0	00.0	4.53	6.79	6.23	7.92	8.49	6.23
Genertors	0.453	0.00	0.00	00.0	00.0	00.0	00.0	8.16	9.52	9.52	10.88	10.88	10.88
Hydro Vacs/Pumps	0.453	0.00	0.00	00.0	00.0	00.0	00.0	4.53	4.53	2.27	4.53	4.53	4.53
Fork Lifts	0.297	0.00	0.00	00.0	00.0	00.0	00.0	7.13	5.95	5.95	5.95	7.13	7.13
Loader/Backhoe	0.358	0.00	0.00	00.0	00.0	00.0	00.0	3.58	3.58	3.58	3.58	5.37	5.37
Air Compressors	0.189	0.00	0.00	00.0	00.0	00.0	00.0	3.77	4.53	3.77	4.53	4.53	4.53
Manlifts	0.116	0.00	0.00	00.0	00.0	00.0	00.0	13.96	15.82	12.10	14.89	20.48	20.48
Total		00.00	0.00	00.00	0.00	00.0	0.00	242.41	200.39	185.53	241.50	263.03	260.77

							Month						
Equipment (Pieces per Day)	Hours (hr/day)	1	2	က	4	2	9	7	8	6	10	11	12
<40 T Cranes	2	0	0	0	0	0	0	7	7	7	10	11	11
>40T Cranes	9	0	0	0	0	0	0	2	2	2	7	7	7
Pile/Drill Rig	8	0	0	0	0	0	0	10	1	-	3	3	3
Tractors	9	0	0	0	0	0	0	3	3	3	3	3	3
Welders	8	0	0	0	0	0	0	43	44	39	43	47	47
Light Plants	3	0	0	0	0	0	0	8	12	11	14	15	11
Genertors	3	0	0	0	0	0	0	9	7	7	8	8	8
Hydro Vacs/Pumps	9	0	0	0	0	0	0	2	2	-	2	2	2
Fork Lifts	7	0	0	0	0	0	0	9	2	2	2	9	9
Loader/Backhoe	2	0	0	0	0	0	0	2	2	2	2	3	3
Air Compressors	4	0	0	0	0	0	0	5	9	2	9	9	9
Manlifts	8	0	0	0	0	0	0	15	17	13	16	22	22

	Emission Rate						Month						
	(Ib/hr)												
VOC (lb/day)	2017	1	2	3	4	2	9	7	8	6	10	11	12
<40 T Cranes	0.065	00.00	00.0	00.0	00.0	0.00	00.00	3.20	3.20	3.20	4.58	5.03	5.03
>40T Cranes	0.072	00.00	00.0	00.0	00.0	0.00	00.00	1.81	1.81	1.81	2.53	2.53	2.53
Pile/Drill Rig	0.040	00.00	00.0	00.0	00.0	0.00	00.00	3.22	0.32	0.32	26.0	0.97	76.0
Tractors	0:030	00.00	00.0	00.0	00.0	0.00	00.00	0.46	0.46	0.46	0.46	0.46	0.46
Welders	0.036	00.00	00.0	00.0	00.0	0.00	00.00	12.31	12.60	11.17	12.31	13.46	13.46
Light Plants	0.036	00.00	00.0	00.0	00.0	0.00	00.00	0.86	1.29	1.18	1.50	1.61	1.18
Genertors	0.042	00.00	00.0	00.0	00.0	0.00	00.00	0.75	0.88	0.88	1.00	1.00	1.00
Hydro Vacs/Pumps	0.042	00.00	00.0	00.0	00.0	0.00	00.00	0.42	0.42	0.21	0.42	0.42	0.42
Fork Lifts	0.019	00.00	00.0	00.0	00.0	0.00	00.00	0.47	0.39	0.39	0.39	0.47	0.47
Loader/Backhoe	0:030	00.00	00.0	00.0	00.0	0.00	00.00	0.30	0:30	0.30	0.30	0.46	0.46
Air Compressors	0.036	00.00	00.0	00.0	00.0	0.00	00.00	0.72	98.0	0.72	0.86	0.86	98.0
Manlifts	900.0	00.00	00.0	00.0	00.0	0.00	00.00	0.70	08.0	0.61	0.75	1.03	1.03
Total		00.00	0.00	0.00	0.00	0.00	00.00	25.22	23.32	21.24	26.07	28.29	27.86

	Emission Rate						Month						
	(lb/hr)												
CO (Ib/day)	2017	-	2	3	4	2	9	7	8	6	10	11	12
<40 T Cranes	0.415	00.0	0.00	0.00	0.00	0.00	00.00	20.35	20.35	20.35	29.07	31.97	31.97
>40T Cranes	0.424	0.00	0.00	0.00	0.00	00.00	00.00	10.61	10.61	10.01	14.85	14.85	14.85
Pile/Drill Rig	0.501	0.00	0.00	0.00	0.00	00.00	00.00	40.10	4.01	4.01	12.03	12.03	12.03
Tractors	0.367	0.00	0.00	0.00	0.00	00.00	00.00	5.50	5.50	5.50	5.50	2.50	5.50
Welders	0.241	0.00	0.00	0.00	0.00	00.00	00.00	82.85	84.78	75.14	82.85	90.56	99.26
Light Plants	0.305	0.00	0.00	0.00	0.00	00.00	00.00	7.31	10.97	10.06	12.80	13.71	10.06
Genertors	0.473	0.00	0.00	0.00	0.00	00.00	00.00	8.51	9.93	9.93	11.35	11.35	11.35
Hydro Vacs/Pumps	0.480	0.00	0.00	0.00	0.00	00.00	00.00	4.80	4.80	2.40	4.80	4.80	4.80
Fork Lifts	0.452	0.00	0.00	0.00	0.00	00.00	00.00	10.85	9.04	9.04	9.04	10.85	10.85
Loader/Backhoe	0.367	0.00	0.00	0.00	0.00	00.00	00.00	3.67	3.67	3.67	3.67	2.50	5.50
Air Compressors	0.221	0.00	0.00	0.00	0.00	00.00	00.00	4.42	5.30	4.42	5.30	5.30	5.30
Manlifts	0.155	0.00	0.00	0.00	0.00	00.00	00.00	18.57	21.05	16.09	19.81	27.24	27.24
Total		0.00	0.00	0.00	0.00	00.00	00.00	217.54	190.00	171.22	211.07	233.67	230.01

	Emission Rate						Month						
	(lb/hr)												
SOx (lb/day)	2017	-	2	3	4	2	9	7	8	6	10	11	12
<40 T Cranes	0.001	00.00	0.00	0.00	00.00	0.00	0.00	0.07	0.07	0.07	0.10	0.11	0.11
>40T Cranes	0.002	00.00	0.00	0.00	00.00	0.00	0.00	0.05	0.05	0.05	0.07	0.07	0.07
Pile/Drill Rig	0.002	00.00	0.00	00.0	00.00	0.00	0.00	0.20	0.02	0.02	90.0	90.0	90.0
Tractors	0.001	00.00	0.00	00.0	00.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
Welders	000'0	00.00	0.00	00.0	00.00	0.00	0.00	0.13	0.14	0.12	0.13	0.15	0.15
Light Plants	000'0	00.00	0.00	00.0	00.00	0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.01
Genertors	0.001	00.00	0.00	00.0	00.00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02
Hydro Vacs/Pumps	0.001	00.00	0.00	00.0	00.00	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.01
Fork Lifts	0.001	00.00	0.00	00.0	00.00	0.00	0.00	0.02	0.02	0.02	0.02	0.02	0.02
Loader/Backhoe	0.001	00.00	0.00	00.0	00.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
Air Compressors	000'0	00.00	0.00	00.0	00.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
Manlifts	0.000	00.00	0.00	0.00	0.00	0.00	0.00	0.05	90.0	0.05	90.0	0.08	0.08
Total		0.00	00.00	0.00	0.00	0.00	0.00	0.59	0.43	0.39	0.52	0.57	0.56

Appendix B Tesoro Integration and Compliance Project

	Emission Rate (Ib/hr)						Month						
PM10 (lb/day)	2017	-	2	က	4	2	9	7	8	6	10	11	12
<40 T Cranes	0.043	00.0	00.0	00.0	00.00	0.00	00.00	2.10	2.10	2.10	3.00	3.30	3.30
>40T Cranes	0.045	00.0	00.0	00.0	00.0	0.00	00.00	1.13	1.13	1.13	1.59	1.59	1.59
Pile/Drill Rig	0.025	00.0	00.0	00.0	00.0	0.00	00.00	1.99	0.20	0.20	09.0	09:0	09.0
Tractors	0.024	00.0	00.0	00.0	00.0	00.0	00.0	0.35	0.35	0.35	0.35	0.35	0.35
Welders	0.017	00.0	00.0	00.0	00.00	0.00	00.0	5.72	5.85	5.18	5.72	6.25	6.25
Light Plants	0.017	00.0	00.0	00.0	00.0	00.0	00.0	0.40	09.0	0.55	0.70	0.75	0.55
Genertors	0.035	00.0	00.0	00.0	00.0	00.0	00.0	0.64	0.74	0.74	0.85	0.85	0.85
Hydro Vacs/Pumps	0.035	00.0	00.0	00.0	00.0	00.0	00.0	0.35	0.35	0.18	0.35	0.35	0.35
Fork Lifts	0.015	00.0	00.0	00.0	00.0	00.0	00.0	0.36	0.30	0.30	0.30	0.36	0.36
Loader/Backhoe	0.024	00.0	00.0	00.0	00.0	00.0	00.0	0.24	0.24	0.24	0.24	0.35	0.35
Air Compressors	0.017	00.0	00.0	00.0	00.0	00.0	00.0	0.33	0.40	0.33	0.40	0.40	0.40
Manlifts	0.004	00.0	00.0	00.0	00.0	00.0	00.0	0.42	0.48	0.37	0.45	0.62	0.62
Total		00.0	0.00	00.0	00'0	0.00	00.00	14.04	12.76	11.68	14.55	15.78	15.58

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(MT/hr)						Month						
CO2EQ (MT/day)	2017	-	2	3	4	2	9	7	8	6	10	11	12
<40 T Cranes	0.035	00:00	00.0	00.00	00.0	00.00	0.00	1.73	1.73	1.73	2.47	2.72	2.72
>40T Cranes	0.051	0.00	0.00	00.00	00.0	00.00	0.00	1.28	1.28	1.28	1.80	1.80	1.80
Pile/Drill Rig	690'0	0.00	0.00	00.00	00.00	00.00	0.00	4.71	0.47	0.47	1.41	1.41	1.41
Tractors	0.019	0.00	0.00	00.00	00.0	00.00	0.00	0.29	0.29	0.29	0.29	0.29	0.29
Welders	600'0	0.00	0.00	00.00	00.0	00.00	0.00	3.23	3.30	2.93	3.23	3.53	3.53
Light Plants	600'0	0.00	0.00	00.00	00.0	00.00	0.00	0.23	0.34	0.31	0.39	0.42	0.31
Genertors	0.018	0.00	0.00	00.00	00.0	00.00	0.00	0.32	0.38	0.38	0.43	0.43	0.43
Hydro Vacs/Pumps	0.018	0.00	0.00	00.00	00.0	00.00	0.00	0.18	0.18	60.0	0.18	0.18	0.18
Fork Lifts	0.021	0.00	0.00	00.00	00.0	00.00	0.00	0.52	0.43	0.43	0.43	0.52	0.52
Loader/Backhoe	0.019	0.00	0.00	00.00	00.00	00.00	0.00	0.19	0.19	0.19	0.19	0.29	0.29
Air Compressors	600'0	00.00	0.00	00.00	00.00	00.00	0.00	0.19	0.23	0.19	0.23	0.23	0.23
Manlifts	0.011	0.00	0.00	00.00	00.0	00.00	0.00	1.28	1.45	1.11	1.36	1.88	1.88
Total		0.00	0.00	00.00	00.0	00.00	0.00	14.14	10.27	9.39	12.41	13.68	13.57

							Month						
Equipment (Pieces per Day)	Hours (hr/day)	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	7	6	6	6	8	7	7	7	7	3	4	4	2
>40T Cranes	2	9	9	2	9	9	2	2	9	3	4	4	2
Pile/Drill Rig	8	1	1	2	1	1	1	1	1	1	1	-	1
Tractors	2	3	3	3	8	2	2	2	2	1	1	-	1
Welders	8	44	44	37	23	19	16	16	16	4	6	10	7
Light Plants	3	10	10	10	9	4	4	4	8	2	3	3	2
Genertors	3	9	9	9	9	9	9	9	9	1	1	2	1
Hydro Vacs/Pumps	2	1	1	1	2	1	1	1	1	1	1	1	1
Fork Lifts	4	9	9	5	9	4	4	3	4	1	2	3	2
Loader/Backhoe	2	2	2	2	3	2	2	2	2	1	1	1	1
Air Compressors	4	2	2	9	9	9	9	9	9	1	1	2	2
Manlifts	8	17	17	15	11	11	10	10	12	2	6	13	10

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)												
VOC (lb/day)	2018	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	0.058	3.64	3.64	3.64	3.24	2.83	2.83	2.83	2.83	1.21	1.62	1.62	0.81
>40T Cranes	0.065	1.96	1.96	1.63	1.96	1.96	1.63	1.63	1.96	0.98	1.30	1.30	0.65
Pile/Drill Rig	0.035	0.28	0.28	0.56	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
Tractors	0.026	0.38	0.38	0.38	0.38	0.26	0.26	0.26	0.26	0.13	0.13	0.13	0.13
Welders	0.034	11.83	11.83	9.95	6.19	5.11	4.30	4.30	4.30	1.08	2.42	2.69	1.88
Light Plants	0.034	1.01	1.01	1.01	0.50	0.40	0.40	0.40	0.81	0.20	0.30	0.30	0.20
Genertors	0.037	0.55	0.55	99.0	99.0	99.0	99.0	99.0	99.0	0.11	0.11	0.22	0.11
Hydro Vacs/Pumps	0.037	0.18	0.18	0.18	0.37	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
Fork Lifts	0.016	0.32	0.32	0.32	0.32	0.26	0.26	0.19	0.26	90.0	0.13	0.19	0.13
Loader/Backhoe	0.026	0.26	0.26	0.26	0.38	0.26	0.26	0.26	0.26	0.13	0.13	0.13	0.13
Air Compressors	0.034	19.0	19.0	0.81	0.81	0.81	0.81	0.81	0.81	0.13	0.13	0.27	0.27
Manlifts	0.005	89.0	0.68	09.0	0.68	0.44	0.40	0.40	0.48	0.20	0.36	0.52	0.40
Total		21.77	21.77	20.01	15.77	13.45	12.27	12.21	13.08	4.70	7.10	7.84	5.17

	Emission Rate						Month						
	(lb/hr)												
CO (lb/day)	2018	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	0.406	25.57	25.57	25.57	22.73	19.89	19.89	19.89	19.89	8.52	11.37	11.37	5.68
>40T Cranes	0.409	12.26	12.26	10.21	12.26	12.26	10.21	10.21	12.26	6.13	8.17	8.17	4.09
Pile/Drill Rig	0.501	4.01	4.01	8.02	4.01	4.01	4.01	4.01	4.01	4.01	4.01	4.01	4.01
Tractors	0.365	5.47	5.47	5.47	5.47	3.65	3.65	3.65	3.65	1.82	1.82	1.82	1.82
Welders	0.234	82.32	82.32	69.22	43.03	35.55	29.93	29.93	29.93	7.48	16.84	18.71	13.10
Light Plants	0.297	8.90	8.90	8.90	4.45	3.56	3.56	3.56	7.12	1.78	2.67	2.67	1.78
Genertors	0.469	7.04	7.04	8.45	8.45	8.45	8.45	8.45	8.45	1.41	1.41	2.82	1.41
Hydro Vacs/Pumps	0.477	2.38	2.38	2.38	4.77	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38
Fork Lifts	0.217	4.35	4.35	4.35	4.35	3.48	3.48	2.61	3.48	0.87	1.74	2.61	1.74
Loader/Backhoe	0.365	3.65	3.65	3.65	5.47	3.65	3.65	3.65	3.65	1.82	1.82	1.82	1.82
Air Compressors	0.214	4.28	4.28	5.14	5.14	5.14	5.14	5.14	5.14	0.86	0.86	1.71	1.71
Manlifts	0.174	23.67	23.67	20.88	23.67	15.31	13.92	13.92	16.71	96.9	12.53	18.10	13.92
Total		183.89	183.89	172.24	143.79	117.32	108.27	107.40	116.66	44.05	65.62	76.19	53.46

	Emission Rate (Ib/hr)						Month						
NOX (lb/day)	2018	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	0.802	50.51	50.51	50.51	44.90	39.28	39.28	39.28	39.28	16.84	22.45	22.45	11.22
>40T Cranes	0.989	29.68	29.68	24.73	29.68	29.68	24.73	24.73	29.68	14.84	19.79	19.79	68.6
Pile/Drill Rig	0.569	4.55	4.55	9.10	4.55	4.55	4.55	4.55	4.55	4.55	4.55	4.55	4.55
Tractors	0.306	4.60	4.60	4.60	4.60	3.06	3.06	3.06	3.06	1.53	1.53	1.53	1.53
Welders	0.183	64.59	64.59	54.31	33.76	27.89	23.49	23.49	23.49	2.87	13.21	14.68	10.28
Light Plants	0.183	2.50	5.50	5.50	2.75	2.20	2.20	2.20	4.40	1.10	1.65	1.65	1.10
Genertors	0.406	6.10	6.10	7.32	7.32	7.32	7.32	7.32	7.32	1.22	1.22	2.44	1.22
Hydro Vacs/Pumps	0.406	2.03	2.03	2.03	4.06	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03
Fork Lifts	0.247	4.95	4.95	4.95	4.95	3.96	3.96	2.97	3.96	0.99	1.98	2.97	1.98
Loader/Backhoe	0.306	3.06	3.06	3.06	4.60	3.06	3.06	3.06	3.06	1.53	1.53	1.53	1.53
Air Compressors	0.183	3.67	3.67	4.40	4.40	4.40	4.40	4.40	4.40	0.73	0.73	1.47	1.47
Manlifts	0.103	13.97	13.97	12.33	13.97	9.04	8.22	8.22	98'6	4.11	7.40	10.68	8.22
Total		193.21	193.21	182.84	159.53	136.48	126.31	125.32	135.10	55.35	78.07	85.77	55.02

	Emission Rate (Ib/hr)						Month						
SOx (Ib/day)	2018	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	0.001	60.0	60.0	60.0	0.08	0.07	0.07	0.07	0.07	0.03	0.04	0.04	0.02
>40T Cranes	0.002	90.0	90.0	0.05	90.0	90.0	0.05	0.05	90.0	0.03	0.04	0.04	0.02
Pile/Drill Rig	0.002	0.02	0.02	0.04	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Tractors	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	00.0	0.00	00.00
Welders	0.000	0.14	0.14	0.12	0.07	90.0	0.05	0.05	0.05	0.01	0.03	0.03	0.02
Light Plants	0.000	0.01	0.01	0.01	0.01	00.00	00.00	0.00	0.01	0.00	00.0	0.00	00.00
Genertors	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	00.0	0.00	00.00
Hydro Vacs/Pumps	0.001	00.0	0.00	00.00	0.01	00.0	00.0	0.00	00.00	0.00	00.0	0.00	00.00
Fork Lifts	0.001	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01
Loader/Backhoe	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	00.0	0.00	00.00
Air Compressors	0.000	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	00.0	0.00	00.00
Manlifts	0.000	90.0	90.0	0.05	90.0	0.04	0.04	0.04	0.04	0.02	0.03	0.05	0.04
Total		0.45	0.45	0.43	0.38	0.31	0.29	0.29	0.31	0.13	0.19	0.21	0.15

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Manada						
	(lb/hr)						Month						
PM10 (lb/day)	2018	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	0.037	2.36	2.36	2.36	2.09	1.83	1.83	1.83	1.83	0.79	1.05	1.05	0.52
>40T Cranes	0.040	1.20	1.20	1.00	1.20	1.20	1.00	1.00	1.20	09.0	08.0	0.80	0.40
Pile/Drill Rig	0.021	0.16	0.16	0.33	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16
Tractors	0.019	0.29	0.29	0.29	0.29	0.19	0.19	0.19	0.19	0.10	0.10	0.10	0.10
Welders	0.016	5.50	5.50	4.63	2.88	2.38	2.00	2.00	2.00	0.50	1.13	1.25	0.88
Light Plants	0.016	0.47	0.47	0.47	0.23	0.19	0.19	0.19	0.38	0.09	0.14	0.14	0.09
Genertors	0.031	0.47	0.47	0.56	0.56	0.56	0.56	0.56	0.56	0.09	0.09	0.19	0.09
Hydro Vacs/Pumps	0.031	0.16	0.16	0.16	0.31	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16
Fork Lifts	0.012	0.23	0.23	0.23	0.23	0.18	0.18	0.14	0.18	0.05	60.0	0.14	60.0
Loader/Backhoe	0.019	0.19	0.19	0.19	0.29	0.19	0.19	0.19	0.19	0.10	0.10	0.10	0.10
Air Compressors	0.016	0.31	0.31	0.38	0.38	0.38	0.38	0.38	0.38	90.0	90.0	0.13	0.13
Manlifts	0.002	0.32	0.32	0.29	0.32	0.21	0.19	0.19	0.23	0.10	0.17	0.25	0.19
Total		11.66	11.66	10.87	8.94	7.63	7.03	66.9	7.46	2.79	4.04	4.45	2.91

Appendix B Tesoro Integration and Compliance Project

													Ī
	Emission Rate (MT/hr)						Month						
CO2EQ (MT/day)	2018	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	0.035	2.23	2.23	2.23	1.98	1.73	1.73	1.73	1.73	0.74	0.99	0.99	0.49
>40T Cranes	0.051	1.54	1.54	1.29	1.54	1.54	1.29	1.29	1.54	0.77	1.03	1.03	0.51
Pile/Drill Rig	0.059	0.47	0.47	0.94	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47
Tractors	0.019	0.29	0.29	0.29	0.29	0.19	0.19	0.19	0.19	0.10	0.10	0.10	0.10
Welders	600.0	3.30	3.30	2.78	1.73	1.43	1.20	1.20	1.20	0.30	0.68	0.75	0.53
Light Plants	600:0	0.28	0.28	0.28	0.14	0.11	0.11	0.11	0.23	90.0	0.08	0.08	90.0
Genertors	0.018	0.27	0.27	0.32	0.32	0.32	0.32	0.32	0.32	0.05	0.05	0.11	0.05
Hydro Vacs/Pumps	0.018	60.0	60.0	60.0	0.18	60.0	60.0	60.0	0.09	60.0	60.0	60.0	60.0
Fork Lifts	0.021	0.43	0.43	0.43	0.43	0.34	0.34	0.26	0.34	60.0	0.17	0.26	0.17
Loader/Backhoe	0.019	0.19	0.19	0.19	0.29	0.19	0.19	0.19	0.19	0.10	0.10	0.10	0.10
Air Compressors	600:0	0.19	0.19	0.23	0.23	0.23	0.23	0.23	0.23	0.04	0.04	0.08	0.08
Manlifts	0.011	1.45	1.45	1.28	1.45	0.94	0.85	0.85	1.02	0.43	0.77	1.11	0.85
Total		10.72	10.72	10.33	9.04	7.58	7.02	6.93	7.56	3.22	4.56	5.15	3.49

							Month						
Equipment (Pieces per Day)	Hours (hr/day)	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	7	3	4	4	3	3	2	2	2	1	1	-	_
>40T Cranes	2	3	က	3	2	2	-	1	-	0	1	0	0
Pile/Drill Rig	8	1	7	1	0	0	0	0	0	0	0	0	0
Tractors	2	2	4	4	3	3	3	3	3	2	2	2	2
Welders	8	12	16	16	11	11	9	9	9	4	4	4	4
Light Plants	3	4	4	4	2	2	1	2	2	4	4	4	4
Genertors	3	1	1	1	0	0	0	0	0	0	0	0	0
Hydro Vacs/Pumps	2	1	1	1	0	0	0	0	0	0	0	0	0
Fork Lifts	4	4	4	4	3	3	2	2	2	1	1	-	1
Loader/Backhoe	5	1	1	1	1	1	1	1	1	1	1	1	1
Air Compressors	4	1	2	2	2	5	2	2	5	4	4	4	4
Manlifts	8	15	16	16	8	8	4	4	4	1	1	1	1

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
Worden	(lb/hr)	36	90	7.0	96	90	30	34	33	33	37	35	36
VOC (ID/day)	6107	67	07	17	07	63	90	-	70	S	ţ	cc	90
<40 T Cranes	0.053	1.10	1.47	1.47	1.10	1.10	0.74	0.74	0.74	0.37	0.37	0.37	0.37
>40T Cranes	0.062	0.92	0.92	0.92	0.62	0.62	0.31	0.31	0.31	0.00	0.31	00.00	0.00
Pile/Drill Rig	0.033	0.27	1.86	0.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Tractors	0.023	0.23	0.46	0.46	0.34	0.34	0.34	0.34	0.34	0.23	0.23	0.23	0.23
Welders	0.033	3.18	4.24	4.24	2.92	2.92	1.59	1.59	1.59	1.06	1.06	1.06	1.06
Light Plants	0.033	0.40	0.40	0.40	0.20	0.20	0.10	0.50	0.50	0.40	0.40	0.40	0.40
Genertors	0.034	0.10	0.10	0.10	0.00	0.00	00.0	0.00	0.00	0.00	0.00	00.00	0.00
Hydro Vacs/Pumps	0.034	0.17	0.17	0.17	0.00	0.00	00.0	0.00	0.00	0.00	0.00	00.00	0.00
Fork Lifts	0.015	0.23	0.23	0.23	0.18	0.18	0.12	0.12	0.12	90.0	90.0	90.0	90.0
Loader/Backhoe	0.023	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
Air Compressors	0.033	0.13	99.0	99.0	99.0	99.0	99.0	99.0	0.66	0.53	0.53	0.53	0.53
Manlifts	900.0	0.57	0.61	0.61	0:30	0:30	0.15	0.15	0.15	0.04	0.04	0.04	0.04
Total		7.42	11.24	9.62	6.43	6.43	4.12	4.52	4.52	2.79	3.10	2.79	2.79

	Emission Rate (Ib/hr)						Month						
CO (Ib/day)	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.398	8.36	11.15	11.15	8.36	8.36	5.57	5.57	2.57	2.79	2.79	2.79	2.79
>40T Cranes	0.395	5.93	5.93	5.93	3.95	3.95	1.98	1.98	1.98	0.00	1.98	0.00	0.00
Pile/Drill Rig	0.501	4.01	28.05	4.01	00.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00
Tractors	0.363	3.63	7.26	7.26	5.45	5.45	5.45	5.45	5.45	3.63	3.63	3.63	3.63
Welders	0.227	21.81	29.07	29.07	19.99	19.99	10.90	10.90	10.90	7.27	7.27	7.27	7.27
Light Plants	0.289	3.47	3.47	3.47	1.73	1.73	0.87	4.34	4.34	3.47	3.47	3.47	3.47
Genertors	0.466	1.40	1.40	1.40	00.00	00.00	00.0	0.00	00.00	0.00	0.00	0.00	0.00
Hydro Vacs/Pumps	0.474	2.37	2.37	2.37	00.00	00.00	00.0	0.00	00.00	0.00	0.00	0.00	0.00
Fork Lifts	0.217	3.47	3.47	3.47	2.60	2.60	1.73	1.73	1.73	0.87	0.87	0.87	0.87
Loader/Backhoe	0.363	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82
Air Compressors	0.208	0.83	4.16	4.16	4.16	4.16	4.16	4.16	4.16	3.33	3.33	3.33	3.33
Manlifts	0.172	20.58	21.95	21.95	10.98	10.98	5.49	5.49	5.49	1.37	1.37	1.37	1.37
Total		27.66	120.09	96.04	59.03	59.03	37.96	41.43	41.43	24.53	26.51	24.53	24.53

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
() ()	(lb/hr)			1	0	6		3	0			10	3
NOX (Ib/day)	2019	25	56	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.724	15.21	20.28	20.28	15.21	15.21	10.14	10.14	10.14	2.07	20.9	20.9	20.9
>40T Cranes	0.917	13.76	13.76	13.76	9.17	9.17	4.59	4.59	4.59	0.00	4.59	00.00	00.00
Pile/Drill Rig	0.519	4.16	29.09	4.16	0.00	0.00	0.00	0.00	00.00	0.00	00.0	00.00	00.00
Tractors	0.274	2.74	5.48	5.48	4.11	4.11	4.11	4.11	4.11	2.74	2.74	2.74	2.74
Welders	0.181	17.39	23.18	23.18	15.94	15.94	8.69	8.69	8.69	5.80	2.80	2.80	5.80
Light Plants	0.181	2.17	2.17	2.17	1.09	1.09	0.54	2.72	2.72	2.17	2.17	2.17	2.17
Genertors	225.0	1.13	1.13	1.13	0.00	0.00	00.0	00.00	00.00	0.00	00.0	00.00	00.00
Hydro Vacs/Pumps	225.0	1.89	1.89	1.89	0.00	0.00	00.0	00.00	00.00	0.00	00.0	00.00	00.00
Fork Lifts	0.226	3.61	3.61	3.61	2.71	2.71	1.81	1.81	1.81	06.0	06.0	06.0	06.0
Loader/Backhoe	0.274	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37
Air Compressors	0.181	0.72	3.62	3.62	3.62	3.62	3.62	3.62	3.62	2.90	2.90	2.90	2.90
Manlifts	860'0	11.75	12.53	12.53	6.26	6.26	3.13	3.13	3.13	0.78	0.78	0.78	0.78
Total		75.89	118.11	93.18	59.48	59.48	38.00	40.18	40.18	21.73	26.32	21.73	21.73

	Emission Rate (Ib/hr)						Month						
SOx (lb/day)	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.001	0.03	0.04	0.04	0.03	0.03	0.02	0.02	0.02	0.01	0.01	0.01	0.01
>40T Cranes	0.002	0.03	0.03	0.03	0.02	0.02	0.01	0.01	0.01	0.00	0.01	0.00	00.0
Pile/Drill Rig	0.002	0.02	0.14	0.02	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00
Tractors	0.001	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Welders	0.000	0.04	0.05	0.05	0.03	0.03	0.02	0.02	0.02	0.01	0.01	0.01	0.01
Light Plants	0.000	0.00	0.00	00.00	00.00	00.00	00.00	0.01	0.01	00.0	00.00	0.00	00.00
Genertors	0.001	0.00	0.00	00.00	00.00	00.0	00.00	00.00	00.00	00.0	00.00	0.00	00.00
Hydro Vacs/Pumps	0.001	0.00	0.00	00.00	00.00	00.0	00.00	00.00	00.00	00.0	00.00	0.00	00.00
Fork Lifts	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	00.0	00.00	0.00	00.00
Loader/Backhoe	0.001	0.00	0.00	00.00	00.00	00.0	00.00	00.0	00.00	00.0	00.00	0.00	00.00
Air Compressors	0.000	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Manlifts	0.000	0.05	90.0	90.0	0.03	0.03	0.01	0.01	0.01	00.0	00.00	0.00	00.00
Total		0.21	0.37	0.25	0.15	0.15	0.10	0.10	0.10	0.05	90.0	0.05	0.05

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(Ib/hr)												
PM10 (lb/day)	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.033	0.70	0.93	0.93	0.70	0.70	0.47	0.47	0.47	0.23	0.23	0.23	0.23
>40T Cranes	0.037	0.55	0.55	0.55	0.37	0.37	0.18	0.18	0.18	0.00	0.18	0.00	00.0
Pile/Drill Rig	0.019	0.15	1.06	0.15	00.0	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tractors	0.016	0.16	0.33	0.33	0.25	0.25	0.25	0.25	0.25	0.16	0.16	0.16	0.16
Welders	0.015	1.46	1.95	1.95	1.34	1.34	0.73	0.73	0.73	0.49	0.49	0.49	0.49
Light Plants	0.015	0.18	0.18	0.18	60.0	0.09	0.05	0.23	0.23	0.18	0.18	0.18	0.18
Genertors	0.028	0.08	0.08	0.08	00.0	00.00	0.00	0.00	00.00	0.00	00.0	0.00	00.00
Hydro Vacs/Pumps	0.028	0.14	0.14	0.14	00.0	00.00	0.00	0.00	00.00	0.00	00.0	0.00	00.00
Fork Lifts	0.010	0.16	0.16	0.16	0.12	0.12	0.08	0.08	80.0	0.04	0.04	0.04	0.04
Loader/Backhoe	0.016	0.08	0.08	0.08	0.08	0.08	0.08	0.08	80.0	0.08	0.08	0.08	0.08
Air Compressors	0.015	90.0	0:30	0:30	0:30	0:30	0:30	0:30	0:30	0.24	0.24	0.24	0.24
Manlifts	0.002	0.23	0.25	0.25	0.12	0.12	90.0	90.0	90.0	0.02	0.02	0.02	0.02
Total		3.97	6.02	5.12	3.38	3.38	2.20	2.38	2.38	1.45	1.63	1.45	1.45

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(MT/hr)												
CO2EQ (MT/day)	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.035	0.74	66.0	66.0	0.74	0.74	0.50	0.50	0.50	0.25	0.25	0.25	0.25
>40T Cranes	0.051	0.77	0.77	0.77	0.51	0.51	0.26	0.26	0.26	0.00	0.26	0.00	0.00
Pile/Drill Rig	0.059	0.47	3.28	0.47	00.0	0.00	00.00	0.00	00.00	0.00	0.00	0.00	00.00
Tractors	0.019	0.19	0.38	0.38	0.29	0.29	0.29	0.29	0.29	0.19	0.19	0.19	0.19
Welders	600.0	06.0	1.20	1.20	0.82	0.82	0.45	0.45	0.45	0.30	0.30	0.30	0:30
Light Plants	600.0	0.11	0.11	0.11	90.0	90.0	0.03	0.14	0.14	0.11	0.11	0.11	0.11
Genertors	0.018	0.05	0.05	0.05	00.0	00.00	00.0	0.00	00.00	0.00	0.00	0.00	00.00
Hydro Vacs/Pumps	0.018	60.0	60.0	60.0	00.0	00.00	00.0	0.00	00.00	0.00	0.00	0.00	00.00
Fork Lifts	0.021	0.34	0.34	0.34	0.26	0.26	0.17	0.17	0.17	60.0	0.09	0.09	60.0
Loader/Backhoe	0.019	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Air Compressors	600.0	0.04	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.15	0.15	0.15	0.15
Manlifts	0.011	1.28	1.36	1.36	0.68	0.68	0.34	0.34	0.34	60.0	0.09	0.09	60.0
Total		60'9	8.87	90.9	3.65	3.65	2.31	2.43	2.43	1.27	1.53	1.27	1.27

Appendix B Tesoro Integration and Compliance Project

							Month						
							MOLL						
Equipment (Pieces per Day)	Hours (hr/day)	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	2	1	1	1	Į.	7	1	1	1	τ-	1	1	-
>40T Cranes	5	0	0	0	0	0	0	0	0	0	0	0	0
Pile/Drill Rig	8	0	0	0	0	0	0	0	0	0	0	0	0
Tractors	5	2	2	2	7	2	7	2	2	2	2	2	2
Welders	8	4	4	4	4	4	4	4	4	4	4	4	4
Light Plants	3	4	4	4	4	4	4	4	4	4	4	4	4
Genertors	3	0	0	0	0	0	0	0	0	0	0	0	0
Hydro Vacs/Pumps	2	0	0	0	0	0	0	0	0	0	0	0	0
Fork Lifts	4	1	1	1	Į.	7	1	1	1	τ-	1	1	-
Loader/Backhoe	5	1	1	1	1	1	1	1	1	1	1	1	1
Air Compressors	4	4	4	4	4	4	4	4	4	4	4	4	4
Manlifts	8	1	1	1	l	1	1	1	1	_	1	1	-

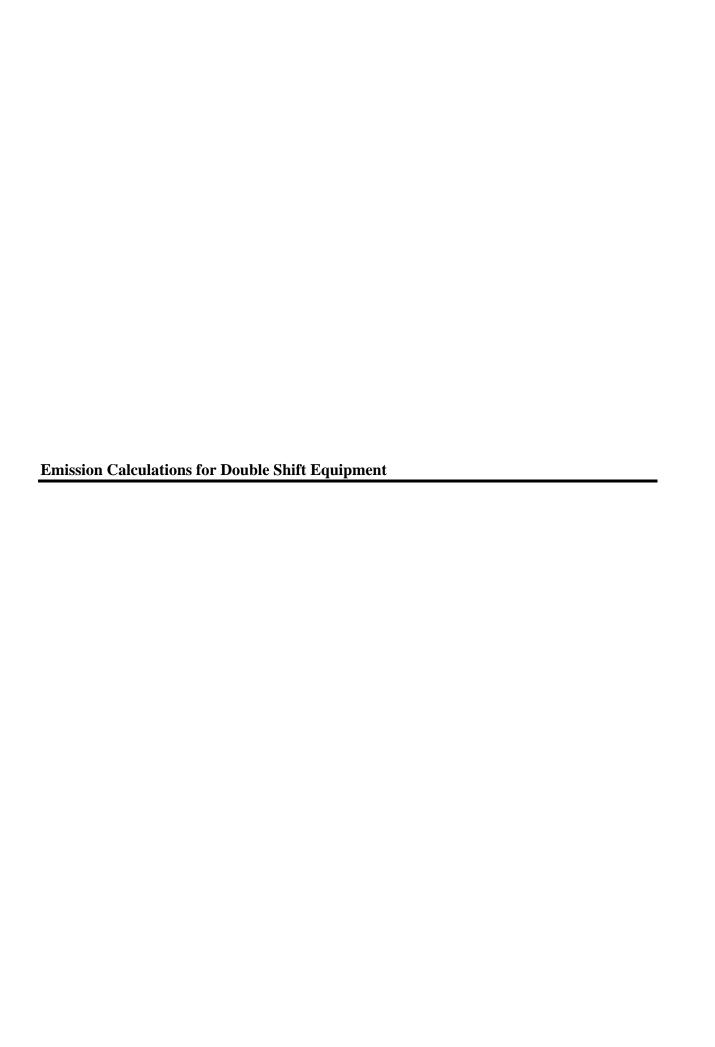
Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)												
VOC (lb/day)	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.049	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
>40T Cranes	0.057	0.00	00.00	00.0	0.00	0.00	00.00	00.00	0.00	0.00	00.0	00.00	0.00
Pile/Drill Rig	0.075	0.00	00.00	00.0	0.00	0.00	00.00	00.00	0.00	0.00	00.0	00.00	0.00
Tractors	0.033	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Welders	0.031	66.0	66.0	66.0	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Light Plants	0.031	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37
Genertors	0.032	0.00	00.00	00.0	00.0	0.00	00.0	00.00	0.00	0.00	00.0	00.00	0.00
Hydro Vacs/Pumps	0.032	0.00	00.00	00.0	00.0	0.00	00.0	00.00	0.00	0.00	00.0	00.00	0.00
Fork Lifts	0.014	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
Loader/Backhoe	0.021	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Air Compressors	0.031	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49
Manlifts	0.005	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Total		2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72

	Emission Rate						Month						
	(lb/hr)												
CO (lb/day)	2020	37	38	39	40	11	42	43	44	45	46	47	48
<40 T Cranes	0.392	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74
>40T Cranes	0.384	00.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00	0.00	00.00	0.00	00.0
Pile/Drill Rig	0.501	00.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00	0.00	00.00	0.00	00.0
Tractors	0.652	6.52	6.52	6.52	6.52	6.52	6.52	6.52	6.52	6.52	6.52	6.52	6.52
Welders	0.222	7.10	7.10	7.10	7.10	7.10	7.10	7.10	7.10	7.10	7.10	7.10	7.10
Light Plants	0.283	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40
Genertors	0.464	00.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00	0.00	00.00	0.00	00.0
Hydro Vacs/Pumps	0.471	00.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00	0.00	00.00	0.00	00.0
Fork Lifts	0.216	98.0	98.0	98.0	98.0	0.86	98.0	98.0	0.86	98.0	98.0	98.0	98.0
Loader/Backhoe	0.362	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81
Air Compressors	0.203	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25
Manlifts	0.170	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
Total		27.04	27.04	27.04	27.04	27.04	27.04	27.04	27.04	27.04	27.04	27.04	27.04

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						1						
	(lb/hr)						Month						
NOX (lb/day)	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.661	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.63
>40T Cranes	0.825	00.0	00.0	00.0	00.0	0.00	00.0	0.00	00.00	00.0	00.00	00.0	0.00
Pile/Drill Rig	0.938	00.0	0.00	00.0	00.00	0.00	00.0	0.00	0.00	0.00	00.00	0.00	0.00
Tractors	0.333	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33
Welders	0.175	5.61	5.61	5.61	5.61	5.61	5.61	5.61	5.61	5.61	5.61	5.61	5.61
Light Plants	0.175	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10
Genertors	0.356	00.0	00.0	00.0	00.0	00.0	00.0	0.00	00.00	00.0	00.0	0.00	0.00
Hydro Vacs/Pumps	0.356	00.0	00.0	00.0	00.0	00.0	00.0	0.00	00.00	00.0	00.0	0.00	0.00
Fork Lifts	0.210	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Loader/Backhoe	0.246	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23
Air Compressors	0.175	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80
Manlifts	0.093	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Total		21.30	21.30	21.30	21.30	21.30	21.30	21.30	21.30	21.30	21.30	21.30	21.30


	Emission Rate						Month						
	(lb/hr)												
SOx (lb/day)	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
>40T Cranes	0.002	00.0	00.0	00.0	00.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00
Pile/Drill Rig	0.003	00.0	00.0	00.0	00.00	00.00	00.00	0.00	00.00	0.00	00.0	0.00	0.00
Tractors	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Welders	0.000	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Light Plants	0.000	00.0	00.0	00.0	00.00	00.00	00.00	0.00	00.00	0.00	00.0	0.00	0.00
Genertors	0.001	00.0	00.0	00.0	00.00	00.0	00.0	0.00	00.00	0.00	00.0	0.00	0.00
Hydro Vacs/Pumps	0.001	00.0	00.0	00.0	00.00	00.0	00.0	0.00	00.00	0.00	00.0	0.00	0.00
Fork Lifts	0.001	00.0	00.0	00.0	00.00	00.0	00.0	00.0	00.0	0.00	00.0	0.00	0.00
Loader/Backhoe	0.001	00.0	00.0	00.0	00.00	00.0	00.0	00.0	00.00	0.00	00.0	0.00	0.00
Air Compressors	0.000	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Manlifts	0.000	0.00	00.00	00.00	00.00	0.00	0.00	0.00	00'0	0.00	00.0	0.00	0.00
Total		90.0	90.0	90.0	90.0	90.0	90.0	90.0	0.00	90.0	0.00	0.06	0.06

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
PM10 (Ib/day)	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0:030	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
>40T Cranes	0.033	00.0	00.00	00.0	0.00	00.00	00.0	0.00	00.00	00.0	00.0	0.00	00.0
Pile/Drill Rig	0.038	00.0	00.00	00.0	0.00	00.00	00.0	0.00	00.00	00.0	00.0	0.00	00.0
Tractors	0.018	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
Welders	0.014	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Light Plants	0.014	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Genertors	0.026	00.0	00.00	00.0	0.00	00.00	00.0	00.0	00.00	0.00	00.00	0.00	00.0
Hydro Vacs/Pumps	0.026	00.0	00.00	00.0	0.00	00.00	00.0	0.00	00.00	00.0	00.0	0.00	00.0
Fork Lifts	600.0	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Loader/Backhoe	0.014	20.0	0.07	0.07	0.07	0.07	20.0	0.07	0.07	0.07	0.07	0.07	20.0
Air Compressors	0.014	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23
Manlifts	0.002	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total		1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Mandh						
	(MT/hr)						Month						
CO2EQ (MT/day)	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.035	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
>40T Cranes	0.051	00.0	0.00	00.00	00.0	0.00	00.00	00.00	0.00	0.00	00.00	00.00	00.0
Pile/Drill Rig	0.067	00.0	0.00	00.00	00.0	0.00	00.00	00.00	0.00	0.00	00.00	00.00	00.0
Tractors	0.029	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29
Welders	600.0	0:30	0:30	0:30	0.30	0:30	0.30	0.30	0.30	0.30	0:30	0.30	0.30
Light Plants	600.0	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
Genertors	0.018	00.0	0.00	00.00	00.0	0.00	00.00	00.0	0.00	0.00	00.00	00.00	00.0
Hydro Vacs/Pumps	0.018	00.0	0.00	00.00	00.0	0.00	00.00	00.0	0.00	0.00	00.00	00.00	00.0
Fork Lifts	0.021	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	0.09
Loader/Backhoe	0.019	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Air Compressors	0.009	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Manlifts	0.011	0.09	0.09	0.09	0.09	60.0	60.0	60.0	0.09	0.09	60.0	0.09	0.09
Total		1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37

Appendix B Tesoro Integration and Compliance Project

							Month						
Equipment (Pieces per Day)	Hours (hr/day)	-	2	3	4	2	9	7	8	6	10	11	12
<40 T Cranes	7	0	0	0	0	0	0	0	0	0	0	0	0
>40T Cranes	2	0	0	0	0	0	0	0	0	0	0	0	0
Pile/Drill Rig	8	0	0	0	0	0	0	0	0	0	0	0	0
Tractors	2	0	0	0	0	0	0	0	0	0	0	0	0
Welders	8	0	0	0	0	0	0	0	0	0	0	0	0
Light Plants	12	0	0	0	0	0	0	0	0	0	0	0	0
Genertors	12	0	0	0	0	0	0	0	0	0	0	0	0
Hydro Vacs/Pumps	2	0	0	0	0	0	0	0	0	0	0	0	0
Fork Lifts	4	0	0	0	0	0	0	0	0	0	0	0	0
Loader/Backhoe	2	0	0	0	0	0	0	0	0	0	0	0	0
Air Compressors	4	0	0	0	0	0	0	0	0	0	0	0	0
Manlifts	8	0	0	0	0	0	0	0	0	0	0	0	0

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(Ib/hr)						MOLE						
VOC (lb/day)	2017	-	2	က	4	2	9	7	8	6	10	1	12
<40 T Cranes	0.065	0.00	0.00	0.00	0.00	0.00	0.00	00.00	00.00	0.00	00.0	0.00	0.00
>40T Cranes	0.072	00.00	00.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	00.0	0.00	0.00
Pile/Drill Rig	0.040	00.00	00.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	00.0	0.00	0.00
Tractors	0.030	0.00	00.00	0.00	00.0	0.00	0.00	00.00	0.00	0.00	00.0	0.00	0.00
Welders	0.036	0.00	00.00	0.00	00.0	0.00	0.00	00.00	0.00	0.00	00.0	0.00	0.00
Light Plants	0.036	0.00	00.00	0.00	00.0	0.00	0.00	00.00	0.00	0.00	00.0	0.00	0.00
Genertors	0.042	0.00	00.00	0.00	00.0	0.00	0.00	00.00	00.00	0.00	00.0	0.00	0.00
Hydro Vacs/Pumps	0.042	0.00	00.00	0.00	00.0	0.00	0.00	00.00	00.00	0.00	00.0	0.00	0.00
Fork Lifts	0.019	0.00	00.00	0.00	00.0	0.00	0.00	00.00	00.0	0.00	00.0	0.00	0.00
Loader/Backhoe	0.030	0.00	00.00	0.00	00.0	0.00	0.00	00.00	00.0	0.00	00.0	0.00	0.00
Air Compressors	0.036	0.00	00.00	0.00	00.0	0.00	0.00	00.00	00.0	0.00	00.0	0.00	0.00
Manlifts	900.0	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00
Total		00.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0

Appendix B Tesoro Integration and Compliance Project

	Emission Kate (lb/hr)						Month						
CO (lb/day)	2017	-	2	3	4	2	9	7	8	6	10	11	12
<40 T Cranes	0.415	00.00	00.0	00.00	00.00	00.00	0.00	0.00	00.00	0.00	00.0	00.00	0.00
>40T Cranes	0.424	0.00	00.00	00.00	00.00	0.00	0.00	00.00	0.00	0.00	00.0	00.0	0.00
Pile/Drill Rig	0.501	00.00	00.0	00.00	00.00	00.00	0.00	0.00	00.00	0.00	00.0	00.00	0.00
Tractors	0.367	0.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Welders	0.241	0.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Light Plants	0.305	0.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Genertors	0.473	0.00	00.00	00.00	00.00	00.00	0.00	00.0	00.00	0.00	0.00	00.00	0.00
Hydro Vacs/Pumps	0.480	0.00	00.00	00.00	00.00	00.00	0.00	00.0	00.00	0.00	0.00	00.00	0.00
Fork Lifts	0.452	0.00	00.00	00.00	00.00	00.00	0.00	00.0	00.00	0.00	0.00	00.00	0.00
Loader/Backhoe	0.367	0.00	00.00	00.00	00.00	00.00	0.00	00.0	00.00	0.00	0.00	00.00	0.00
Air Compressors	0.221	0.00	00.00	00.00	00.00	00.00	0.00	00.00	00.0	0.00	0.00	00.00	0.00
Manlifts	0.155	0.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Total		0.00	00.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00

Appendix B
Tesoro Integration and Compliance Project

	Emission Rate						Month						
NOX (lb/day)	2017	1	2	3	4	2	9	7	80	6	10	11	12
<40 T Cranes	606.0	00.0	0.00	00.00	0.00	00.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00
>40T Cranes	1.117	00.0	0.00	00.00	00.0	00.00	00.00	00.0	0.00	0.00	00.00	0.00	00.0
Pile/Drill Rig	0.675	00.0	0.00	00.00	00.0	00.00	00.00	00.00	00.00	0.00	0.00	0.00	0.00
Tractors	0.358	00.0	0.00	00.00	00.0	00.00	00.0	00.00	00.00	0.00	0.00	0.00	0.00
Welders	0.189	00.0	0.00	00.00	00.0	00.00	00.0	00.00	00.00	0.00	0.00	0.00	0.00
Light Plants	0.189	00.0	00.0	00.0	00.0	0.00	00.0	00.00	0.00	0.00	00.00	0.00	00.00
Genertors	0.453	00.0	00.0	00.0	00.0	0.00	00.0	00.0	00.00	0.00	00.00	0.00	00.00
Hydro Vacs/Pumps	0.453	00.0	00.0	00.0	00.0	0.00	00.0	00.0	00.00	0.00	00.00	0.00	00.00
Fork Lifts	0.297	00.0	00.0	00.0	00.0	0.00	00.0	00.0	00.00	0.00	00.00	0.00	00.00
Loader/Backhoe	0.358	00.0	00.0	00.0	00.0	0.00	00.0	00.0	00.00	0.00	00.00	0.00	00.00
Air Compressors	0.189	00.0	00.0	00.0	00.0	0.00	00.0	00.0	00.00	0.00	00.00	0.00	00.00
Manlifts	0.116	00.0	00.0	00.0	00.0	0.00	00.0	00.0	00.00	0.00	00.00	0.00	00.00
Total		00.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00

	Emission Rate (Ib/hr)						Month						
SOx (lb/day)	2017	-	2	3	4	2	9	7	8	6	10	11	12
<40 T Cranes	0.001	00.0	0.00	00.00	00.00	00.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00
>40T Cranes	0.002	0.00	00.0	00.00	00.00	0.00	0.00	00.00	0.00	0.00	00.00	00.0	0.00
Pile/Drill Rig	0.002	00.0	0.00	00.00	00.00	00.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00
Tractors	0.001	0.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	0.00	00.0	00.00	0.00
Welders	0.000	0.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	0.00	00.0	00.00	0.00
Light Plants	0.000	0.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	0.00	00.0	00.00	0.00
Genertors	0.001	0.00	00.00	00.00	00.00	00.00	0.00	00.0	00.00	0.00	00.0	00.00	0.00
Hydro Vacs/Pumps	0.001	0.00	00.00	00.00	00.00	00.00	0.00	00.0	00.00	0.00	00.0	00.00	0.00
Fork Lifts	0.001	0.00	00.00	00.00	00.00	00.00	0.00	00.0	00.00	0.00	00.0	00.00	0.00
Loader/Backhoe	0.001	0.00	00.00	00.00	00.00	00.00	0.00	00.0	00.00	0.00	00.0	00.00	0.00
Air Compressors	0.000	0.00	00.00	00.00	00.00	00.00	0.00	00.0	00.00	0.00	00.0	00.00	0.00
Manlifts	0.000	00.00	0.00	00.00	00.00	00.00	0.00	00.00	00.0	0.00	00.00	0.00	0.00
Total		0.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)												
PM10 (lb/day)	2017	-	2	က	4	2	9	7	8	6	10	11	12
<40 T Cranes	0.043	00.0	00.00	00.0	0.00	00.00	00:00	0.00	00.00	0.00	00.0	0.00	0.00
>40T Cranes	0.045	00.0	00.00	00.0	0.00	00.00	00:00	0.00	00.00	0.00	00.0	0.00	0.00
Pile/Drill Rig	0.025	00.0	00.00	0.00	00.0	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.0
Tractors	0.024	00.0	00.00	00.0	0.00	00.0	00.0	0.00	00.00	0.00	00.00	0.00	0.00
Welders	0.017	00.0	00.00	0.00	00.0	0.00	00.0	0.00	0.00	0.00	0.00	0.00	00.0
Light Plants	0.017	00.0	00.00	00.0	0.00	00.0	00.0	0.00	00.00	0.00	00.00	0.00	0.00
Genertors	0.035	00.0	00.00	00.0	0.00	00.0	00.0	0.00	00.00	0.00	00.00	0.00	0.00
Hydro Vacs/Pumps	0.035	00.0	00.00	00.0	0.00	00.0	00.0	0.00	00.00	0.00	00.00	0.00	0.00
Fork Lifts	0.015	00.0	00.00	00.0	0.00	00.0	00.0	0.00	00.00	0.00	00.00	0.00	0.00
Loader/Backhoe	0.024	00.0	00.00	00.0	0.00	00.0	00.0	0.00	00.00	0.00	00.00	0.00	0.00
Air Compressors	0.017	00.0	00.00	00.0	0.00	00.0	00.0	0.00	00.00	0.00	00.00	0.00	0.00
Manlifts	0.004	00.0	00.00	00.0	0.00	00.0	00.0	0.00	00.00	0.00	00.00	0.00	0.00
Total		00.0	0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(MT/hr)												
CO2EQ (MT/day)	2017	-	2	က	4	2	9	7	8	6	10	11	12
<40 T Cranes	0.035	00.0	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	00.0	0.00
>40T Cranes	0.051	00.0	0.00	0.00	00.00	0.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00
Pile/Drill Rig	0.059	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Tractors	0.019	0.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Welders	600:0	0.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Light Plants	600:0	0.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Genertors	0.018	0.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Hydro Vacs/Pumps	0.018	0.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Fork Lifts	0.021	0.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Loader/Backhoe	0.019	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Air Compressors	600:0	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00
Manlifts	0.011	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	00.0	0.00	0.00	0.00	0.00	00.00	00.00	0.00	00.00	0.00	0.00

							Month						
Equipment (Pieces per Day)	Hours (hr/day)	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	7	0	0	0	0	0	0	0	0	0	-	-	0
>40T Cranes	2	0	0	0	0	0	0	0	0	0	1	1	0
Pile/Drill Rig	8	0	0	0	0	0	0	0	0	0	1	1	0
Tractors	2	0	0	0	0	0	0	0	0	0	1	1	0
Welders	8	0	0	0	0	0	0	0	0	0	2	1	0
Light Plants	12	0	0	0	0	0	0	0	0	0	2	1	0
Genertors	12	0	0	0	0	0	0	0	0	0	0	0	0
Hydro Vacs/Pumps	2	0	0	0	0	0	0	0	0	0	1	1	0
Fork Lifts	4	0	0	0	0	0	0	0	0	0	1	1	0
Loader/Backhoe	2	0	0	0	0	0	0	0	0	0	1	1	0
Air Compressors	4	0	0	0	0	0	0	0	0	0	1	1	0
Manlifts	8	0	0	0	0	0	0	0	0	0	4	2	0

Appendix B Tesoro Integration and Compliance Project

	Emission Rate (Ib/hr)						Month						
VOC (lb/day)	2018	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	0.058	00.0	00.0	00.0	00.00	0.00	00.00	0.00	0.00	0.00	0.40	0.40	00.0
>40T Cranes	0.065	00.0	00.0	00.0	0.00	00.0	00:00	0.00	00.00	0.00	0.33	0.33	00.0
Pile/Drill Rig	0.035	00.0	00.0	00.0	00.00	00.00	00.00	0.00	00.00	0.00	0.28	0.28	00.0
Tractors	0.026	00.0	00.0	00.0	00.0	00.00	00.00	0.00	00.00	0.00	0.13	0.13	00.0
Welders	0.034	00.0	00.0	00.0	00.0	00.00	00.00	0.00	00.00	0.00	1.34	0.27	00.0
Light Plants	0.034	00.0	00.0	00.0	00.0	00.00	00.00	0.00	00.00	0.00	0.81	0.40	00.0
Genertors	0.037	00.0	00.0	00.0	00.0	00.0	00.0	00.00	00.00	0.00	00.0	00.00	00.0
Hydro Vacs/Pumps	0.037	00.0	00.0	00.0	00.0	00.0	00.0	00.00	00.00	0.00	0.18	0.18	00.0
Fork Lifts	0.016	00.0	00.0	00.0	00.0	00.0	00.0	00.00	00.0	0.00	90.0	90.0	00.0
Loader/Backhoe	0.026	00.0	00.0	00.0	00.0	00.0	00.0	00.00	00.00	0.00	0.13	0.13	00.0
Air Compressors	0.034	00.0	00.0	00.0	00.0	00.0	00.0	00.00	00.00	0.00	0.13	0.13	00.0
Manlifts	0.005	00.0	00.0	00.0	00.0	00.0	00.0	00.00	00.0	0.00	0.16	0.08	00.0
Total		0.00	00.00	00.00	00'0	0.00	00'0	00.00	0.00	0.00	3.96	2.40	00.00

	Emission Rate						Month						
00 1151 43	(lb/nr)	,	;	.,	,	;	9	,	8	3	6	6	3
CO (ID/day)	2018	13	14	15	16	1/	18	19	20	21	77	23	74
<40 T Cranes	0.406	00.00	00.00	00.00	0.00	00.00	00.00	0.00	00.00	0.00	2.84	2.84	0.00
>40T Cranes	0.409	00.0	00.00	00.00	0.00	00.00	00.00	0.00	00.00	0.00	2.04	2.04	0.00
Pile/Drill Rig	0.501	00.0	00.00	00.00	0.00	00.00	00.00	0.00	0.00	0.00	4.01	4.01	00.0
Tractors	0.365	00.0	00.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	1.82	1.82	0.00
Welders	0.234	00.0	00.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	9.35	1.87	0.00
Light Plants	0.297	00.0	00.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	7.12	3.56	0.00
Genertors	0.469	00.0	00.00	00.00	00.00	00.00	00.0	0.00	00.00	0.00	00.0	0.00	0.00
Hydro Vacs/Pumps	0.477	00.0	00.00	00.00	00.00	00.00	00.0	0.00	00.00	0.00	2.38	2.38	0.00
Fork Lifts	0.217	00.0	00.00	00.00	00.00	00.00	00.0	00.0	00.00	0.00	0.87	0.87	0.00
Loader/Backhoe	0.365	00.0	00.00	00.00	00.00	00.00	00.0	00.0	00.00	0.00	1.82	1.82	0.00
Air Compressors	0.214	00.0	00.00	00.00	00.00	00.00	00.0	00.0	00.00	0.00	0.86	0.86	0.00
Manlifts	0.174	0.00	00.00	00.00	0.00	00.00	00.00	0.00	00'0	0.00	2.57	2.78	00.00
Total		00.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	38.69	24.86	00.00

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)												
NOX (lb/day)	2018	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	0.802	00.0	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	5.61	5.61	00.00
>40T Cranes	0.989	00.0	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	4.95	4.95	00.00
Pile/Drill Rig	0.569	0.00	0.00	0.00	00.00	00.00	0.00	0.00	00.00	0.00	4.55	4.55	00.00
Tractors	0.306	0.00	0.00	0.00	00.00	00.00	0.00	0.00	00.00	0.00	1.53	1.53	00.00
Welders	0.183	0.00	0.00	0.00	00.00	00.00	0.00	0.00	00.00	0.00	7.34	1.47	00.00
Light Plants	0.183	0.00	0.00	0.00	00.00	00.00	0.00	0.00	00.00	0.00	4.40	2.20	00.00
Genertors	0.406	0.00	0.00	0.00	00.00	00.00	00.0	0.00	00.00	0.00	00.0	0.00	00.00
Hydro Vacs/Pumps	0.406	0.00	0.00	0.00	00.00	00.00	00.0	0.00	00.00	0.00	2.03	2.03	00.00
Fork Lifts	0.247	0.00	0.00	0.00	00.00	00.00	00.0	0.00	00.00	0.00	66.0	0.99	00.00
Loader/Backhoe	0.306	0.00	0.00	0.00	00.00	00.00	00.0	0.00	00.00	0.00	1.53	1.53	00.00
Air Compressors	0.183	00.00	0.00	0.00	00.00	00.00	0.00	0.00	00.00	0.00	0.73	0.73	00.00
Manlifts	0.103	0.00	0.00	0.00	00.00	00.00	0.00	0.00	00.00	0.00	3.29	1.64	00.00
Total		0.00	0.00	0.00	00.00	00.00	00.0	0.00	00.00	0.00	36.96	27.24	00.00

	Emission Rate (Ib/hr)						Month						
SOx (lb/day)	2018	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	0.001	0.00	0.00	0.00	0.00	00.00	0.00	00.0	00.00	0.00	0.01	0.01	00.0
>40T Cranes	0.002	0.00	0.00	0.00	0.00	00.00	0.00	00.0	00.00	0.00	0.01	0.01	00.0
Pile/Drill Rig	0.002	00:00	0.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.02	0.02	0.00
Tractors	0.001	0.00	0.00	0.00	00.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	00.00
Welders	0.000	0.00	0.00	0.00	00.00	00.00	00.00	00.00	00.00	0.00	0.02	0.00	00.00
Light Plants	0.000	0.00	0.00	0.00	00.00	00.00	00.00	00.00	00.00	0.00	0.01	0.00	00.00
Genertors	0.001	0.00	0.00	0.00	00.00	00.0	00.00	00.00	00.00	0.00	00.00	0.00	00.00
Hydro Vacs/Pumps	0.001	0.00	0.00	0.00	00.00	00.0	00.00	00.00	00.00	0.00	00.00	0.00	00.00
Fork Lifts	0.001	0.00	0.00	0.00	00.00	00.0	00.00	00.0	00.00	0.00	00.00	0.00	00.00
Loader/Backhoe	0.001	0.00	0.00	0.00	00.00	00.0	00.00	00.0	00.00	0.00	00.00	0.00	00.00
Air Compressors	0.000	0.00	0.00	0.00	00.00	00.0	00.00	00.0	00.00	0.00	00.00	0.00	00.00
Manlifts	0.000	0.00	0.00	0.00	00.00	00.0	00.00	00.0	00.00	0.00	0.01	0.01	00.00
Total		00.00	00:00	00.0	00.00	0.00	00.00	0.00	0.00	0.00	0.10	0.02	0.00

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)						MOHE						
PM10 (lb/day)	2018	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	0.037	00.0	0.00	00.0	00.0	00.00	00.00	0.00	0.00	0.00	0.26	0.26	0.00
>40T Cranes	0.040	0.00	00.0	00.0	00.0	0.00	00.00	00.00	00.00	0.00	0.20	0.20	0.00
Pile/Drill Rig	0.021	0.00	00.0	00.0	00.0	0.00	00.00	00.00	00.00	0.00	0.16	0.16	0.00
Tractors	0.019	0.00	00.0	00.0	00.0	00.0	00.0	00.00	00.00	0.00	0.10	0.10	0.00
Welders	0.016	0.00	00.0	00.0	00.0	00.0	00.0	00.00	00.00	0.00	0.63	0.13	0.00
Light Plants	0.016	0.00	00.0	00.0	00.0	00.0	00.0	00.00	00.00	0.00	0.38	0.19	0.00
Genertors	0.031	0.00	00.0	00.0	00.0	00.0	00.0	00.0	00.00	0.00	0.00	0.00	0.00
Hydro Vacs/Pumps	0.031	0.00	00.0	00.0	00.0	00.0	00.0	00.0	00.00	0.00	0.16	0.16	0.00
Fork Lifts	0.012	0.00	00.0	00.0	00.0	00.0	00.0	00.0	00.0	0.00	0.05	0.05	0.00
Loader/Backhoe	0.019	0.00	00.0	00.0	00.0	00.0	00.0	00.0	00.0	0.00	0.10	0.10	0.00
Air Compressors	0.016	00.00	0.00	00.00	00.00	00.00	00.00	0.00	00'0	0.00	90.0	90.0	0.00
Manlifts	0.002	0.00	0.00	00.00	00.00	0.00	00.00	0.00	00.00	0.00	0.08	0.04	0.00
Total		0.00	00.0	00.0	00.0	00.0	00.0	00.0	00.0	0.00	2.16	1.43	0.00

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(MT/hr)												
CO2EQ (MT/day)	2018	13	14	15	16	17	18	19	20	21	22	23	24
<40 T Cranes	0.035	00.0	0.00	00.0	0.00	00.00	00.0	0.00	00.00	0.00	0.25	0.25	0.00
>40T Cranes	0.051	0.00	0.00	00.0	0.00	0.00	00.00	00.00	00.00	0.00	0.26	0.26	0.00
Pile/Drill Rig	0.059	0.00	0.00	00.0	0.00	0.00	00.00	00.00	00.00	0.00	0.47	0.47	0.00
Tractors	0.019	0.00	0.00	00.0	0.00	00.00	00.0	00.00	00.00	0.00	0.10	0.10	0.00
Welders	600:0	0.00	0.00	00.0	0.00	00.00	00.0	00.00	00.00	0.00	0.38	0.08	0.00
Light Plants	600:0	0.00	0.00	00.0	0.00	00.00	00.0	00.00	00.00	0.00	0.23	0.11	0.00
Genertors	0.018	0.00	0.00	00.0	0.00	00.00	00.0	00.0	00.00	0.00	00.0	0.00	0.00
Hydro Vacs/Pumps	0.018	0.00	0.00	00.0	0.00	00.00	00.0	00.0	00.00	0.00	60.0	0.09	0.00
Fork Lifts	0.021	0.00	0.00	00.0	0.00	00.00	00.0	00.0	00.00	0.00	60.0	0.09	0.00
Loader/Backhoe	0.019	0.00	0.00	00.0	0.00	00.00	00.0	00.0	00.00	0.00	0.10	0.10	0.00
Air Compressors	600:0	0.00	0.00	00.0	0.00	00.00	00.0	00.0	00.00	0.00	0.04	0.04	0.00
Manlifts	0.011	0.00	0.00	00.0	0.00	00.00	00.0	00.0	00.00	0.00	0.34	0.17	0.00
Total		0.00	0.00	00.00	0.00	0.00	00.0	0.00	00.00	0.00	2.32	1.74	0.00

	1												
							Mont	_					
Equipment (Pieces per Day)	Hours (hr/day)	25	26	27	28	29	30	31	32	33	34	32	36
<40 T Cranes	7	2	1	0	1	0	0	0	0	7	1	-	_
>40T Cranes	2	2	1	0	1	0	0	0	0	7	1	-	_
Pile/Drill Rig	8	2	1	0	1	0	0	0	0	-	1	-	_
Tractors	2	2	1	0	1	0	0	0	0	1	1	1	1
Welders	8	13	8	0	2	0	0	0	0	3	2	2	2
Light Plants	12	3	1	0	1	0	0	0	0	-	1	-	1
Genertors	12	0	0	0	0	0	0	0	0	1	0	0	0
Hydro Vacs/Pumps	2	2	1	0	1	0	0	0	0	1	1	1	1
Fork Lifts	4	2	1	0	1	0	0	0	0	1	1	1	1
Loader/Backhoe	2	2	1	0	1	0	0	0	0	1	1	1	1
Air Compressors	4	2	1	0	1	0	0	0	0	1	1	1	1
Manlifts	8	8	4	0	3	0	0	0	0	3	3	4	4

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)												
VOC (lb/day)	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.053	0.74	0.37	0.00	0.37	00.00	00.00	00:00	00.00	0.74	0.37	0.37	0.37
>40T Cranes	0.062	0.62	0.31	0.00	0.31	00.00	00.00	0.00	00.00	0.62	0.31	0.31	0.31
Pile/Drill Rig	0.033	0.53	0.27	0.00	0.27	00.00	00.00	0.00	00.00	0.27	0.27	0.27	0.27
Tractors	0.023	0.23	0.11	0.00	0.11	00.00	00.00	0.00	00.00	0.11	0.11	0.11	0.11
Welders	0.033	3.45	2.12	0.00	0.53	00.00	00.00	0.00	00.00	0.80	0.53	1.33	1.33
Light Plants	0.033	1.19	0.40	0.00	0.40	00.00	00.00	0.00	00.00	0.40	0.40	0.40	0.40
Genertors	0.034	00.0	0.00	0.00	0.00	00.00	00.0	0.00	00.00	0.41	0.00	0.00	00.00
Hydro Vacs/Pumps	0.034	0.34	0.17	0.00	0.17	00.00	00.0	0.00	00.00	0.17	0.17	0.17	0.17
Fork Lifts	0.015	0.12	90.0	0.00	90.0	00.00	00.0	0.00	00.0	90.0	90.0	90.0	90.0
Loader/Backhoe	0.023	0.23	0.11	0.00	0.11	00.00	00.0	0.00	00.00	0.11	0.11	0.11	0.11
Air Compressors	0.033	0.27	0.13	0.00	0.13	00.00	00.0	0.00	00.00	0.13	0.13	0.13	0.13
Manlifts	0.005	0.30	0.15	00.0	0.11	00.00	00.00	0.00	00.0	0.11	0.11	0.15	0.15
Total		8.00	4.20	0.00	2.57	00.00	0.00	00.00	0.00	3.92	2.57	3.40	3.40

	Emission Rate						Month						
	(lb/hr)												
CO (Ib/day)	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.398	5.57	2.79	00.00	2.79	00.00	00.00	0.00	00.00	2.57	2.79	2.79	2.79
>40T Cranes	0.395	3.95	1.98	00.00	1.98	00.00	00.00	0.00	00.00	3.95	1.98	1.98	1.98
Pile/Drill Rig	0.501	8.01	4.01	00.00	4.01	00.00	00.00	0.00	00.00	4.01	4.01	4.01	4.01
Tractors	698.0	3.63	1.82	00.00	1.82	00.00	00.00	0.00	00.00	1.82	1.82	1.82	1.82
Welders	0.227	23.62	14.54	00.00	3.63	00.00	00.00	0.00	00.00	5.45	3.63	60.6	60.6
Light Plants	0.289	10.40	3.47	00.00	3.47	00.00	00.00	0.00	00.00	3.47	3.47	3.47	3.47
Genertors	0.466	00.00	00.00	00.00	00.00	00.00	00.0	0.00	00.00	2.60	00.00	0.00	0.00
Hydro Vacs/Pumps	0.474	4.74	2.37	00.00	2.37	00.00	00.0	0.00	00.00	2.37	2.37	2.37	2.37
Fork Lifts	0.217	1.73	0.87	00.00	0.87	00.00	00.0	0.00	00.00	0.87	0.87	0.87	0.87
Loader/Backhoe	698.0	3.63	1.82	00.00	1.82	00.00	00.0	0.00	00.00	1.82	1.82	1.82	1.82
Air Compressors	0.208	1.66	0.83	00.00	0.83	00.00	00.0	0.00	00.00	0.83	0.83	0.83	0.83
Manlifts	0.172	10.98	5.49	00.00	4.12	00.00	00.0	0.00	00.00	4.12	4.12	5.49	5.49
Total		77.94	39.96	0.00	27.68	00.00	00.00	0.00	00.00	39.86	27.68	34.51	34.51

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)												
NOX (lb/day)	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.724	10.14	20.5	00.0	5.07	0.00	0.00	0.00	00.00	10.14	2.07	20.9	5.07
>40T Cranes	0.917	9.17	4.59	00.0	4.59	0.00	0.00	0.00	00.00	9.17	4.59	4.59	4.59
Pile/Drill Rig	0.519	8.31	4.16	00.0	4.16	0.00	0.00	0.00	00.00	4.16	4.16	4.16	4.16
Tractors	0.274	2.74	1.37	00.0	1.37	0.00	0.00	0.00	00.00	1.37	1.37	1.37	1.37
Welders	0.181	18.84	11.59	00.0	2.90	0.00	0.00	0.00	00.00	4.35	2.90	7.24	7.24
Light Plants	0.181	6.52	2.17	00.0	2.17	0.00	0.00	0.00	00.00	2.17	2.17	2.17	2.17
Genertors	0.377	00.0	00.0	00.0	0.00	0.00	00.0	00.00	00.00	4.52	0.00	0.00	00.00
Hydro Vacs/Pumps	0.377	3.77	1.89	00.0	1.89	0.00	00.0	00.00	00.00	1.89	1.89	1.89	1.89
Fork Lifts	0.226	1.81	06.0	00.0	06.0	0.00	00.0	00.00	00.0	06.0	06.0	06.0	06.0
Loader/Backhoe	0.274	2.74	1.37	00.0	1.37	0.00	00.0	00.00	00.00	1.37	1.37	1.37	1.37
Air Compressors	0.181	1.45	0.72	00.0	0.72	0.00	00.0	00.00	00.00	0.72	0.72	0.72	0.72
Manlifts	0.098	6.26	3.13	00.0	2.35	0.00	00.0	00.00	00.0	2.35	2.35	3.13	3.13
Total		71.75	36.96	0.00	27.48	0.00	00.0	00.00	00.0	43.11	27.48	32.61	32.61

	Emission Rate (Ib/hr)						Month						
SOx (lb/day)	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.001	0.02	0.01	00.00	0.01	00.00	00.00	0.00	0.00	0.02	0.01	0.01	0.01
>40T Cranes	0.002	0.02	0.01	00.00	0.01	00.00	00.00	0.00	0.00	0.02	0.01	0.01	0.01
Pile/Drill Rig	0.002	0.04	0.02	00.00	0.02	00.00	00.00	0.00	00.00	0.02	0.02	0.02	0.02
Tractors	0.001	0.01	00.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00
Welders	000'0	0.04	0.02	00.00	0.01	00.00	00.00	0.00	00.00	0.01	0.01	0.02	0.02
Light Plants	000'0	0.01	00.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00
Genertors	0.001	00.0	00.00	00.00	00.00	00.00	00.0	0.00	00.00	0.01	0.00	0.00	0.00
Hydro Vacs/Pumps	0.001	0.01	00.00	00.00	00.00	00.00	00.0	0.00	00.00	0.00	0.00	0.00	0.00
Fork Lifts	0.001	0.01	00.00	00.00	00.00	00.00	00.0	0.00	00.00	0.00	0.00	0.00	0.00
Loader/Backhoe	0.001	0.01	00.00	00.00	00.00	00.00	00.0	0.00	00.00	0.00	0.00	0.00	0.00
Air Compressors	000'0	00.0	00.00	00.00	00.00	00.00	00.0	0.00	00.00	0.00	0.00	0.00	0.00
Manlifts	000'0	0.03	0.01	00.00	0.01	00.00	00.0	0.00	00.00	0.01	0.01	0.01	0.01
Total		0.20	0.10	0.00	0.08	0.00	0.00	00.00	0.00	0.11	0.08	0.09	0.09

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)												
PM10 (lb/day)	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.033	0.47	0.23	00.0	0.23	00.00	0.00	0.00	0.00	0.47	0.23	0.23	0.23
>40T Cranes	0.037	0.37	0.18	00.0	0.18	00.00	0.00	0.00	00.00	0.37	0.18	0.18	0.18
Pile/Drill Rig	0.019	0:30	0.15	00.0	0.15	00.00	0.00	0.00	00.00	0.15	0.15	0.15	0.15
Tractors	0.016	0.16	0.08	00.0	0.08	00.0	0.00	0.00	00.00	0.08	0.08	0.08	0.08
Welders	0.015	1.58	0.97	00.0	0.24	00.0	0.00	0.00	00.00	0.37	0.24	0.61	0.61
Light Plants	0.015	0.55	0.18	00.0	0.18	00.0	0.00	0.00	00.00	0.18	0.18	0.18	0.18
Genertors	0.028	00.00	0.00	00.0	00.0	00.0	0.00	0.00	00.00	0.34	00.0	0.00	0.00
Hydro Vacs/Pumps	0.028	0.28	0.14	00.0	0.14	00.0	0.00	0.00	00.00	0.14	0.14	0.14	0.14
Fork Lifts	0.010	0.08	0.04	00.0	0.04	00.0	0.00	0.00	00.00	0.04	0.04	0.04	0.04
Loader/Backhoe	0.016	0.16	0.08	00.0	0.08	00.0	0.00	0.00	00.00	0.08	0.08	0.08	0.08
Air Compressors	0.015	0.12	90.0	00.0	90.0	00.0	0.00	0.00	00.00	90.0	90.0	90.0	90.0
Manlifts	0.002	0.12	90.0	00.0	0.05	00.0	0.00	0.00	00.00	0.05	0.05	90.0	90.0
Total		4.21	2.19	0.00	1.45	0.00	0.00	00:00	0.00	2.33	1.45	1.83	1.83

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(MT/hr)												
CO2EQ (MT/day)	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.035	0.50	0.25	00.0	0.25	00.00	00.0	0.00	00.00	0.50	0.25	0.25	0.25
>40T Cranes	0.051	0.51	0.26	00.0	0.26	00.00	00.00	0.00	0.00	0.51	0.26	0.26	0.26
Pile/Drill Rig	0.059	0.94	0.47	00.0	0.47	0.00	00.00	0.00	00.00	0.47	0.47	0.47	0.47
Tractors	0.019	0.19	0.10	00.0	0.10	00.00	00.0	00.0	00.00	0.10	0.10	0.10	0.10
Welders	600.0	16.0	09.0	00.0	0.15	00.00	00.0	00.0	00.00	0.22	0.15	0.37	0.37
Light Plants	600.0	0.34	0.11	00.0	0.11	00.00	00.0	00.0	00.00	0.11	0.11	0.11	0.11
Genertors	0.018	00.00	00.0	00.0	0.00	00.00	00.0	00.0	00.00	0.22	00.00	0.00	00.00
Hydro Vacs/Pumps	0.018	0.18	60.0	00.0	60.0	00.00	00.0	00.0	00.00	60.0	60.0	0.09	60.0
Fork Lifts	0.021	0.17	60.0	00.0	60.0	00.00	00.0	00.0	00.0	60.0	60.0	0.09	60.0
Loader/Backhoe	0.019	0.19	0.10	00.0	0.10	00.00	00.0	00.0	00.0	0.10	0.10	0.10	0.10
Air Compressors	600.0	0.07	0.04	00.0	0.04	00.00	00.0	00.0	00.0	0.04	0.04	0.04	0.04
Manlifts	0.011	89.0	0.34	00.0	0.26	00.00	00.0	00.0	00.0	0.26	0.26	0.34	0.34
Total		4.75	2.43	0.00	1.90	00.00	00.00	00.00	0.00	2.69	1.90	2.21	2.21

							Month						
Equipment (Pieces per Day)	Hours (hr/day)	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	7	0	-	-	0	0	0	0	0	0	1	0	0
>40T Cranes	2	0	1	1	0	0	0	0	0	0	1	0	0
Pile/Drill Rig	8	0	1	1	0	0	0	0	0	0	1	0	0
Tractors	2	0	1	1	0	0	0	0	0	0	1	0	0
Welders	8	0	8	8	0	0	0	0	0	0	2	0	0
Light Plants	12	0	1	1	0	0	0	0	0	0	1	0	0
Genertors	12	0	0	0	0	0	0	0	0	0	0	0	0
Hydro Vacs/Pumps	2	0	1	1	0	0	0	0	0	0	1	0	0
Fork Lifts	4	0	1	1	0	0	0	0	0	0	1	0	0
Loader/Backhoe	2	0	1	1	0	0	0	0	0	0	1	0	0
Air Compressors	4	0	1	1	0	0	0	0	0	0	1	0	0
Manlifts	8	0	4	4	0	0	0	0	0	0	3	0	0

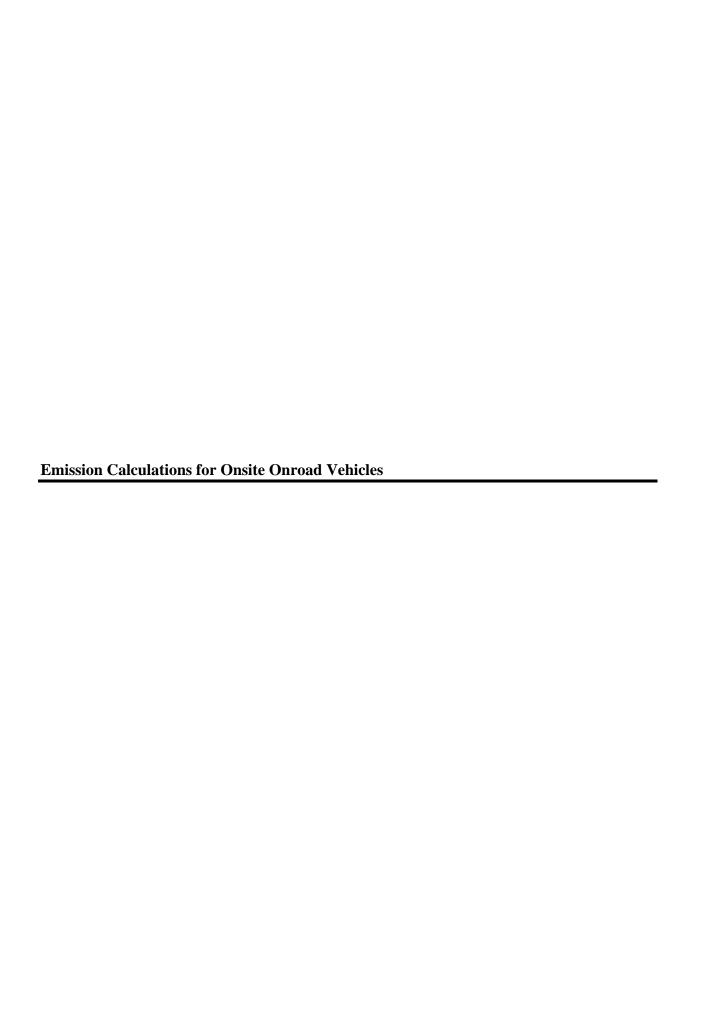
Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)												
VOC (lb/day)	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.049	00.0	0.34	0.34	00.0	00.00	00.00	0.00	00.00	0.00	0.34	0.00	0.00
>40T Cranes	290'0	00.0	0.28	0.28	00.00	0.00	00.00	00.00	0.00	0.00	0.28	0.00	0.00
Pile/Drill Rig	920'0	00.0	09.0	09.0	00.00	0.00	00.00	00.00	0.00	0.00	09.0	0.00	0.00
Tractors	0.033	00.0	0.17	0.17	00.0	00.00	00.00	00.00	0.00	0.00	0.17	0.00	0.00
Welders	0.031	00.0	1.97	1.97	00.0	00.00	00.00	00.00	0.00	0.00	0.49	0.00	0.00
Light Plants	0.031	00.0	0.37	0.37	00.0	00.00	00.00	00.00	0.00	0.00	0.37	0.00	0.00
Genertors	0.032	00.0	0.00	00.0	00.0	00.00	00.0	00.00	0.00	0.00	00.0	0.00	0.00
Hydro Vacs/Pumps	0.032	00.0	0.16	0.16	00.0	00.00	00.0	00.00	0.00	0.00	0.16	0.00	0.00
Fork Lifts	0.014	00.0	90.0	90.0	00.0	00.00	00.0	00.0	00.00	0.00	90.0	0.00	0.00
Loader/Backhoe	0.021	00.0	0.10	0.10	00.0	00.00	00.0	00.0	00.00	0.00	0.10	0.00	0.00
Air Compressors	0.031	00.0	0.12	0.12	00.0	00.00	00.0	00.0	00.00	0.00	0.12	0.00	0.00
Manlifts	900.0	0.00	0.15	0.15	0.00	00.0	00.0	0.00	00.0	0.00	0.11	0.00	0.00
Total		0.00	4.32	4.32	0.00	0.00	0.00	0.00	0.00	0.00	2.81	0.00	0.00

	Emission Rate (Ib/hr)						Month						
CO (lb/day)	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.392	00.0	2.74	2.74	00.00	0.00	00.0	0.00	0.00	0.00	2.74	0.00	0.00
>40T Cranes	0.384	00.0	1.92	1.92	00.00	0.00	00.0	00.00	00.00	0.00	1.92	0.00	00.0
Pile/Drill Rig	0.501	00.0	4.01	4.01	00.00	0.00	00.00	00.00	00.00	0.00	4.01	0.00	00.0
Tractors	0.652	00.0	3.26	3.26	00.00	0.00	00.00	00.00	00.00	0.00	3.26	0.00	00.0
Welders	0.222	00.0	14.20	14.20	00.00	0.00	00.00	00.00	00.00	0.00	3.55	0.00	00.0
Light Plants	0.283	00.0	3.40	3.40	00.00	0.00	00.00	00.00	00.00	0.00	3.40	0.00	00.0
Genertors	0.464	00.0	0.00	00.00	00.00	00.0	00.0	00.00	00.00	0.00	00.00	0.00	00.0
Hydro Vacs/Pumps	0.471	00.0	2.36	2.36	00.00	00.0	00.0	00.00	00.00	0.00	2.36	0.00	00.0
Fork Lifts	0.216	00.0	98.0	98.0	00.00	00.0	00.0	00.0	00.00	0.00	98.0	0.00	00.0
Loader/Backhoe	0.362	00.0	1.81	1.81	00.00	00.0	00.0	00.0	00.00	0.00	1.81	0.00	00.0
Air Compressors	0.203	00.0	0.81	0.81	00.00	00.0	00.0	00.0	00.00	0.00	0.81	0.00	00.0
Manlifts	0.170	00.0	5.43	5.43	00.00	00.0	00.0	00.0	00.00	0.00	4.07	0.00	00.0
Total		00.00	40.80	40.80	00.00	0.00	0.00	0.00	0.00	0.00	28.79	00:00	0.00

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)												
NOX (lb/day)	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.661	00.0	4.63	4.63	0.00	0.00	0.00	0.00	0.00	0.00	4.63	00.00	0.00
>40T Cranes	0.825	00.00	4.12	4.12	0.00	0.00	0.00	0.00	00.00	0.00	4.12	0.00	0.00
Pile/Drill Rig	0.938	00.00	7.50	7.50	0.00	0.00	0.00	0.00	00.00	0.00	7.50	0.00	0.00
Tractors	0.333	00.00	1.67	1.67	00.0	0.00	0.00	0.00	00.00	0.00	1.67	0.00	0.00
Welders	0.175	00.00	11.22	11.22	00.0	0.00	0.00	0.00	00.00	0.00	2.80	0.00	0.00
Light Plants	0.175	00.00	2.10	2.10	00.0	0.00	0.00	0.00	00.00	0.00	2.10	0.00	0.00
Genertors	0.356	00.00	0.00	0.00	00.0	00.0	0.00	00.00	00.00	0.00	0.00	0.00	0.00
Hydro Vacs/Pumps	0.356	00.00	1.78	1.78	00.0	00.0	0.00	00.00	00.00	0.00	1.78	0.00	0.00
Fork Lifts	0.210	00.00	0.84	0.84	00.0	00.0	0.00	00.0	00.00	0.00	0.84	0.00	0.00
Loader/Backhoe	0.246	00.00	1.23	1.23	00.0	00.0	0.00	00.0	00.00	0.00	1.23	0.00	0.00
Air Compressors	0.175	00.00	0.70	0.70	00.0	00.0	0.00	00.0	00.00	0.00	0.70	0.00	0.00
Manlifts	0.093	00.00	2.98	2.98	00.0	00.0	0.00	00.0	00.00	0.00	2.24	0.00	0.00
Total		0.00	38.78	38.78	0.00	00.0	00.00	0.00	0.00	0.00	29.62	00:00	0.00


	Emission Rate (Ib/hr)						Month						
SOx (lb/day)	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.001	00.0	0.01	0.01	00.00	0.00	00.00	0.00	0.00	0.00	0.01	0.00	0.00
>40T Cranes	0.002	00.0	0.01	0.01	00.00	0.00	00.00	00.0	00.00	0.00	0.01	0.00	00.0
Pile/Drill Rig	0.003	00.0	0.02	0.02	00.00	0.00	00.00	0.00	0.00	0.00	0.02	0.00	0.00
Tractors	0.001	00.0	0.01	0.01	00.00	0.00	00.00	0.00	00.00	0.00	0.01	0.00	00.00
Welders	0.000	00.0	0.02	0.02	00.00	0.00	00.00	0.00	00.00	0.00	0.01	0.00	00.00
Light Plants	0.000	00.0	0.00	00.00	00.00	0.00	00.00	0.00	00.00	0.00	00.0	0.00	00.00
Genertors	0.001	00.0	0.00	00.00	00.00	00.0	00.0	0.00	00.00	0.00	00.0	0.00	00.00
Hydro Vacs/Pumps	0.001	00.0	0.00	00.00	00.00	00.0	00.0	0.00	00.00	0.00	00.0	0.00	00.00
Fork Lifts	0.001	00.0	0.00	00.00	00.00	00.0	00.0	0.00	00.00	0.00	00.0	0.00	00.00
Loader/Backhoe	0.001	00.0	0.00	00.00	00.00	00.0	00.0	0.00	00.00	0.00	00.0	0.00	00.00
Air Compressors	0.000	00.0	0.00	00.00	00.00	00.0	00.0	0.00	00.00	0.00	00.0	0.00	00.00
Manlifts	0.000	00.0	0.01	0.01	00.00	00.0	00.0	0.00	00.00	0.00	0.01	0.00	00.00
Total		00.00	0.11	0.11	0.00	0.00	00.00	0.00	0.00	0.00	0.08	00.00	0.00

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(Ib/hr)												
PM10 (lb/day)	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0:030	00.0	0.21	0.21	00.0	00.00	0.00	00.00	00.00	00.0	0.21	0.00	0.00
>40T Cranes	0.033	00.0	0.17	0.17	00.0	00.00	0.00	00.00	00.00	00.0	0.17	0.00	0.00
Pile/Drill Rig	0.038	00.0	0:30	0.30	00.0	00.00	0.00	00.00	00.00	00.0	0.30	0.00	0.00
Tractors	0.018	00.0	60.0	60.0	00.0	00.00	0.00	00.00	00.00	00.0	0.09	0.00	0.00
Welders	0.014	00.0	06.0	06.0	00.0	00.00	0.00	00.00	00.00	00.0	0.23	0.00	0.00
Light Plants	0.014	00.0	0.17	0.17	00.0	00.00	0.00	00.00	00.00	00.0	0.17	0.00	0.00
Genertors	0.026	00.0	00.0	0.00	00.0	00.00	0.00	00.0	00.00	00.0	0.00	0.00	0.00
Hydro Vacs/Pumps	0.026	00.0	0.13	0.13	00.0	00.00	0.00	00.0	00.00	00.0	0.13	0.00	0.00
Fork Lifts	0.009	0.00	0.03	0.03	0.00	00.0	0.00	0.00	00.0	0.00	0.03	00.00	00.00
Loader/Backhoe	0.014	0.00	0.07	0.07	0.00	00.00	0.00	0.00	00.00	0.00	0.07	0.00	0.00
Air Compressors	0.014	0.00	90.0	90.0	0.00	00.0	0.00	0.00	00.0	0.00	90.0	00.00	00.00
Manlifts	0.002	0.00	0.05	0.05	0.00	00.00	0.00	0.00	00.00	0.00	0.04	0.00	0.00
Total		0.00	2.19	2.19	00.0	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(MT/hr)						Month						
CO2EQ (MT/day)	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.035	00.0	0.25	0.25	00.0	0.00	0.00	00.00	00.00	0.00	0.25	0.00	00.0
>40T Cranes	0.051	00.0	0.26	0.26	00.0	0.00	0.00	00.00	0.00	0.00	0.26	0.00	00.0
Pile/Drill Rig	0.067	00.0	0.53	0.53	00.0	0.00	0.00	00.00	0.00	0.00	0.53	0.00	00.0
Tractors	0.029	00.0	0.14	0.14	00.0	0.00	00.00	00.00	0.00	0.00	0.14	0.00	00.0
Welders	600.0	00.0	09.0	09.0	00.0	0.00	00.00	00.00	0.00	0.00	0.15	0.00	00.0
Light Plants	600.0	00.0	0.11	0.11	00.0	0.00	00.00	00.00	0.00	0.00	0.11	0.00	00.0
Genertors	0.018	00.0	0.00	0.00	00.0	0.00	00.00	00.0	0.00	0.00	00.00	0.00	00.0
Hydro Vacs/Pumps	0.018	00.0	60.0	60.0	00.0	0.00	00.00	00.0	0.00	0.00	60.0	0.00	00.0
Fork Lifts	0.021	00.0	60.0	60.0	00.0	0.00	00.00	00.0	0.00	0.00	60.0	0.00	00.0
Loader/Backhoe	0.019	00.0	0.10	0.10	00.0	0.00	00.00	00.0	0.00	0.00	0.10	0.00	0.00
Air Compressors	0.009	0.00	0.04	0.04	0.00	0.00	00.00	0.00	0.00	0.00	0.04	0.00	0.00
Manlifts	0.011	0.00	0.34	0.34	0.00	0.00	00.00	0.00	0.00	0.00	0.26	0.00	0.00
Total		00.0	2.55	2.55	00.0	0.00	00.00	00.0	0.00	0.00	2.01	0.00	0.00

Onsite Construction Vehicle Trip Emissions

						Мо	nth (Vehicl	es per day)					
Vehicle	Miles per Day	1	2	3	4	5	6	7	8	9	10	11	12
Cars	2	0	0	0	0	0	0	0	0	0		0	0
Pickup Trucks	2	0	0	0	0	0	0	78	78	71	90	112	112
Total Light Vehicle Miles		0	0	0	0	0	0	156	156	142	180	224	224
Water Truck	2	0	0	0	0	0	0	10	10	10	15	15	15
Delivery Truck	2	0	0	0	0	0	0	0	0	0		0	0
1 Ton Truck	2	0	0	0	0	0	0	7	8	7	10	12	12
Misc. MD Truck	5	0	0	0	0	0	0		0	0		0	0
Total Medium Truck Miles		0	0	0	0	0	0	34	36	34	50	54	54
Truck, Dump Ford LT8000	2	0	0	0	0	0	0	0	0	0	0	0	0
Concrete Truck	2	0	0	0	0	0	0		0	0		0	0
Semi-Tractor, Diesel 20 Ton	2	0	0	0	0	0	0		0	0		0	0
Misc. HD Truck	2	0	0	0	0	0	0		0	0		0	0
Total Heavy Truck Miles		0	0	0	0	0	0	0	0	0	0	0	0
			•	•		•			•				
	Emission Rate						Month (II	b/day)					
	(lb/mi) ⁽¹⁾						•	• • •					
voc	2017	1	2	3	4	5	6	7	8	9	10	11	12
Light Duty	0.0001035	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.01	0.02	0.02	0.02
Medium Duty	0.0003717	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.02
Heavy Duty Total	0.0006131	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.03	0.04	0.04	0.04
со	2017	1	2	3	4	5	6	7	8	9	10	11	12
Light Duty	0.0033327	0.00	0.00	0.00	0.00	0.00	0.00	0.52	0.52	0.47	0.60	0.75	0.75
Medium Duty	0.0030301	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.11	0.10	0.15	0.16	0.16
Heavy Duty	0.0043046	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	•	0.00	0.00	0.00	0.00	0.00	0.00	0.62	0.63	0.58	0.75	0.91	0.91
NOx	2017	1	2	3	4	5	6	7	8	9	10	11	12
Light Duty	0.0005080	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.08	0.07	0.09	0.11	0.11
Medium Duty	0.0082326	0.00	0.00	0.00	0.00	0.00	0.00	0.28	0.30	0.28	0.41	0.44	0.44
Heavy Duty	0.0154328	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.36	0.38	0.35	0.50	0.56	0.56
SOx	2017	1	2	3	4	5	6	7	8	9	10	11	12
Light Duty	0.0000090	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.0000090	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0000359	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.000000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		2.30	2.50	2.00	2.20	2.30	2.00	2.30	2.30	2.00	2.30		
PM10	2017	1	2	3	4	5	6	7	8	9	10	11	12
Light Duty Exhaust	0.0001064	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.02	0.02
Medium Duty Exhaust	0.0004787	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.03	0.03
Heavy Duty Exhaust	0.0004727	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Exhaust PM		0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.03	0.04	0.05	0.05
Light Duty Fugitive ⁽²⁾	0.000221	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.03	0.04	0.05	0.05
Medium Duty Fugitve ⁽²⁾	0.000467	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.03	0.03
Heavy Duty Fugitive ⁽²⁾	0.002314	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Fugitive PM		0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.05	0.05	0.06	0.07	0.07
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.09	0.08	0.11	0.12	0.12
	L.												
CO _{2EQ}	2017	1	2	3	4	5	6	7	8	9	10	11	12
Light Duty	0.907	0.00	0.00	0.00	0.00	0.00	0.00	141.50	141.50	128.80	163.26	203.17	203.17
Medium Duty	2.261	0.00	0.00	0.00	0.00	0.00	0.00	76.88	81.40	76.88	113.05	122.10	122.10
Heavy Duty	3.768	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Total (1) Emfac2011 emission factors for the South Coast Air District.

0.00

0.00

0.00

0.00

0.00

0.00

218.37

222.89

205.67

276.32

where medium/heavy duty vehicle are diesel heavy duty trucks

		2017	
Chemical	Light	Medium	Heavy
CO2 (lb/mi)	0.8956	2.2575	3.7642
CH4 (g/mi)	0.0148	0.0051	0.0051
N2O (g/mi)	0.0157	0.0048	0.0048
CO2e (lb/mi)	0.907	2.261	3.768

⁽²⁾ Emission Calculations for travel on paved roads from EPA AP-42 Section 13.2.1, January 2011

E = k(sL)^{0.91} x (W)^{1.02}

Where: k = 0.0022 lb/VMT for PM10, sL = road silt loading (gms/m2)

 $^{(0.03 \}text{ for major/collector roads}), W = \text{weight of vehicles} (2.5 \text{ tons for light}; 5.5 \text{ for medium trucks},$

and 24 for heavy trucks)

⁽³⁾ Carbon Dioxide Equivalence (CO_E) = CO₂ + CH₄ * 21 + N2O*310

where CO2 emissions factors are from Emfac2011. CH4 and N2O emissions factors are from Direct Emissions from Mobile Combustion Sources, EPA 2008. where light vehicle are gasoline light duty trucks.

Onsite Construction Vehicle Trip Emissions

	İ					Mc	onth (Vehicl	es ner day)					
Vehicle	Miles per Day	13	14	15	16	17	18	19	20	21	22	23	24
Cars	2	0	0	0	0	0	0	0	0	0	0	0	0
Pickup Trucks	2	94	94	94	99	89	77	76	86	31	38	38	26
Total Light Vehicle Miles	_	188	188	188	198	178	154	152	172	62	76	76	52
												- 1	
Water Truck	2	15	15	15	15	15	15	15	15	15	15	10	10
Delivery Truck	2	0	0	0	0	0	0	0	0	0	0	0	0
1 Ton Truck	2	9	9	10	11	10	8	8	10	4		6	4
Misc. MD Truck	5	0	0	0	0	0	0	0	0	0	0	0	0
Total Medium Truck Miles		48	48	50	52	50	46	46	50	38	40	32	28
Truck, Dump Ford LT8000	2	0	0	0	0	0	0	0	0	0	0	0	0
Concrete Truck	2	0	0	0	0	0	0	0	0	0	0	0	0
Semi-Tractor, Diesel 20 Ton	2	0	0	0	0	0	0	0	0	0	0	0	0
Misc. HD Truck	2	0	0	0	0	0		0	0	0		0	0
Total Heavy Truck Miles		0	0	0	0	0	0	0	0	0	0	0	0
-		•	•		•			•					
	Emission Rate						Month (II	n/day)					
	(lb/mi) ⁽¹⁾						MOHUH (H	Jay j					
VOC	2018	13	14	15	16	17	18	19	20	21	22	23	24
Light Duty	0.0000636	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00
Medium Duty	0.0002639	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Heavy Duty	0.0005354	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.02	0.01	0.02	0.01	0.01
со	2018	13	14	15	16	17	18	19	20	21	22	23	24
Light Duty	0.0024424	0.46	0.46	0.46	0.48	0.43	0.38	0.37	0.42	0.15	0.19	0.19	0.13
Medium Duty	0.0019739	0.09	0.09	0.10	0.10	0.10	0.09	0.09	0.10	0.08	0.08	0.06	0.06
Heavy Duty	0.0038177	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.55	0.55	0.56	0.59	0.53	0.47	0.46	0.52	0.23	0.26	0.25	0.18
NOx	2018	13	14	15	16	17	18	19	20	21	22	23	24
Light Duty	0.0003881	0.07	0.07	0.07	0.08	0.07	0.06	0.06	0.07	0.02	0.03	0.03	0.02
Medium Duty	0.0053355	0.26	0.26	0.27	0.28	0.27	0.25	0.25	0.27	0.20	0.21	0.17	0.15
Heavy Duty	0.0114857	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.33	0.33	0.34	0.35	0.34	0.31	0.30	0.33	0.23	0.24	0.20	0.17
SOx	2018	13	14	15	16	17	18	19	20	21	22	23	24
Light Duty	0.0000090	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.0000216	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0000359	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM10	2018	13	14	15	16	17	18	19	20	21	22	23	24
Light Duty Exhaust	0.0001058	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01
Medium Duty Exhaust	0.0004105	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01
Heavy Duty Exhaust	0.0004029	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Exhaust PM		0.04	0.04	0.04	0.04	0.04	0.04	0.03	0.04	0.02	0.02	0.02	0.02
Light Duty Fugitive ⁽²⁾	0.000221	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.04	0.01	0.02	0.02	0.01
Medium Duty Fugitve ⁽²⁾	0.000467	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01
Heavy Duty Fugitive ⁽²⁾	0.002314	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Fugitive PM	•	0.06	0.06	0.06	0.07	0.06	0.06	0.06	0.06	0.03	0.04	0.03	0.02
Total		0.10	0.10	0.11	0.11	0.10	0.09	0.09	0.10	0.05	0.06	0.05	0.04
		0.10	0.10	0.11	0.11	0.10	0.00	0.00	0.10	0.00	0.00	0.00	0.04
CO _{2EQ}	2018	13	14	15	16	17	18	19	20	21	22	23	24
Light Duty	0.908	170.69	170.69	170.69	179.76	161.61	139.82	138.00	156.16	56.29	69.00	69.00	47.21
Medium Duty	2.256	108.27	108.27	112.78	117.30	112.78	103.76	103.76	112.78	85.72	90.23	72.18	63.16
ou.um Duty	3.759	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00

Heavy Duty Total (1) Emfac2011 emission factors for the South Coast Air District.

278.96

278.96

283.47

297.06

274.39

241.76

268.94

142.01

159.23

141.18

243.58

		2018	
Chemical	Light	Medium	Heavy
CO2 (lb/mi)	0.8965	2.2522	3.7551
CH4 (g/mi)	0.0148	0.0051	0.0051
N2O (g/mi)	0.0157	0.0048	0.0048
CO2e (lb/mi)	0.908	2.256	3.759

⁽²⁾ Emission Calculations for travel on paved roads from EPA AP-42 Section 13.2.1, January 2011

 $E = k(sL)^{0.91} x (W)^{1.02}$

Where: k = 0.0022 lb/VMT for PM10, sL = road silt loading (gms/m2)

 $^{(0.03 \}text{ for major/collector roads}), W = \text{weight of vehicles} (2.5 \text{ tons for light}; 5.5 \text{ for medium trucks},$

and 24 for heavy trucks)

⁽³⁾ Carbon Dioxide Equivalence (CO_E) = CO₂ + CH₄ * 21 + N2O*310

where CO2 emissions factors are from Emfac2011. CH4 and N2O emissions factors are from Direct Emissions from Mobile Combustion Sources, EPA 2008 where light vehicle are gasoline light duty trucks.

Onsite Construction Vehicle Trip Emissions

						Mo	onth (Vehicle	es per day)					
Vehicle	Miles per Day	25	26	27	28	29	30	31	32	33	34	35	36
Cars	2	0	0	0	0	0	0	0	0	0	0	0	C
Pickup Trucks	2	36	50	62	53	49	49	49	52	38	38	38	38
Total Light Vehicle Miles		72	100	124	106	98	98	98	104	76	76	76	76
Water Truck	2	12	12	12	12	12	12	12	12	12	12	12	12
Delivery Truck	2	0	0	0	0	0		0	0	0	0	0	0
1 Ton Truck	2	5	6	7	5	5		5	5	3	3	3	3
Misc. MD Truck	5	0	0	0	0	0		0	0	0	0	0	0
Total Medium Truck Miles	J	34	36	38	34	34	34	34	34	30	30	30	30
Truck, Dump Ford LT8000 Concrete Truck	2 2	0	0	0	0	0	-	0	0	0	0	0	0
						0	_						
Semi-Tractor, Diesel 20 Ton Misc. HD Truck	2 2	0	0	0	0	0	_	0	0	0	0	0	0
Total Heavy Truck Miles		0	0	0	0	0		0	0	0	0	0	0
Total Heavy Truck Miles	ļ	U	U	U	U	U	U	U	U	U	U	U	
	Emission Rate												
	(lb/mi) ⁽¹⁾						Month (Ib	o/day)					
voc	2019	25	26	27	28	29	30	31	32	33	34	35	36
Light Duty	0.0000548	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00
Medium Duty	0.0002379	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Heavy Duty	0.0005283	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	•	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
								•					
со	2019	25	26	27	28	29	30	31	32	33	34	35	36
Light Duty	0.0022305	0.16	0.22	0.28	0.24	0.22	0.22	0.22	0.23	0.17	0.17	0.17	0.17
Medium Duty	0.0017339	0.06	0.06	0.07	0.06	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05
Heavy Duty	0.0037678	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.22	0.29	0.34	0.30	0.28	0.28	0.28	0.29	0.22	0.22	0.22	0.22
NOx	2019	25	26	27	28	29	30	31	32	33	34	35	36
	0.0003585	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03
Light Duty Medium Duty	0.0003585	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03
Heavy Duty	0.0107049	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.14	0.14	0.14
Total	0.0107043	0.00	0.00	0.00	0.20	0.00	0.19	0.00	0.19	0.00	0.00	0.00	0.00
Total		0.10	0.20	0.22	0.20	0.13	0.13	0.13	0.10	0.17	0.17	0.17	0.17
SOx	2019	25	26	27	28	29	30	31	32	33	34	35	36
Light Duty	0.0000090	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.0000215	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0000357	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM10	2019	25	26	27	28	29	30	31	32	33	34	35	36
Light Duty Exhaust	0.0001057	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Medium Duty Exhaust	0.0003940	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Heavy Duty Exhaust	0.0004031	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Exhaust PM	1	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Light Duty Fugitive ⁽²⁾	0.000221	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Medium Duty Fugitve ⁽²⁾	0.000467	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01
Heavy Duty Fugitive ⁽²⁾	0.002314	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Fugitive PM	•	0.03	0.04	0.05	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03
Total		0.05	0.06	0.07	0.06	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05
CO _{2FO}	2019	25	26	27	28	29	30	31	32	33	34	35	36

Heavy Duty Total (1) Emfac2011 emission factors for the South Coast Air District.

0.906

2.247

3.745

Light Duty

Medium Duty

0.00

141.64

80.87

171.51

0.00

0.00

197.75

0.00

172.45

0.00

165.20

0.00

165.20

0.00

165.20

0.00

170.64

0.00

136.28

0.00

136.28

0.00

136.28

0.00

		2019	
Chemical	Light	Medium	Heavy
CO2 (lb/mi)	0.8949	2.2430	3.7418
CH4 (g/mi)	0.0148	0.0051	0.0051
N2O (g/mi)	0.0157	0.0048	0.0048
CO2e (lb/mi)	0.906	2.247	3.745

⁽²⁾ Emission Calculations for travel on paved roads from EPA AP-42 Section 13.2.1, January 2011

 $E = k(sL)^{0.91} x (W)^{1.02}$

Where: k = 0.0022 lb/VMT for PM10, sL = road silt loading (gms/m2)

 $^{(0.03 \}text{ for major/collector roads}), W = \text{weight of vehicles} (2.5 \text{ tons for light}; 5.5 \text{ for medium trucks},$

and 24 for heavy trucks)

⁽³⁾ Carbon Dioxide Equivalence (CO_E) = CO₂ + CH₄ * 21 + N2O*310

where CO2 emissions factors are from Emfac2011. CH4 and N2O emissions factors are from Direct Emissions from Mobile Combustion Sources, EPA 2008

where light vehicle are gasoline light duty trucks.

Onsite Construction Vehicle Trip Emissions

						Мо	nth (Vehicle	es per day)					
Vehicle	Miles per Day	37	38	39	40	41	42	43	44	45	46	47	48
Cars	2	0	0	0	0	0	0	0	0	0	0	0	0
Pickup Trucks	2	26	26	26	26	26	26	26	26	26	26	26	26
Total Light Vehicle Miles		52	52	52	52	52	52	52	52	52	52	52	52
Water Truck	2	0	0	0	0	0	0	0	0	0	0	0	0
Delivery Truck	2	0	0	0	0	0	0	0	0	0	0	0	0
1 Ton Truck	2	2	2	2	2	2	2	2	2	2	2	2	2
Misc. MD Truck	5	0	0	0	0	0	0	0	0	0	0	0	0
Total Medium Truck Miles		4	4	4	4	4	4	4	4	4	4	4	4
Truck, Dump Ford LT8000	2	0	0	0	0	0	0	0	0	0	0	0	0
Concrete Truck	2	0	0	0	0	0	0	0	0	0	0	0	0
Semi-Tractor, Diesel 20 Ton	2	0	0	0	0	0	0	0	0	0	0	0	0
Misc. HD Truck	2	0	0	0	0	0	0	0	0	0	0	0	0
Total Heavy Truck Miles		0	0	0	0	0	0	0	0	0	0	0	0
		-,				-,							
	Emission Rate						Month (It	n/day)					
	(lb/mi) ⁽¹⁾						•						
voc	2020	37	38	39	40	41	42	43	44	45	46	47	48
Light Duty	0.0000500	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.0002070	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0005255	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
со	2020	37	38	39	40	41	42	43	44	45	46	47	48
Light Duty	0.0020822	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
Medium Duty	0.0014978	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Heavy Duty	0.0037333	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
NOx	2020	37	38	39	40	41	42	43	44	45	46	47	48
Light Duty	0.0003340	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Medium Duty	0.0036069	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Heavy Duty	0.0094828	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
SOx	2020	37	38	39	40	41	42	43	44	45	46	47	48
Light Duty	0.0000090	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.000030	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0000210	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.000000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM10	2020	37	38	39	40	41	42	43	44	45	46	47	48
Light Duty Exhaust	0.0001057	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Medium Duty Exhaust	0.0003696	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty Exhaust	0.0004016	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Exhaust PM		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Light Duty Fugitive ⁽²⁾	0.000221	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Medium Duty Fugitve ⁽²⁾	0.000467	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty Fugitive ⁽²⁾	0.002314	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Fugitive PM		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total		0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
CO _{2EQ}	2020	37	38	39	40	41	42	43	44	45	46	47	48
Light Duty	0.907	47.14	47.14	47.14	47.14	47.14	47.14	47.14	47.14	47.14	47.14	47.14	47.14
Medium Duty	2.244	8.98	8.98	8.98	8.98	8.98	8.98	8.98	8.98	8.98	8.98	8.98	8.98
Heavy Duty	3.742	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	J./72	56.12	56.12	56.12	56.12	56.12	56.12	56.12	56.12	56.12	56.12	56.12	56.12
		00.7E	UU. 12	00.1E	55. IL	00.1E	00.1E	00.1E	00.7E	00.1Z	00.7E	00.7E	00.12

Total (1) Emfac2011 emission factors for the South Coast Air District.

		2020	
Chemical	Light	Medium	Heavy
CO2 (lb/mi)	0.8952	2.2405	3.7388
CH4 (g/mi)	0.0148	0.0051	0.0051
N2O (g/mi)	0.0157	0.0048	0.0048
CO2e (lb/mi)	0.907	2.244	3.742

⁽²⁾ Emission Calculations for travel on paved roads from EPA AP-42 Section 13.2.1, January 2011

E = k(sL)^{0.91} x (W)^{1.02}

Where: k = 0.0022 lb/VMT for PM10, sL = road silt loading (gms/m2)

 $^{(0.03 \ \}text{for major/collector roads}), \ \text{W} = \text{weight of vehicles} \ (2.5 \ \text{tons for light}; 5.5 \ \text{for medium trucks},$

and 24 for heavy trucks)

⁽³⁾ Carbon Dioxide Equivalence (CO_E) = CO₂ + CH₄ * 21 + N2O*310

where CO2 emissions factors are from Emfac2011. CH4 and N2O emissions factors are from Direct Emissions from Mobile Combustion Sources, EPA 2008.

where light vehicle are gasoline light duty trucks.

Onsite Construction Vehicle Trip Emissions

	Ī	Month (Vehicles per day)											
Vehicle	Miles per Day	49	50	51	52	53	54	55	56	57	58	59	60
Cars	2												
Pickup Trucks	2	12	12	12	12	12	12	12	12	12	12	12	12
Total Light Vehicle Miles		24	24	24	24	24	24	24	24	24	24	24	24
Water Truck	2	1	1	1	1	1	1	1	1	1	1	1	1
Delivery Truck	2	- '				'		'					
1 Ton Truck	2	1	1	1	1	1	1	1	1	1	1	1	1
Misc. MD Truck	5			·		·	·	·			T T	1	
Total Medium Truck Miles	Ů	4	4	4	4	4	4	4	4	4	4	4	4
Truck, Dump Ford LT8000	2												
Concrete Truck	2												
Semi-Tractor, Diesel 20 Ton	2	-											
Misc. HD Truck	2												
Total Heavy Truck Miles		0	0	0	0	0	0	0	0	0	0	0	0
Total Froat y Track Minoc			,	•	•							<u> </u>	
	Emission Rate												
	(lb/mi) ⁽¹⁾						Month (II	o/day)					
VOC	2021	49	50	51	52	53	54	55	56	57	58	59	60
Light Duty	0.0000468	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.0001899	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0005326	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO	2021	49	50	51	52	53	54	55	56	57	58	59	60
Light Duty	0.0019703	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Medium Duty	0.0013312	0.01	0.01	0.01	0.01	0.01 0.00	0.01	0.01	0.01 0.00	0.01	0.01	0.01	0.01
Heavy Duty Total	0.0037449	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.05	0.00	0.00
Total		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
NOx	2021	49	50	51	52	53	54	55	56	57	58	59	60
Light Duty	0.0003142	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Medium Duty	0.0026402	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Heavy Duty	0.0082454	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
								•					
SOx	2021	49	50	51	52	53	54	55	56	57	58	59	60
Light Duty	0.0000090	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.0000215	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0000357	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM10	2021	49	50	51	52	53	54	55	56	57	58	59	60
Light Duty Exhaust	0.0001057	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty Exhaust	0.0001037	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty Exhaust	0.0003400	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Exhaust PM	0.0004000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Light Duty Fugitive ⁽²⁾	0.000230	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.01
Medium Duty Fugitive ⁽²⁾	0.000230	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty Fugitive ⁽²⁾	+	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.00
	0.002314				0.00							0.00	
Total Fugitive PM		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
CO _{2EQ}	2021	49	50	51	52	53	54	55	56	57	58	59	60
Light Duty	0.909	21.82	21.82	21.82	21.82	21.82	21.82	21.82	21.82	21.82	21.82	21.82	21.82
Medium Duty	2.243	8.97	8.97	8.97	8.97	8.97	8.97	8.97	8.97	8.97	8.97	8.97	8.97
Heavy Duty	3.741	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	5.741	30.79	30.79	30.79	30.79	30.79	30.79	30.79	30.79	30.79	30.79	30.79	30.79
(1) Emfac2011 emission factors for the South C		30.13	30.18	30.19	30.13	50.75	30.19	30.13	30.79	30.19	30.19	50.73	55.18

⁽¹⁾ Emfac2011 emission factors for the South Coast Air District.

where medium/heavy duty vehicle are diesel heavy duty trucks.

	2021							
Chemical	Light	Medium	Heavy					
CO2 (lb/mi)	0.8978	2.2393	3.7375					
CH4 (g/mi)	0.0148	0.0051	0.0051					
N2O (g/mi)	0.0157	0.0048	0.0048					
CO2e (lb/mi)	0.909	2.243	3.741					

⁽²⁾ Emission Calculations for travel on paved roads from EPA AP-42 Section 13.2.1, January 2011

E = k(sL)^{0.91} x (W)^{1.02}

Where: k = 0.0022 lb/VMT for PM10, sL = road silt loading (gms/m2)

 $^{(0.03 \ \}text{for major/collector roads}), \ \text{W} = \text{weight of vehicles} \ (2.5 \ \text{tons for light}; 5.5 \ \text{for medium trucks},$

and 24 for heavy trucks)

⁽³⁾ Carbon Dioxide Equivalence (CO_E) = CO₂ + CH₄ * 21 + N2O*310

where CO2 emissions factors are from Emfac2011. CH4 and N2O emissions factors are from Direct Emissions from Mobile Combustion Sources, EPA 2008. where light vehicle are gasoline light duty trucks.

Onsite Construction Vehicle Trip Emissions

	Ī	Month (Vehicles per day)											
Vehicle	Miles per Day	61	62	63	64	65	66	67	68	69	70	71	72
Cars	2												
Pickup Trucks	2	12	12	12	12	12	12	12	12	12	12	12	12
Total Light Vehicle Miles		24	24	24	24	24	24	24	24	24	24	24	24
Water Truck	2	1	1	1	1	1	1	1	1	1	1	1	1
Delivery Truck	2												
1 Ton Truck	2	1	1	1	1	1	1	1	1	1	1	1	1
Misc. MD Truck	5												
Total Medium Truck Miles		4	4	4	4	4	4	4	4	4	4	4	4
Truck, Dump Ford LT8000	2	1	1	1	1							1	
Concrete Truck	2												
Semi-Tractor, Diesel 20 Ton	2												
Misc. HD Truck	2												
Total Heavy Truck Miles	_	0	0	0	0	0	0	0	0	0	0	0	0
	•	•	•	•	•	•		•	•			•	-
	Emission Rate						Month (II	h/day)					
	(lb/mi) ⁽¹⁾						•	• •					
VOC	2022	61	62	63	64	65	66	67	68	69	70	71	72
Light Duty	0.0000334	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.0001827	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0002879	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								1			1		
CO	2022	61	62	63	64	65	66	67	68	69	70	71	72
Light Duty Medium Duty	0.0015625 0.0047700	0.04 0.02	0.04 0.02	0.04 0.02	0.04 0.02	0.04 0.02	0.04 0.02	0.04 0.02	0.04 0.02	0.04	0.04 0.02	0.04	0.04
Heavy Duty	0.0047700	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	0.0023003	0.06	0.06	0.06	0.06	0.06	0.00	0.06	0.06	0.06	0.06	0.00	0.06
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NOx	2022	61	62	63	64	65	66	67	68	69	70	71	72
NOx Light Duty	2022 0.0001816	61	62	63	64 0.00	65	66	67	68 0.00	69	70	71	72
NOx Light Duty Medium Duty	2022 0.0001816 0.0026666	0.00 0.01		63 0.00 0.01	0.00 0.01	65 0.00 0.01	0.00 0.01		68 0.00 0.01	69 0.00 0.01	70 0.00 0.01	71 0.00 0.01	72 0.00 0.01
Light Duty	0.0001816	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Light Duty Medium Duty	0.0001816 0.0026666	0.00 0.01	0.00 0.01	0.00 0.01	0.00 0.01	0.00 0.01	0.00 0.01	0.00 0.01	0.00 0.01	0.00 0.01	0.00 0.01	0.00 0.01	0.00 0.01
Light Duty Medium Duty Heavy Duty Total	0.0001816 0.0026666 0.0079545	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00	0.00 0.01 0.00 0.02	0.00 0.01 0.00	0.00 0.01 0.00	0.00 0.01 0.00 0.02	0.00 0.01 0.00	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00
Light Duty Medium Duty Heavy Duty Total	0.0001816 0.0026666 0.0079545	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02
Light Duty Medium Duty Heavy Duty Total SOx Light Duty	0.0001816 0.0026666 0.0079545 2022 0.0000066	0.00 0.01 0.00 0.02 61 0.00	0.00 0.01 0.00 0.02 62 0.00	0.00 0.01 0.00 0.02 63 0.00	0.00 0.01 0.00 0.02 64 0.00	0.00 0.01 0.00 0.02 65 0.00	0.00 0.01 0.00 0.02 66 0.00	0.00 0.01 0.00 0.02 67 0.00	0.00 0.01 0.00 0.02 68 0.00	0.00 0.01 0.00 0.02 69 0.00	0.00 0.01 0.00 0.02 70 0.00	0.00 0.01 0.00 0.02 71 0.00	0.00 0.01 0.00 0.02 72 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242	0.00 0.01 0.00 0.02 61 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00	0.00 0.01 0.00 0.02 64 0.00 0.00	0.00 0.01 0.00 0.02 65 0.00 0.00	0.00 0.01 0.00 0.02 66 0.00 0.00	0.00 0.01 0.00 0.02 67 0.00 0.00	0.00 0.01 0.00 0.02 68 0.00 0.00	0.00 0.01 0.00 0.02 69 0.00 0.00	70 0.00 0.01	0.00 0.01 0.00 0.02 71 0.00 0.00	0.00 0.01 0.00 0.02 72 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty	0.0001816 0.0026666 0.0079545 2022 0.0000066	0.00 0.01 0.00 0.02 61 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00	0.00 0.01 0.00 0.02 64 0.00 0.00	0.00 0.01 0.00 0.02 65 0.00 0.00	0.00 0.01 0.00 0.02 66 0.00 0.00	0.00 0.01 0.00 0.02 67 0.00 0.00	0.00 0.01 0.00 0.02 68 0.00 0.00	0.00 0.01 0.00 0.02 69 0.00 0.00	70 0.00 0.01 0.00 0.02	0.00 0.01 0.00 0.02 71 0.00 0.00	0.00 0.01 0.00 0.02 72 0.00 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242	0.00 0.01 0.00 0.02 61 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00	0.00 0.01 0.00 0.02 64 0.00 0.00	0.00 0.01 0.00 0.02 65 0.00 0.00	0.00 0.01 0.00 0.02 66 0.00 0.00	0.00 0.01 0.00 0.02 67 0.00 0.00	0.00 0.01 0.00 0.02 68 0.00 0.00	0.00 0.01 0.00 0.02 69 0.00 0.00	70 0.00 0.01	0.00 0.01 0.00 0.02 71 0.00 0.00	0.00 0.01 0.00 0.02 72 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00 0.00	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00	0.00 0.01 0.00 0.02 65 0.00 0.00 0.00	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00	70 0.00 0.02 70 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 71 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 72 0.00 0.00 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00 0.00	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00	0.00 0.01 0.00 0.02 65 0.00 0.00 0.00	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00	70 0.00 0.01 0.00 0.02 70 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 71 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 72 0.00 0.00 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327 2022 0.0001053	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00 0.00 61	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00 0.00 62 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00 0.00 0.00 63	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 64 0.00	0.00 0.01 0.00 0.02 65 0.00 0.00 0.00 0.00 65 0.00	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 0.00 68 0.00	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00	70 0.00 0.01 0.00 0.02 70 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 71 0.00 0.00 0.00 0.00 71 0.00	0.00 0.01 0.00 0.02 72 0.00 0.00 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327 2022 0.0001053 0.0003687	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00 61 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00 62 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00 0.00 63 0.00 0.00	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 64 0.00	0.00 0.01 0.00 0.02 65 0.00 0.00 0.00 65 0.00 0.00	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 67 0.00 0.00	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 68 0.00 0.00	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00 69 0.00 0.00	0.00 0.01 0.00 0.02 70 0.00 0.00 0.00 0.00 70 0.00	0.00 0.01 0.00 0.02 71 0.00 0.00 0.00 71 0.00 0.00	0.00 0.01 0.00 0.02 72 0.00 0.00 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327 2022 0.0001053	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00 61 0.00 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00 62 62 0.00 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00 0.00 63 0.00 0.00 0.00	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 64 0.00 0.00	0.00 0.01 0.00 0.02 65 0.00 0.00 0.00 65 0.00 0.00	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 66 0.00 0.00 0.00	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 67 0.00 0.00 0.00	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 68 0.00 0.00 0.00	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00 69 0.00 0.00	70 0.00 0.00 0.02 70 0.00 0.00 0.00 70 0.00 0.0	0.00 0.01 0.00 0.02 71 0.00 0.00 0.00 71 0.00 0.00 0.00	0.00 0.01 0.00 0.02 72 0.00 0.00 0.00 0.00 72 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Total Exhaust PM	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.000242 0.0000327 2022 0.0001053 0.0003687 0.0002447	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00 61 0.00 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00 62 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00 0.00 0.00 63 0.00 0.00 0.00	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 64 0.00 0.00 0.00	0.00 0.01 0.00 0.02 65 0.00 0.00 0.00 65 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 66 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 67 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 0.00 68 0.00 0.00 0.0	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00	70 0.00 0.01 0.00 0.02 70 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 71 0.00 0.00 0.00 0.00 71 0.00 0.00	0.00 0.01 0.00 0.02 72 0.00 0.00 0.00 72 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Houty Exhaust Total Exhaust Light Duty Fugitive ⁽²⁾	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327 2022 0.0001053 0.0003687 0.0002447	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00 62 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 0.00 67 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 70 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 72 0.00 0.00 0.00 0.00 72 0.00 0.00 0.00 0.00 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Hey Duty Fugitve ⁽²⁾	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327 2022 0.0001053 0.0003687 0.0002447 0.000230 0.000230	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	70 0.00 0.00 0.02 70 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 72 0.00 0.
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Medium Duty Fugitive ⁽²⁾ Medium Duty Fugitive ⁽²⁾ Heavy Duty Fugitive ⁽²⁾	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327 2022 0.0001053 0.0003687 0.0002447	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	70 0.00 0.01 0.00 0.02 70 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 71 0.00 0.	0.00 0.01 0.00 0.02 72 0.00 0.00 0.00 0.00 72 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Total Exhaust PM Light Duty Fugitive ⁽²⁾ Medium Duty Fugitive ⁽²⁾ Heavy Duty Fugitive ⁽²⁾ Total Fugitive PM	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327 2022 0.0001053 0.0003687 0.0002447 0.000230 0.000230	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	70 0.00 0.01 0.00 0.02 70 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 71 0.00 0.	72 0.00 0.01 0.00 0.02 72 0.00 0.00 0.00 0.00 0.00 0
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Medium Duty Fugitive ⁽²⁾ Medium Duty Fugitive ⁽²⁾ Heavy Duty Fugitive ⁽²⁾	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327 2022 0.0001053 0.0003687 0.0002447 0.000230 0.000230	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	70 0.00 0.01 0.00 0.02 70 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 71 0.00 0.	0.00 0.01 0.00 0.02 72 0.00 0.00 0.00 0.00 72 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Total Exhaust PM Light Duty Fugitive ⁽²⁾ Medium Duty Fugitive ⁽²⁾ Heavy Duty Fugitive ⁽²⁾ Total Fugitive PM Total	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327 2022 0.0001053 0.0003687 0.0002447 0.000230 0.000515 0.002314	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	70 0.00 0.02 70 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.02 71 0.00 0.	0.00 0.01 0.00 0.02 72 0.00 0.00 0.00 0.00 0.00
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Total Exhaust PM Light Duty Fugitive ⁽²⁾ Medium Duty Fugitive ⁽²⁾ Heavy Duty Fugitive ⁽²⁾ Total Fugitive PM Total CO _{2EQ}	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327 2022 0.0001053 0.0003687 0.0002447 0.000230 0.000515 0.0002314	0.00 0.01 0.00 0.02 61 0.00 0.	0.00 0.01 0.00 0.02 62 0.00 0.	63 0.00 0.00 0.02 63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 65 0.00 0.	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	70 0.00 0.01 0.00 0.02 70 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 71 0.00 0.	0.00 0.01 0.00 0.02 72 0.00 0.
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Heavy Duty Exhaust Heavy Duty Fugitive ⁽²⁾ Medium Duty Fugitive ⁽²⁾ Heavy Duty Fugitive ⁽²⁾ Total Fugitive PM Total CO _{2EQ} Light Duty	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.000242 0.0000327 2022 0.0001053 0.0003687 0.0002447 0.000230 0.000515 0.0002314	0.00 0.01 0.00 0.02 61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 62 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 63 0.00 0.	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 65 0.00 0.	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	70 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.01 0.00	72 0.00 0.01 0.00 0.02 72 0.00 0.00 0.00 0.00 0.00 0
Light Duty Medium Duty Heavy Duty Total SOx Light Duty Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Total Exhaust PM Light Duty Fugitive ⁽²⁾ Medium Duty Fugitive ⁽²⁾ Heavy Duty Fugitive ⁽²⁾ Total Fugitive PM Total CO _{2EQ}	0.0001816 0.0026666 0.0079545 2022 0.0000066 0.0000242 0.0000327 2022 0.0001053 0.0003687 0.0002447 0.000230 0.000515 0.0002314	0.00 0.01 0.00 0.02 61 0.00 0.	0.00 0.01 0.00 0.02 62 0.00 0.	63 0.00 0.00 0.02 63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 65 0.00 0.	0.00 0.01 0.00 0.02 66 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	70 0.00 0.01 0.00 0.02 70 0.00 0.00 0.00 0.00 0.00 0	0.00 0.01 0.00 0.02 71 0.00 0.	0.00 0.01 0.00 0.02 72 0.00 0.

25.95

25.95

25.95

25.95

25.95

25.95

25.95

25.95

25.95

25.95

25.95

25.95

	2022					
Chemical	Light	Medium	Heavy			
CO2 (lb/mi)	0.6628	2.4390	3.5635			
CH4 (g/mi)	0.0148	0.0051	0.0051			
N2O (g/mi)	0.0157	0.0048	0.0048			
CO2e (lb/mi)	0.674	2.443	3.567			

Total (1) Emfac2011 emission factors for the South Coast Air District.

⁽²⁾ Emission Calculations for travel on paved roads from EPA AP-42 Section 13.2.1, January 2011

E = k(sL)^{0.91} x (W)^{1.02}

Where: k = 0.0022 lb/VMT for PM10, sL = road silt loading (gms/m2)

 $^{(0.03 \}text{ for major/collector roads}), W = \text{weight of vehicles} (2.5 \text{ tons for light}; 5.5 \text{ for medium trucks},$

and 24 for heavy trucks)

⁽³⁾ Carbon Dioxide Equivalence (CO_E) = CO₂ + CH₄ * 21 + N2O*310

where CO2 emissions factors are from Emfac2011. CH4 and N2O emissions factors are from Direct Emissions from Mobile Combustion Sources, EPA 2008.

where light vehicle are gasoline light duty trucks.

Onsite Construction Vehicle Trip Emissions

						Мо	nth (Vehicl	es per day)					
Vehicle	Miles per Day	73	74	75	76	77	78	79	80	81	82	83	84
Cars	2												
Pickup Trucks	2	12	12	12	12	12	12	12	12	12	12	12	12
Total Light Vehicle Miles		24	24	24	24	24	24	24	24	24	24	24	24
Water Truck	2	1	1	1	1	1	1	1	1	1	1	1	1
Delivery Truck	2	- '	- '	- '	'				- '	-		-	-
1 Ton Truck	2	1	1	1	1	1	1	1	1	1	1	1	1
Misc. MD Truck	5			·		·	·				i i	Ť	·
Total Medium Truck Miles	Ů	4	4	4	4	4	4	4	4	4	4	4	4
		· i									1	1	
Truck, Dump Ford LT8000 Concrete Truck	2 2												
Semi-Tractor, Diesel 20 Ton	2										-		
Misc. HD Truck	2												
Total Heavy Truck Miles	2	0	0	0	0	0	0	0	0	0	0	0	0
Total Fleavy Track Miles		<u>~</u> i	٠,	<u> </u>	٠,		•	<u>~</u> i	٠,		, v	<u> </u>	
	Emission Rate												
	(lb/mi) ⁽¹⁾						Month (II	b/day)					
voc	2023	73	74	75	76	77	78	79	80	81	82	83	84
Light Duty	0.0000334	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.0001827	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0002879	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO	2023	73	74	75	76	77	78	79	80	81	82	83	84
Light Duty	0.0015625 0.0047700	0.04 0.02	0.04	0.04 0.02	0.04 0.02	0.04 0.02	0.04 0.02	0.04 0.02	0.04 0.02	0.04	0.04 0.02	0.04 0.02	0.04
Medium Duty Heavy Duty	0.0047700	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	0.0023005	0.06	0.06	0.06	0.06	0.00	0.00	0.00	0.06	0.00	0.00	0.06	0.00
Total		0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
NOx	2023	73	74	75	76	77	78	79	80	81	82	83	84
Light Duty	0.0001816	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.0026666	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Heavy Duty	0.0079545	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
SOx	2023	73	74	75	76	77	78	79	80	81	82	83	84
Light Duty	0.0000066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.0000242	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0000327	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PM10	2023	73	74	75	76	77	78	79	80	81	82	83	04
Light Duty Exhaust	0.0001053	0.00	0.00	0.00	0.00	77	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty Exhaust	0.0001053	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty Exhaust	0.0003087	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Exhaust PM	0.0002441	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Light Duty Fugitive ⁽²⁾	0.000230	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.01
Medium Duty Fugitive ⁽²⁾	0.000230	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty Fugitive ⁽²⁾						0.00		0.00					
	0.002314	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00
Total Fugitive PM		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
CO	2023	73	74	75	76	77	78	79	80	81	82	83	84
CO _{2EQ} Light Duty	0.674	16.18	16.18	16.18	16.18	16.18	16.18	16.18	16.18	16.18	16.18	16.18	16.18
Medium Duty	2.443	9.77	9.77	9.77	9.77	9.77	9.77	9.77	9.77	9.77	9.77	9.77	9.77
Heavy Duty	3.567	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.301	25.95	25.95	25.95	25.95	25.95	25.95	25.95	25.95	25.95	25.95	25.95	25.95

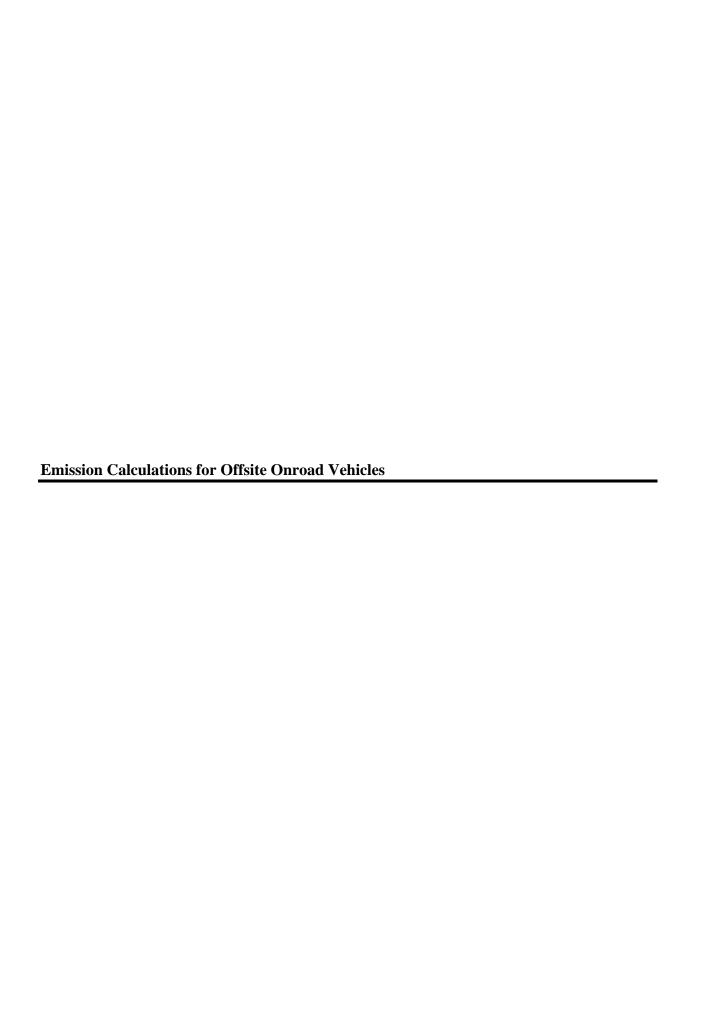
Total (1) Emfac2011 emission factors for the South Coast Air District.

where medium/heavy duty vehicle are diesel heavy duty trucks.

		2023	
Chemical	Light	Medium	Heavy
CO2 (lb/mi)	0.6628	2.4390	3.5635
CH4 (g/mi)	0.0148	0.0051	0.0051
N2O (g/mi)	0.0157	0.0048	0.0048
CO2e (lb/mi)	0.674	2.443	3.567

⁽²⁾ Emission Calculations for travel on paved roads from EPA AP-42 Section 13.2.1, January 2011

E = k(sL)^{0.91} x (W)^{1.02}


Where: k = 0.0022 lb/VMT for PM10, sL = road silt loading (gms/m2)

 $^{(0.03 \}text{ for major/collector roads}), W = \text{weight of vehicles } (2.5 \text{ tons for light; } 5.5 \text{ for medium trucks},$

and 24 for heavy trucks)

⁽³⁾ Carbon Dioxide Equivalence (CO_E) = CO₂ + CH₄ * 21 + N2O*310

where CO2 emissions factors are from Emfac2011. CH4 and N2O emissions factors are from Direct Emissions from Mobile Combustion Sources, EPA 2008. where light vehicle are gasoline light duty trucks.

Offsite Construction Vehicle Trip Emissions

						Ĭ	onth (Vehic	Month (Vehicles per day)					
Vehicle	Miles per Day	1	2	3	4	2	9		8	6	10	11	12
Tradesmen	29.4	0	0	0	0	0	0		328	301	366	488	488
Construction Staff	29.4						0			40	40	40	
Total Light Vehicle Miles		0	0	0	0	0	0	10260.6	10818	1002	11936.4	1552:	15523.2
	:	4	4			4	4				4	4	Ш
Water Iruck	40	0	0			0	0			0	0	0	0
Delivery I ruck	40	0	0			0	0			0	0	0	0 0
1 Ion Iruck	40	0	0				0				0	0	0
Misc. MD I ruck	40	0	0			0	0			0 0	0	0	0 0
Total Medium Truck Miles		0	0	0	0	0	0	0	,	0	0	0	0
Truck, Dump Ford LT8000	40	0	0	0	0	0	0	0		0 0	0	0	0
Hazardous Dump Trucks	400	0	0	0	0	0	0	15	15	15	15	9	9
Non-Haz Dump Trucks	200	0	0	0	0	0	0	13	13		12	18	18
Misc. HD Truck	40	0	0		0	0	0				19	30	25
Total Heavy Truck Miles		0	0		0	0	0	96	96	91(9160	72	2000
	Emission Rate						Month (Ib/day)	b/day)					
NOC	2017		2	3	4	2	9	7	8	6	10	11	12
iabt Duty	0 0001035		000			000	00 0	1.06		1 04	1 23	161	161
Medium Dity	0.0003717	00.0	000		000						00.0	000	000
Heavy Duty	0.0006131	00.00	00.0										
Total		0.00	0.00	00:00	00'0	00:00	00:00	7.00	7.05	6.65	6.85	6.02	5.90
00	2017	1	2	3	4	9	9	4	8	6	10	11	12
Light Duty	0.0033327	00.00	0.00			0.00		34.20	(1)	.,	39.78	51.73	51.73
Medium Duty	0.0030301	0.00	0.00		00'0						0.00	0.00	0.00
Heavy Duty	0.0043046	00.00	0.00			0.00				39.43	39.43	30.99	30.13
Total		0.00	0.00	0.00			0.00	75.86	77.73		79.21	82.73	81.87
À	2017		6	8	7	5	9	7	œ	σ	10	11	12
iobt Duty	0 0005080		000				000	521			90.9	7 89	7 89
Medium Duty	0.0082326	0.00	0.00		00.0						0.00	0.00	0.00
Heavy Duty	0.0154328	00.0	00.0					17	14	14	141.36	111.12	108.03
Total		0.00	0.00		00'0	00:00					ľ	119.00	115.92
SOx	2017	1	2	3	4	2	9	7	8	6	1	11	12
Light Duty	0.0000000	0.00	0.00		00'0							0.14	0.14
Medium Duty	0.0000217	0.00	0.00		0.00	0.00		0.00	0.00			0.00	0.00
Heavy Dufy	0.0000359	0.00	0.00		00'0							0.26	0.25
Total		0.00	0.00	0.00	0.00		0.00		0.45	0.42	0.44	0.40	0.39
27	17700		c	·	,	u	ű	-	0	•	4	77	ç
Linkt Duty Exhaust	0.0004084	-	000	,	•	•		1 00		1 07	1 27	1 85	1 85
Medium Duty Exhaust	0.0001004	00:0	0.00		00.0				2.0		12.0	00.0	8.0
Heavy Dufy Exhaust	0.0004727	0.00	0.00		00.0	00:0	00.0	4.58			4.33	3.40	3.31
Total Exhaust PM		000	000								5.60	5.05	4 96
Light Duty Funitive ⁽²⁾	0.000221	000	0.00								2.64	3.43	3.43
Medium Duty Flightye ⁽²⁾	0.000221	0.00	0.00									0.00	0.00
Heavy Duty Fugitive ²⁾	0.002314	000	0 0					ľ					16.20
Total Fugitive PM		00.0	0.00						24.79				ľ
Total		0.00	0.00										
C.	1700	,	·	·	,	4	ď	_	۰	٥	40	77	42
202EQ	7000	-	7			1	•	0306.64	0	ŏ	10006 64	14070 06	4407006
Medium Duty	2.261	0.00	0.00			00.0				_	0000	0.00	0.00
Heavy Duty	3.768	00:0	0.00		00:0				36471.82	34512.	34512.59	27127.80	26374.25
Total		0.00	0.00			0.00		45778.46			45339.23	41207.76	40454.21

H4 (g/mi)	0.0148	0.0051	0.0051
2O (g/mi)	0.0157	0.0048	0.0048
O2e (lb/mi)	206'0	2.261	3.768

Appendix B
Tesoro Integration and Compliance Project

Offsite Construction Vehicle Trip Emissions

						W	Month (Vehicles per day)	es per day)					
Vehicle	Miles per Day	13	14	15	16	17	18	19	20	21	22	23	24
Tradesmen	29.4	474	474	4	410	346	ေ	325	397	152	179	198	128
Construction Staff	29.4	40	40			40		40					
Total Light Vehicle Miles		15111.6	15111.6	13994.4	13230	11348.4	10731	10731	12847.8	5644.8	6438.6	6997.2	4939.2
Water Touck	40	U	U	U	U	U	U	U	O	U	U	U	C
Delivery Truck	40		0 0	0	0 0					0	0	0	
1 Ton Trinck	\$ 40			0	0 0					oc	c		
Misc MD Track	40		0 0	0	0 0					0	0	0	
Total Medium Truck Miles	P	0	0	0	0	0	0				0	0	0
L	9												
I ruck, Dump Ford L I 8000	40	0		0	0	0	0				0	0	0 1
Hazardous Dump Trucks	400	٥١٩	6	n g	ח מ	9	n o				- 0		- 0
Non-Haz Dump Trucks	700	36	20	20	20	20	20	0L	0L	0L	Q CS	Q	0
Total Heavy Truck Miles	P	0002	9040	9040	0380	9360	0380	5480	5480	2	4080	4080	4080
Commission of the Commission o		200	2	2	2000	2000	2000	8	8		200	200	
	Emission Rate						Month (Ib/day)	b/day)					
700	2018	13	14	15	16	17	18	19	20	21	22	23	24
idet Duty	0.0000	90 0	0 0		0.84	0.72	990				0.44	0.44	0.33
Medium Duty	0.0000039	00.0			000		00.0	00.0			0.00	000	000
Heavy Durk	0.0005354	3.75			501						2.18		2 18
Total		4.71	5.80	5.73	5.85	5.73	5.69	3.62	3.75	3.29	2.59	2.63	2.50
00	2018	13	14	15	16	17	18	1	20	``	22	23	24
-ight Duty	0.0024424	36.91	(,)	34.18	32.31	27.72	26.21		(*)	,	15.73	17.09	12.06
Medium Duty	0.0019739	0.00		0.00	0.00						0.00	0.00	0.00
Heavy Duty	0.0038177	26.72	34.51		35.73	35.73		20.92	20.92	20.92	15.58	15.58	15.58
otal		63.63	71.42		68.05		61.94				31.30	32.67	27.64
×ON	2018	13	14	15	16	17	18	19	20	2.1	22	23	24
ight Duty	0.0003881	5.86	5.86	5.43	5.13	4.40	4.16				2.50	2.72	1.92
Medium Duty	0.0053355	00.0			0.00	0.00					0.00	0.00	0.00
Heavy Duty	0.0114857	80.40	10	1(107.51	107.51		62.94		9	46.86	46.86	46.86
Total		86.26			112.64	111.91	111.67	67.11	67.93		49.36	49.58	48.78
	0,00	9	;	.,	9	,	9	9	0	3	00		3
SOX	2018	13	14	15	16	-	18	19	20	7.7	77	57	47
Medium Duty	0.0000030	000			0.00	0.10					0.00	0.00	0.0
Heavy Duty	0.0000359	0.25			0.34		0.34		0.20		0.15	0.15	0.15
Total		0.39	0.46		0.45					0.25	0.20	0.21	0.19
				•									
PM10	2018	13	14	15	16	17	18	19	20	7	22	23	24
Light Duty Exhaust	0.0001058	1.60		1.48	1.40						0.68	0.74	0.52
Medium Duty Exhaust	0.0004105	00:0	0.00	0.00	0.00	0.00					0.00	0.00	00:00
Heavy Duty Exhausi	0.0004029	2.82	3.64		3.77			7.27			1.64	1.64	1.64
Total Exhaust PM	=	4.42	5.24		5.17	4.97					2.32	2.38	2.17
Light Duty Fugitive ²⁾	0.000221	3.34	3.34		2.92	2.51					1.42	1.55	1.09
Medium Duty Fugitve ⁽²⁾	0.000467	0.00			0.00						0.00		0.00
Heavy Duty Fugitive ⁽²⁾	0.002314	16.20		20.92	21.66	21.66					9.44		9.44
Total Fugitive PM		19.54	24.26		24.59	24.17	24.03	15.05	15.52	13.93	10.87	10.99	10.53
Total		23.96	29.50	29.14	29.76	29.14	28.94	18.40	19.09	16.73	13.19	13.37	12.70
03	2018	13	14	15	16	17	18	19	20	21	22	23	24
ight Duty	806.0	13719.85	13719.85	12705 55	12011.55	10303 24	97.42.70	9742 70	1166455	2	5845 62	6352 77	4484 31
Medium Duty	2.256	00.0	0.00	0.00	000	0.00	00.0	000	00.0		0.00	0.00	000
Heavy Duty	3.759	26310.00	33977.49	33977.49	35180.23	35180.23	35180.23	20596.97	20596.97	20596.	15334.97	15334.97	15334.97
Total	-	40029.86	47697.35		47191.78	45483.47	44922.93		32261.52	_	21180.59	21687.75	19819.28

| 1081 | Camisor Calculations for the South Coast Air District. | C) Emission Calculations for travel on paved roads from EPA AP-42 Section 13.2.1, January 2011 | E = Kelly "x (vi)" = Kelly "x

Chemical	Light	Medium	Heavy
CO2 (lb/mi)	0.8965	2.2522	3.7551
CH4 (g/mi)	0.0148	0.0051	0.0051
N2O (g/mi)	0.0157	0.0048	0.0048
CO2e (lb/mi)	0.908	2.256	3.759

Offsite Construction Vehicle Trip Emissions

Month (Vehicles per day)

							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	oo po. aay					
Vehicle	Miles per Day	25	26	27	28	29	30	31	32	33	34	35	36
Tradesmen	29.4	140	196	196	163	163	163	163	207	114	114	114	114
Construction Staff	29.4	40	40	40	40	40	40	40	40	40	40	40	40
Total Light Vehicle Miles		5292	6938.4	6938.4	5968.2	5968.2	5968.2	5968.2	7261.8	4527.6	4527.6	4527.6	4527.6
Water Truck	40	0	0	0	0	0	0	0	0	0	0	0	0
Delivery Truck	40	0	0	0	0	0	0	0	0	0	0	0	0
1 Ton Truck	40	0	0	0	0	0	0	0	0	0	0	0	0
Misc. MD Truck	40	0	0	0	0	0	0	0	0	0	0	0	0
Total Medium Truck Miles		0	0	0	0	0	0	0	0	0	0	0	0
Truck, Dump Ford LT8000	40	0	0	0	0	0	0	0	0	0	0	0	0
Hazardous Dump Trucks	400	1	1	1	1	2	2	2	1	1	1	0	0
Non-Haz Dump Trucks	200	6	4	4	4	1	1	1	1	1	1	1	1
Misc. HD Truck	40	62	66	62	62	55	55	55	10	10	10	7	7
Total Heavy Truck Miles		4080	3840	3680	3680	3200	3200	3200	1000	1000	1000	480	480
	Emission Rate												
	(lb/mi) ⁽¹⁾						Month (II	o/day)					
voc	2019	25	26	27	28	29	30	31	32	33	34	35	36
Light Duty	0.0000548	0.29	0.38	0.38	0.33	0.33	0.33	0.33	0.40	0.25	0.25	0.25	0.25
Medium Duty	0.0002379	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0005283	2.16	2.03	1.94	1.94	1.69	1.69	1.69	0.53	0.53	0.53	0.25	0.25
Total		2.45	2.41	2.32	2.27	2.02	2.02	2.02	0.93	0.78	0.78	0.50	0.50
00	2010												
CO Light Duty	2019 0.0022305	25 11.80	26 15.48	27 15.48	28 13.31	29 13.31	30 13.31	31 13.31	32 16.20	33 10.10	34 10.10	35 10.10	36 10.10
Medium Duty	0.0022305	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0017339	15.37	14.47	13.87	13.87	12.06	12.06	12.06	3.77	3.77	3.77	1.81	1.81
Total	0.0037076	27.18	29.94	29.34	27.18	25.37	25.37	25.37	19.97	13.87	13.87	11.91	11.91
NOx	2019	25	26	27	28	29	30	31	32	33	34	35	36
Light Duty	0.0003585	1.90	2.49	2.49	2.14	2.14	2.14	2.14	2.60	1.62	1.62	1.62	1.62
Medium Duty	0.0046291	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0107049	43.68	41.11	39.39	39.39	34.26	34.26	34.26	10.70	10.70	10.70	5.14	5.14
Total		45.57	43.59	41.88	41.53	36.40	36.40	36.40	13.31	12.33	12.33	6.76	6.76
SOx	2019	25	26	27	28	29	30	31	32	33	34	35	36
Light Duty	0.0000090	0.05	0.06	0.06	0.05	0.05	0.05	0.05	0.07	0.04	0.04	0.04	0.04
Medium Duty	0.0000215	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0000357	0.15	0.14	0.13	0.13	0.11	0.11	0.11	0.04	0.04	0.04	0.02	0.02
Total	•	0.19	0.20	0.19	0.18	0.17	0.17	0.17	0.10	0.08	0.08	0.06	0.06
DM40	1 2040	05	00	07	20	20	20	24	20	22		25	20
PM10 Light Duty Exhaust	2019 0.0001057	25 0.56	26 0.73	27 0.73	28 0.63	29 0.63	30 0.63	31 0.63	32 0.77	33 0.48	34 0.48	35 0.48	36 0.48
Medium Duty Exhaust	0.0001057	0.56	0.73	0.73	0.63	0.63	0.63	0.63	0.77	0.48	0.48	0.48	0.48
Heavy Duty Exhaust	0.0003940	1.64	1.55	1.48	1.48	1.29	1.29	1.29	0.00		0.00	0.00	0.00
Total Exhaust PM	0.0004031	2.20	2.28	2.22	2.11	1.92	1.29	1.29	1.17	0.40	0.40	0.19	0.19
Light Duty Fugitive ⁽²⁾	0.000230	1.22	1.60	1.60	1.38	1.38	1.92	1.92	1.17	1.04	1.04	1.04	1.04
Medium Duty Fugitve ⁽²⁾	0.000230	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty Fugitive ⁽²⁾	0.002314	9.44	8.89	8.52	8.52	7.41	7.41	7.41	2.31	2.31	2.31	1.11	1.11
Total Fugitive PM	0.002314	10.66	10.49	10.12	9.89	8.78	8.78	8.78	3.99	3.36	3.36	2.15	2.15
·						10.70	10.70		5.16	4.24	3.3b 4.24	2.15	
Total		12.87	12.77	12.33	12.01	10.70	10.70	10.70	5.16	4.24	4.24	2.83	2.83
CO _{2EQ}	2019	25	26	27	28	29	30	31	32	33	34	35	36
Light Duty	0.906	4796.24	6288.41	6288.41	5409.10	5409.10	5409.10	5409.10	6581.51	4103.45	4103.45	4103.45	4103.45
Medium Duty	2.247	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	3 745	15280 70	14381 83	13782 59	13782 59	11984 86	11984 86	11984 86	3745 27	3745 27	3745 27	1797 73	1797 73

Heavy Duty Total (1) Emfac2011 emission factors for the South Coast Air District.

3.745

14381.8

		2019	
Chemical	Light	Medium	Heavy
CO2 (lb/mi)	0.8949	2.2430	3.7418
CH4 (g/mi)	0.0148	0.0051	0.0051
N2O (g/mi)	0.0157	0.0048	0.0048
CO2e (lb/mi)	0.906	2.247	3.745

⁽¹⁾ Emission Indicates for the south Coast Air District.

2) Emission Calculations for travel on paved roads from EPA AP-42 Section 13.2.1, January 2011

E = k(sl. f)⁵¹ x (W))¹²⁰

Where: k = 0.002 b/WT for PM10, sl = road sitt loading (gms/m2)
(0.03 for major/collector roads), W = weight of vehicles (2.5 tons for light; 5.5 for medium trucks, and 24 for heavy trucks)

⁽Q) = CO₂ + CH₄ * 21 + N2O*310

where CO2 emissions factors are from Emfac2011. CH4 and N2O emissions factors are from Direct Emissions from Mobile Combustion Sources, EPA 2008. where light vehicle are gasoline light duty trucks.

Offsite Construction Vehicle Trip Emissions

Month (Vehicles per day)

							nth (Vehicle:						
Vehicle	Miles per Day	37	38	39	40	41	42	43	44	45	46	47	48
Tradesmen	29.4	114	114	114	114	114	114	114	114	114	114	114	114
Construction Staff	29.4	40	40	40	40	40	40	40	40	40	40	40	40
Total Light Vehicle Miles		4527.6	4527.6	4527.6	4527.6	4527.6	4527.6	4527.6	4527.6	4527.6	4527.6	4527.6	4527.6
Water Truck	40	0	0	0	0	0	0	0	0	0	0	0	0
Delivery Truck	40	0	0	0	0	0	0	0	0	0	0	0	0
1 Ton Truck	40	0	0	0	0	0	0	0	0	0	0	0	0
Misc. MD Truck	40	0	0	0	0	0	0	0	0	0	0	0	0
Total Medium Truck Miles		0	0	0	0	0	0	0	0	0	0	0	0
Truck, Dump Ford LT8000	40	0	0	0	0	0	0	0	0	0	0	0	0
Hazardous Dump Trucks	400	0	0	0	0	0	0	0	0	0	0	0	0
Non-Haz Dump Trucks	200	1	0	0	0	0	0	0	0	0	0	0	0
Misc. HD Truck	40	7	5	5	5	5	5	5	5	5	5	5	5
Total Heavy Truck Miles		480	200	200	200	200	200	200	200	200	200	200	200
	Emission Rate												
	(lb/mi) ⁽¹⁾						Month (lb/	day)					
VOC	2020	37	38	39	40	41	42	43	44	45	46	47	48
Light Duty	0.0000500	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23
Medium Duty	0.0002070	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0005255	0.25	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
Total	0.0000200	0.48	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Total		0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
co	2020	37	38	39	40	41	42	43	44	45	46	47	48
Light Duty	0.0020822	9.43	9.43	9.43	9.43	9.43	9.43	9.43	9.43	9.43	9.43	9.43	9.43
Medium Duty	0.0014978	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0037333	1.79	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Total		11.22	10.17	10.17	10.17	10.17	10.17	10.17	10.17	10.17	10.17	10.17	10.17
NOx	2020	37	38	39	40	41	42	43	44	45	46	47	48
Light Duty	0.0003340	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51
Medium Duty	0.003340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0094828	4.55	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90
Total	0.0034020	6.06	3.41	3.41	3.41	3.41	3.41	3.41	3.41	3.41	3.41	3.41	3.41
			*****	*****		*****	*****	*****	*****	*****	*****	*****	• • • • • • • • • • • • • • • • • • • •
SOx										45	40	47	
Light Duty	2020	37	38	39	40	41	42	43	44	45	46		48
Light Duty	0.0000090	37 0.04	38 0.04	0.04	0.04	41 0.04	42 0.04	43 0.04	0.04	0.04	0.04	0.04	48 0.04
Medium Duty	0.0000090 0.0000215	0.04 0.00	0.04 0.00	0.04	0.04	0.04 0.00	0.04	0.04 0.00	0.04 0.00	0.04	0.04	0.04 0.00	0.04
	0.0000090	0.04	0.04	0.04	0.04	0.04	0.04 0.00 0.01	0.04 0.00 0.01	0.04	0.04	0.04	0.04	0.04
Medium Duty	0.0000090 0.0000215	0.04 0.00	0.04 0.00	0.04	0.04	0.04 0.00	0.04	0.04 0.00	0.04 0.00	0.04	0.04	0.04 0.00	0.04
Medium Duty Heavy Duty Total	0.000090 0.0000215 0.0000357	0.04 0.00 0.02 0.06	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05
Medium Duty Heavy Duty Total PM10	0.000090 0.0000215 0.0000357	0.04 0.00 0.02 0.06	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05	0.04 0.00 0.01 0.05
Medium Duty Heavy Duty Total PM10 Light Duty Exhaust	0.000090 0.0000215 0.0000357 2020 0.0001057	0.04 0.00 0.02 0.06 37 0.48	0.04 0.00 0.01 0.05 38 0.48	0.04 0.00 0.01 0.05 39 0.48	0.04 0.00 0.01 0.05 40	0.04 0.00 0.01 0.05 41 0.48	0.04 0.00 0.01 0.05 42 0.48	0.04 0.00 0.01 0.05 43 0.48	0.04 0.00 0.01 0.05 44 0.48	0.04 0.00 0.01 0.05 45 0.48	0.04 0.00 0.01 0.05 46 0.48	0.04 0.00 0.01 0.05 47 0.48	0.04 0.00 0.01 0.05 48 0.48
Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust	0.0000090 0.0000215 0.0000357 2020 0.0001057 0.0003696	0.04 0.00 0.02 0.06 37 0.48 0.00	0.04 0.00 0.01 0.05 38 0.48 0.00	0.04 0.00 0.01 0.05 39 0.48 0.00	0.04 0.00 0.01 0.05 40 0.48 0.00	0.04 0.00 0.01 0.05 41 0.48 0.00	0.04 0.00 0.01 0.05 42 0.48 0.00	0.04 0.00 0.01 0.05 43 0.48 0.00	0.04 0.00 0.01 0.05 44 0.48	0.04 0.00 0.01 0.05 45 0.48	0.04 0.00 0.01 0.05 46 0.48 0.00	0.04 0.00 0.01 0.05 47 0.48 0.00	0.04 0.00 0.01 0.05 48 0.48
Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust	0.000090 0.0000215 0.0000357 2020 0.0001057	0.04 0.00 0.02 0.06 37 0.48 0.00 0.19	0.04 0.00 0.01 0.05 38 0.48 0.00 0.08	0.04 0.00 0.01 0.05 39 0.48 0.00 0.08	0.04 0.00 0.01 0.05 40 0.48 0.00 0.08	0.04 0.00 0.01 0.05 41 0.48 0.00 0.08	0.04 0.00 0.01 0.05 42 0.48 0.00 0.08	0.04 0.00 0.01 0.05 43 0.48 0.00 0.08	0.04 0.00 0.01 0.05 44 0.48 0.00 0.08	0.04 0.00 0.01 0.05 45 0.48 0.00 0.08	0.04 0.00 0.01 0.05 46 0.48 0.00 0.08	0.04 0.00 0.01 0.05 47 0.48 0.00 0.08	0.04 0.00 0.01 0.05 48 0.48 0.00
Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Total Exhaust PM	0.0000090 0.0000215 0.0000215 2020 0.0001057 0.0003696 0.0004016	0.04 0.00 0.02 0.06 37 0.48 0.00 0.19	0.04 0.00 0.01 0.05 38 0.48 0.00 0.08	0.04 0.00 0.01 0.05 39 0.48 0.00 0.08	0.04 0.00 0.01 0.05 40 0.48 0.00 0.08	0.04 0.00 0.01 0.05 41 0.48 0.00 0.08	0.04 0.00 0.01 0.05 42 0.48 0.00 0.08	0.04 0.00 0.01 0.05 43 0.48 0.00 0.08	0.04 0.00 0.01 0.05 44 0.48 0.00 0.08	0.04 0.00 0.01 0.05 45 0.48 0.00 0.08	0.04 0.00 0.01 0.05 46 0.48 0.00 0.08	0.04 0.00 0.01 0.05 47 0.48 0.00 0.08	0.04 0.00 0.01 0.05 48 0.48 0.00 0.08
Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Total Exhaust PM Light Duty Fugitive ⁽²⁾	0.000090 0.000215 0.000215 0.0000357 2020 0.0001057 0.0003696 0.0004016	0.04 0.00 0.02 0.06 37 0.48 0.00 0.19 0.67	0.04 0.00 0.01 0.05 38 0.48 0.00 0.08 0.56 1.00	0.04 0.00 0.01 0.05 39 0.48 0.00 0.08 0.56 1.00	0.04 0.00 0.01 0.05 40 0.48 0.00 0.08 0.56	0.04 0.00 0.01 0.05 41 0.48 0.00 0.08 0.56 1.00	0.04 0.00 0.01 0.05 42 0.48 0.00 0.08 0.56	0.04 0.00 0.01 0.05 43 0.48 0.00 0.08 0.56 1.00	0.04 0.00 0.01 0.05 44 0.48 0.00 0.08 0.56 1.00	0.04 0.00 0.01 0.05 45 0.48 0.00 0.08 0.56	0.04 0.00 0.01 0.05 46 0.48 0.00 0.08 0.56	0.04 0.00 0.01 0.05 47 0.48 0.00 0.08 0.56 1.00	0.04 0.00 0.01 0.05 48 0.48 0.00 0.08 0.56
Medium Duty Heavy Duty Total PM10 Light Duty Exhaust Medium Duty Exhaust Heavy Duty Exhaust Total Exhaust PM	0.0000090 0.0000215 0.0000215 2020 0.0001057 0.0003696 0.0004016	0.04 0.00 0.02 0.06 37 0.48 0.00 0.19	0.04 0.00 0.01 0.05 38 0.48 0.00 0.08	0.04 0.00 0.01 0.05 39 0.48 0.00 0.08	0.04 0.00 0.01 0.05 40 0.48 0.00 0.08	0.04 0.00 0.01 0.05 41 0.48 0.00 0.08	0.04 0.00 0.01 0.05 42 0.48 0.00 0.08	0.04 0.00 0.01 0.05 43 0.48 0.00 0.08	0.04 0.00 0.01 0.05 44 0.48 0.00 0.08	0.04 0.00 0.01 0.05 45 0.48 0.00 0.08	0.04 0.00 0.01 0.05 46 0.48 0.00 0.08	0.04 0.00 0.01 0.05 47 0.48 0.00 0.08	0.04 0.00 0.01 0.05 48 0.48 0.00 0.08

Heavy Duty Total (1) Emfac2011 emission factors for the South Coast Air District.

2020 0.907

3.742

Total Fugitive PM

CO_{2EQ} Light Duty Medium Duty

1.46

4104.66

748.4 4853.1

2.11

4104.6

1796.3 5900.9

1.46

4104.66

748.46 4853.13

1.46

4104.66

748.46 4853.13

1.46

4104.66

748.4 4853.1

1.46

4104.66

748.46 4853.13

1.46

4104.66

748.46 4853.13

4104.66

748.46 4853.13

1.46

4104.66

748.46 4853.13

1.46

4104.66

748.4 4853.1

4104.6

748.40 4853.13

1.46

4104.66

748.46 4853.13

where medium/heavy duty vehicle are diesel heavy duty trucks

		2020	
Chemical	Light	Medium	Heavy
CO2 (lb/mi)	0.8952	2.2405	3.7388
CH4 (g/mi)	0.0148	0.0051	0.0051
N2O (g/mi)	0.0157	0.0048	0.0048
CO2e (lb/mi)	0.907	2.244	3.742

⁽²⁾ Emission Calculations for travel on paved roads from EPA AP-42 Section 13.2.1, January 2011 $E = k(sL)^{pst} \times (W)^{1.52}$ Where: k = 0.0022 lb/WrIT for PM10, sL = road silt loading (gms/m2)

^{(0.03} for major/collector roads), W = weight of vehicles (2.5 tons for light; 5.5 for medium trucks, and 24 for heavy trucks)

⁽CQ) = CO₂ + CH₄*21 + N2O*310
where CO2 emissions factors are from Emfac2011. CH4 and N2O emissions factors are from Direct Emissions from Mobile Combustion Sources, EPA 2008.
where light vehicle are gasoline light duty trucks.

Offsite Construction Vehicle Trip Emissions

V.I.		40	50	51	F0 1		onth (Vehicl			57			60
Vehicle	Miles per Day	49			52	53	54	55	56		58	59	
Tradesmen	29.4	58	58	58	58	58	58	58	58	58	58	58	5
Construction Staff	29.4	40	40	40	40	40	40	40	40	40	40	40	4
Total Light Vehicle Miles		2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.
Water Truck	40												
Delivery Truck	40												
1 Ton Truck	40												
Misc. MD Truck	40												
Total Medium Truck Miles		0	0	0	0	0	0	0	0	0	0	0	
Truck, Dump Ford LT8000	40	1	1										
Hazardous Dump Trucks	400												
Non-Haz Dump Trucks	200		-							-			
Misc. HD Truck	40	5	5	-	5	5	-	5	5	-	5	5	
Total Heavy Truck Miles	40	200	200	200	200	200	200	200	200	200	200	200	20
Total Ficary Track Miles		200	200	200	200	200	200	200	200	200	200	200	20
	Emission Rate	1											
	(lb/mi) ⁽¹⁾						Month (II	b/day)					
voc	2021	49	50	51	52	53	54	55	56	57	58	59	60
Light Duty	0.0000468	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.1
Medium Duty	0.0001899	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Heavy Duty	0.0005326	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.1
Total	2.2300020	0.11	0.24	0.11	0.11	0.24	0.11	0.11	0.24	0.11	0.24	0.24	0.1
		, J.Z-1	0.27	V.E-1	V.E-1	U.Z-T	V.E-1	V.E-1	Ų. <u>L</u> T	V.2-7	U.E.T	U.ZT	J. <u>Z</u>
co	2021	49	50	51	52	53	54	55	56	57	58	59	60
Light Duty	0.0019703	5.68	5.68	5.68	5.68	5.68	5.68	5.68	5.68	5.68	5.68	5.68	5.6
Medium Duty	0.0013312	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Heavy Duty	0.0037449	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.7
Total		6.43	6.43	6.43	6.43	6.43	6.43	6.43	6.43	6.43	6.43	6.43	6.4
NOx	2021	49	50	51	52	53	54	55	56	57	58	59	60
Light Duty	0.0003142	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.9
Medium Duty	0.0026402	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Heavy Duty	0.0082454	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.6
Total		2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.5
SOx	2021	49	50	51	52	53	54	55	56	57	58	59	60
Light Duty	0.0000090	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.0
Medium Duty	0.0000215	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Heavy Duty	0.0000357	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0
Total		0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.0
PM10	2021	49	50	51	52	53	54	55	56	57	58	59	60
Light Duty Exhaust	0.0001057	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.3
Medium Duty Exhaust	0.0003460	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Heavy Duty Exhaust	0.0004000	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.0
Total Exhaust PM		0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.3
Light Duty Fugitive ⁽²⁾	0.000230	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.6
Medium Duty Fugitve ⁽²⁾	0.000515	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Heavy Duty Fugitive 2)	0.002314	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.4
Total Fugitive PM		1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.1
Total		1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.5
Total		1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.5
co	2021	49	50	51	52	53	54	55	56	57	58	59	60
CO _{2EQ}	0.909	2619.58	2619.58	51 2619.58	2619.58	2619.58	2619.58	2619.58	2619.58	2619.58	2619.58	2619.58	2619.58
Light Duty													
Medium Duty	2.243	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Heavy Duty Total	3.741	748.21 3367.79	748.21 3367.79	748.21 3367.79	748.21 3367.79	748.21 3367.79	748.21 3367.79	748.21 3367.79	748.21 3367.79	748.21 3367.79	748.21 3367.79	748.21 3367.79	748.2 3367.7
(1) Emfac2011 emission factors for the South	Or and Ale Dietelet	3301.19	3301.19	3307.79	3301.19	3307.79	3301.19	3301.19	3307.79	3301.19	3301.19	3307.79	3301.1
(2) Emission Calculations for travel on paved to E = k(sL) ^{0.91} x (W) ^{1.02} Where: k = 0.0022 lb/vMT for PM10, sL = (0.03 for major/collector roads), W = weight and 24 for heavy trucks)	roads from EPA AP-42 Section road silt loading (gms/m2)												
(3) Carbon Dioxide Equivalence (CQ) = CO ₂ +	CH. * 21 + N2O*310												
		olono fo -+	n from Di	ninniana f • •	abila Cembro "	on Courses ==	A 2000						
where CO2 emissions factors are from Em where light vehicle are gasoline light duty		sions factors an	e from Direct En	nissions from M	obile Combustio	on Sources, EF	A 2008.						
where medium/heavy duty vahicla are dis-	sel heavy duty trucke												
where medium/heavy duty vehicle are dies		2021											

		2021	
Chemical	Light	Medium	Heavy
CO2 (lb/mi)	0.8978	2.2393	3.7375
CH4 (g/mi)	0.0148	0.0051	0.0051
N2O (g/mi)	0.0157	0.0048	0.0048
CO2e (lb/mi)	0.909	2.243	3.741

Offsite Construction Vehicle Trip Emissions

						Mo	nth (Vehicle	ne nor day)					
Vehicle	Miles per Day	61	62	63	64	65	66	67	68	69	70	71	72
Tradesmen	29.4	58	58	58	58	58	58	58	58	58	58	58	58
Construction Staff	29.4	40	40	40	40	40	40	40	40	40	40	40	40
Total Light Vehicle Miles	25.4	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2
		2001.2	2001.2	2001.2	2001.2	2001.2	2001.2	2001.2	2001.2	2001.2	2001.2	2001.2	2001.2
Water Truck	40												
Delivery Truck	40	0	0	0									
1 Ton Truck	40	0	0	0									
Misc. MD Truck	40	0	0	0									
Total Medium Truck Miles		0	0	0	0	0	0	0	0	0	0	0	0
Truck, Dump Ford LT8000	40	0	0	0									
Hazardous Dump Trucks	400	0	0	0	0								
Non-Haz Dump Trucks	200	0	0	0	0								
Misc. HD Truck	40	5	5	5	5	5	5	5	5	5	5	5	5
Total Heavy Truck Miles		200	200	200	200	200	200	200	200	200	200	200	200
•			•				•			•		-	
	Emission Rate						Month (II	n/daw)					
	(lb/mi) ⁽¹⁾							Jruay)					
VOC	2022	61	62	63	64	65	66	67	68	69	70	71	72
Light Duty	0.0000334	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Medium Duty	0.0001827	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0002879	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Total		0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
CO	2022	61	62	63	64	65	66	67	68	69	70	71	72
Light Duty	0.0015625	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50
Medium Duty	0.0047700	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0023005	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
Total		4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96
NOx	2022	61	62	63	64	65	66	67	68	69	70	71	72
Light Duty	0.0001816	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52
Medium Duty	0.0026666	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0079545	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59
Total		2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11
SOx	2022	61	62	63	64	65	66	67	68	69	70	71	72
Light Duty	0.0000066	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Medium Duty	0.0000242	0.00	0.00	0.00 0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0000327	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
Total		0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
PM10	2022	61	62	63	64	65	66	67	68	69	70	71	72
Light Duty Exhaust	0.0001053	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
											0.50	0.30	
	0.0002697								0.00	0.00	0.00	0.00	
Medium Duty Exhaust	0.0003687	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty Exhaust	0.0003687 0.0002447	0.00 0.05	0.05	0.05	0.05	0.05	0.00						
Heavy Duty Exhausi Total Exhaust PM	0.0002447	0.00 0.05 0.35	0.05 0.35	0.05 0.35	0.05 0.35	0.05 0.35	0.00 0.05 0.35						
Heavy Duty Exhaust Total Exhaust PM Light Duty Fugitive ⁽²⁾	0.0002447	0.00 0.05 0.35 0.66	0.05 0.35 0.66	0.05 0.35 0.66	0.05 0.35 0.66	0.05 0.35 0.66	0.00 0.05 0.35 0.66						
Heavy Duty Exhausi Total Exhaust PM Light Duty Fugitive ⁽²⁾ Medium Duty Fugitve ⁽²⁾	0.0002447 0.000230 0.000515	0.00 0.05 0.35 0.66 0.00	0.05 0.35 0.66 0.00	0.05 0.35 0.66 0.00	0.05 0.35 0.66 0.00	0.05 0.35 0.66 0.00	0.00 0.05 0.35 0.66						
Heavy Duty Exhausi Total Exhaust PM Light Duty Fugitive ⁽²⁾ Medium Duty Fugitive ⁽²⁾ Heavy Duty Fugitive ⁽²⁾	0.0002447	0.00 0.05 0.35 0.66 0.00	0.00 0.05 0.35 0.66 0.00 0.46	0.00 0.05 0.35 0.66 0.00 0.46	0.00 0.05 0.35 0.66 0.00 0.46	0.00 0.05 0.35 0.66 0.00 0.46	0.00 0.05 0.35 0.66 0.00 0.46	0.00 0.05 0.35 0.66 0.00 0.46	0.05 0.35 0.66 0.00 0.46	0.05 0.35 0.66 0.00 0.46	0.05 0.35 0.66 0.00 0.46	0.05 0.35 0.66 0.00 0.46	0.00 0.05 0.35 0.66 0.00
Heavy Duty Exhausi Total Exhaust PM Light Duty Fugitive ⁽²⁾ Medium Duty Fugitve ⁽²⁾	0.0002447 0.000230 0.000515	0.00 0.05 0.35 0.66 0.00	0.05 0.35 0.66 0.00	0.05 0.35 0.66 0.00	0.05 0.35 0.66 0.00	0.05 0.35 0.66 0.00	0.00 0.05 0.35 0.66 0.00						
Heavy Duty Exhausi Total Exhaust PM Light Duty Fugitive ⁽²⁾ Medium Duty Fugitive ⁽²⁾ Heavy Duty Fugitive ⁽²⁾	0.0002447 0.000230 0.000515	0.00 0.05 0.35 0.66 0.00	0.00 0.05 0.35 0.66 0.00 0.46	0.00 0.05 0.35 0.66 0.00 0.46	0.00 0.05 0.35 0.66 0.00 0.46	0.00 0.05 0.35 0.66 0.00 0.46	0.00 0.05 0.35 0.66 0.00 0.46	0.00 0.05 0.35 0.66 0.00 0.46	0.05 0.35 0.66 0.00 0.46	0.05 0.35 0.66 0.00 0.46	0.05 0.35 0.66 0.00 0.46	0.05 0.35 0.66 0.00 0.46	0.00 0.05 0.35 0.66 0.00 0.46
Heavy Duty Exhausi Total Exhaust PM Light Duty Fugitive ⁽²⁾ Medium Duty Fugitive ⁽²⁾ Heavy Duty Fugitive ⁽²⁾ Total Fugitive PM Total	0.0002447 0.000230 0.000515 0.002314	0.00 0.05 0.35 0.66 0.00 0.46 1.13	0.05 0.35 0.66 0.00 0.46 1.13	0.05 0.35 0.66 0.00 0.46 1.13	0.05 0.35 0.66 0.00 0.46 1.13 1.48	0.05 0.35 0.66 0.00 0.46 1.13	0.00 0.05 0.35 0.66 0.00 0.46 1.13						
Heavy Duty Exhaus! Total Exhaust PM Light Duty Fuglitive ²⁷ Medium Duty Fuglitive ²⁷ Heavy Duty Fuglitive ²⁷ Total Fuglitive PM Total CO _{2EQ}	0.0002447 0.000230 0.000515 0.002314	0.00 0.05 0.35 0.66 0.00 0.46 1.13 1.48	0.05 0.35 0.66 0.00 0.46 1.13 1.48	0.05 0.35 0.66 0.00 0.46 1.13 1.48	0.05 0.35 0.66 0.00 0.46 1.13 1.48	0.05 0.35 0.66 0.00 0.46 1.13 1.48	0.00 0.05 0.35 0.66 0.00 0.46 1.13 1.48						
Heavy Duty Exhausi Total Exhaust PM Light Duty Fugitive ⁽²⁾ Medium Duty Fugitive ⁽²⁾ Heavy Duty Fugitive ⁽²⁾ Total Fugitive PM Total	0.0002447 0.000230 0.000515 0.002314	0.00 0.05 0.35 0.66 0.00 0.46 1.13	0.05 0.35 0.66 0.00 0.46 1.13	0.05 0.35 0.66 0.00 0.46 1.13	0.05 0.35 0.66 0.00 0.46 1.13 1.48	0.05 0.35 0.66 0.00 0.46 1.13	0.00 0.05 0.35 0.66 0.00 0.46 1.13						

		1942.41	1942.41	1942.41	1942.41	1942.41	
Medium Duty	2.443	0.00	0.00	0.00	0.00	0.00	0.
Heavy Duty	3.567	713.40	713.40	713.40	713.40	713.40	713.
Total		2655.81	2655.81	2655.81	2655.81	2655.81	2655.
(1) Emfac2011 emission factors for the	South Coast Air District.						
(2) Emission Calculations for travel on E = k(sL) ^{0.91} x (W) ^{1.02}	paved roads from EPA AP-42 Sec	ion 13.2.1, Januar	y 2011				
Where: k = 0.0022 lb/VMT for PM1	0, sL = road silt loading (gms/m2)						
(0.03 for major/collector roads), W	= weight of vehicles (2.5 tons for li	ght; 5.5 for medium	n trucks,				
and 24 for heavy trucks)							
(3) Carbon Dioxide Equivalence (CQ) =	CO ₂ + CH ₄ * 21 + N2O*310						
(3) Carbon Dioxide Equivalence (CQ) = where CO2 emissions factors are fine.		nissions factors an	e from Direct Er	nissions from M	obile Combusti	ion Sources, EF	A 2008.
	rom Emfac2011. CH4 and N2O er	nissions factors an	e from Direct Er	nissions from M	obile Combusti	ion Sources, EF	A 2008.
where CO2 emissions factors are fr	rom Emfac2011. CH4 and N2O er nt duty trucks.	nissions factors an	e from Direct Er	nissions from M	obile Combusti	ion Sources, EF	A 2008.
where CO2 emissions factors are fi where light vehicle are gasoline light	rom Emfac2011. CH4 and N2O er nt duty trucks.	nissions factors an	e from Direct Er	nissions from M	obile Combusti	ion Sources, EF	PA 2008.
where CO2 emissions factors are fi where light vehicle are gasoline ligh where medium/heavy duty vehicle	rom Emfac2011. CH4 and N2O er nt duty trucks.		e from Direct Er	nissions from N	lobile Combusti	ion Sources, EF	PA 2008.
where CO2 emissions factors are fi where light vehicle are gasoline light where medium/heavy duty vehicle a Chemical	rom Emfac2011. CH4 and N2O er nt duty trucks. are diesel heavy duty trucks.	2022		nissions from N	obile Combusti	ion Sources, EF	A 2008.
where CO2 emissions factors are fr where light vehicle are gasoline light where medium/heavy duty vehicle a Chemical CO2 (lb/mi)	rom Emfac2011. CH4 and N2O er nt duty trucks. are diesel heavy duty trucks.	2022 Medium	Heavy	nissions from N	obile Combusti	ion Sources, EF	°A 2008.
where CO2 emissions factors are fi where light vehicle are gasoline light	rom Emfac2011. CH4 and N2O er nt duty trucks. are diesel heavy duty trucks. Light 0.6628	2022 Medium 2.4390	Heavy 3.5635	nissions from M	lobile Combusti	ion Sources, EF	°A 2008.

Offsite Construction Vehicle Trip Emissions

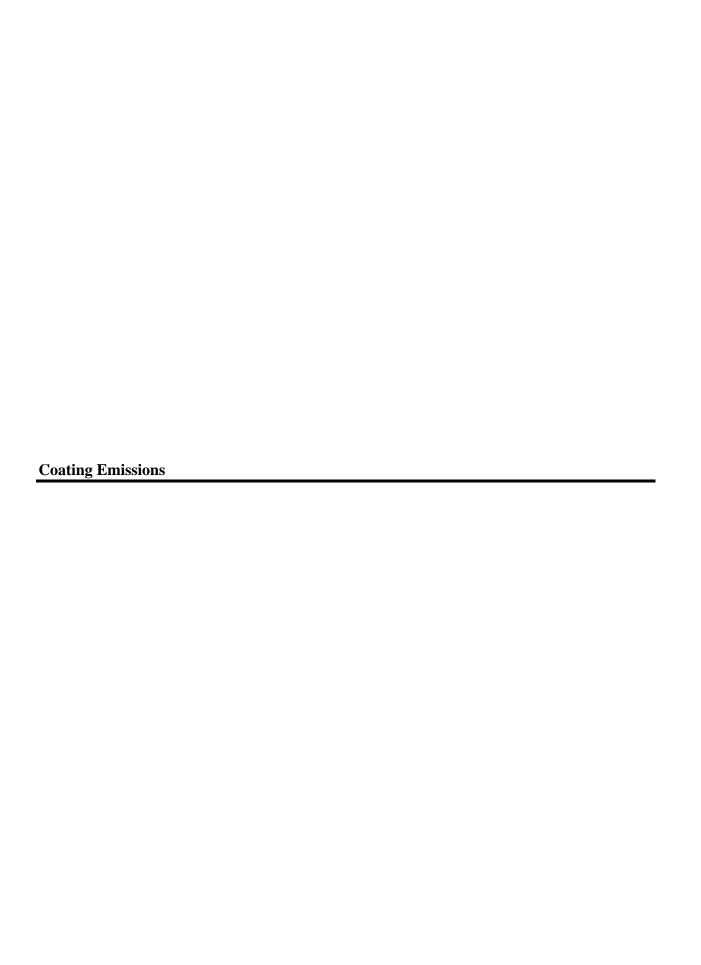
							nth (Vehicl	es per day)					
Vehicle	Miles per Day	73	74	75	76	77	78	79	80	81	82	83	84
Tradesmen	29.4	58	58	58	58	58	58	58	58	58	58	58	58
Construction Staff	29.4	40	40	40	40	40	40	40	40	40	40	40	40
Total Light Vehicle Miles		2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2	2881.2
Water Truck	40												
Delivery Truck	40	0	0	0									
1 Ton Truck	40	0	0	0									
Misc. MD Truck	40	0	0	0									
Total Medium Truck Miles		0	0	0	0	0	0	0	0	0	0	0	0
Truck, Dump Ford LT8000	40	0	0	0									
Hazardous Dump Trucks	400	0	0	0	0								
Non-Haz Dump Trucks	200	0	0	0	0								
Misc. HD Truck	40	5	5	5	5	5	5	5	5	5	5	5	5
Total Heavy Truck Miles		200	200	200	200	200	200	200	200	200	200	200	200
	Emission Rate						Month (II	b/dav)					
Voc	(lb/mi) ⁽¹⁾ 2023	73	74	75	76	77	•	79	80	81	82	83	84
Light Duty	0.0000334	0.10	0.10	7 5 0.10	0.10	0.10	78 0.10	0.10	0.10	81 0.10	0.10	0.10	0.10
Medium Duty	0.0001827	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Heavy Duty	0.0001827	0.06	0.06	0.06	0.06	0.06	0.00	0.06	0.06	0.06	0.06	0.06	0.06
Total	0.0002679	0.00	0.00	0.00	0.00	0.06	0.00	0.06	0.00	0.06	0.00	0.00	0.00
Total		0.10	0.13	0.13	0.13	0.10	0.15	0.13	0.13	0.15	0.10	0.13	0.15
со	2023	73	74	75	76	77	78	79	80	81	82	83	84
Light Duty	0.0015625	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50
Medium Duty	0.0047700	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0023005	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
Total		4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96
lua-		70	1				=0	70			20		
NOx	2023	73	74	75	76	77	78	79	80	81	82	83	84
Light Duty	0.0001816	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52
Medium Duty	0.0026666	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty Total	0.0079545	1.59 2.11	1.59 2.11	1.59 2.11	1.59 2.11	1.59 2.11	1.59 2.11	1.59 2.11	1.59 2.11	1.59 2.11	1.59 2.11	1.59 2.11	1.59 2.11
Total		2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11
SOx	2023	73	74	75	76	77	78	79	80	81	82	83	84
Light Duty	0.0000066	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Medium Duty	0.0000242	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0000327	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total	•	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
PM10	2023	73	74	75	76	77	78	79	80	81	82	83	84
Light Duty Exhaust	0.0001053	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Medium Duty Exhaust	0.0003687	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty Exhaust	0.0002447	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Total Exhaust PM		0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Light Duty Fugitive ⁽²⁾	0.000230	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66
Medium Duty Fugitve ⁽²⁾			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.000515	0.00	0.00					0.46	0.46	0.46			0.46
Heavy Duty Fugitive ⁽²⁾	0.000515 0.002314	0.00	0.46	0.46	0.46	0.46	0.46	0.40	0.40	0.46	0.46	0.46	
Heavy Duty Fugitive ⁽²⁾ Total Fugitive PM				0.46 1.13	0.46 1.13	0.46 1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13
		0.46	0.46										
Total Fugitive PM Total	0.002314	0.46 1.13 1.48	0.46 1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48
Total Fugitive PM Total CO _{2EQ}	0.002314	0.46 1.13 1.48	0.46 1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48	1.13 1.48
Total Fugitive PM Total CO _{2EQ} Light Duty	0.002314 2023 0.674	0.46 1.13 1.48 73 1942.41	0.46 1.13 1.48 74 1942.41	1.13 1.48 75 1942.41	1.13 1.48 76 1942.41	1.13 1.48 77 1942.41	1.13 1.48 78 1942.41	1.13 1.48 79 1942.41	1.13 1.48 80 1942.41	1.13 1.48 81 1942.41	1.13 1.48 82 1942.41	1.13 1.48 83 1942.41	1.13 1.48 84 1942.41
Total Fugitive PM Total CO _{2EQ} Light Duty Medium Duty	0.002314 2023 0.674 2.443	73 1942.41 0.00	0.46 1.13 1.48 74 1942.41 0.00	1.13 1.48 75 1942.41 0.00	1.13 1.48 76 1942.41 0.00	1.13 1.48 77 1942.41 0.00	78 1942.41 0.00	1.13 1.48 79 1942.41 0.00	1.13 1.48 80 1942.41 0.00	1.13 1.48 81 1942.41 0.00	1.13 1.48 82 1942.41 0.00	1.13 1.48 83 1942.41 0.00	1.13 1.48 84 1942.41 0.00
Total Fugitive PM Total CO _{2EQ} Light Duty	0.002314 2023 0.674	0.46 1.13 1.48 73 1942.41	0.46 1.13 1.48 74 1942.41	1.13 1.48 75 1942.41	1.13 1.48 76 1942.41	1.13 1.48 77 1942.41	1.13 1.48 78 1942.41	1.13 1.48 79 1942.41	1.13 1.48 80 1942.41	1.13 1.48 81 1942.41	1.13 1.48 82 1942.41	1.13 1.48 83 1942.41	1.13 1.48 84 1942.41

	2.443		0.00	0.00	0.00	0.00	U.
Heavy Duty	3.567	713.40	713.40	713.40	713.40	713.40	713.
Total	•	2655.81	2655.81	2655.81	2655.81	2655.81	2655.
(1) Emfac2011 emission factors for th	e South Coast Air District.						
(2) Emission Calculations for travel or E = k(sL) ^{0.91} x (W) ^{1.02}	n paved roads from EPA AP-42 Sec	ion 13.2.1, Januar	y 2011				
Where: k = 0.0022 lb/VMT for PN	110, sL = road silt loading (gms/m2)						
(0.03 for major/collector roads), V and 24 for heavy trucks)	/ = weight of vehicles (2.5 tons for li	ht; 5.5 for medium	trucks,				
(3) Carbon Dioxide Equivalence (CQ)	= CO ₂ + CH ₄ * 21 + N2O*310						
where CO2 emissions factors are	6 F60044 OUA NOO						
	from Emiaczul I. CH4 and N2O er	nissions factors are	from Direct Er	nissions from M	Iobile Combust	ion Sources, EF	A 2008.
where light vehicle are gasoline li		nissions factors are	from Direct Er	nissions from M	lobile Combust	ion Sources, EF	A 2008.
	ght duty trucks.	nissions factors are	from Direct Er	nissions from M	lobile Combust	ion Sources, EF	A 2008.
where light vehicle are gasoline li	ght duty trucks.	2023	from Direct Er	nissions from M	lobile Combust	ion Sources, EF	A 2008.
where light vehicle are gasoline li where medium/heavy duty vehicle	ght duty trucks.		e from Direct Er	nissions from N	lobile Combust	ion Sources, EF	A 2008.
where light vehicle are gasoline li	ght duty trucks. are diesel heavy duty trucks.	2023		nissions from N	lobile Combust	ion Sources, EF	A 2008.
where light vehicle are gasoline li where medium/heavy duty vehicle Chemical	ght duty trucks. e are diesel heavy duty trucks. Light	2023 Medium	Heavy	nissions from N	lobile Combust	ion Sources, EF	A 2008.
where light vehicle are gasoline li where medium/heavy duty vehicle Chemical CO2 (lb/mi)	ght duty trucks. e are diesel heavy duty trucks. Light 0.6628	2023 Medium 2.4390	Heavy 3.5635	nissions from N	lobile Combust	ion Sources, EF	A 2008.

Offroad Construction Vehicle Dust Emissions

Vehicle	Miles/Trip	Trips/Day
Light Vehicles	0.05	10
Total Light Vehicle Miles		0.5
Delivey Trucks	0.05	0
Water Trucks	0.1	10
Total Medium Truck Miles		1
Concrete Truck	0.05	0
Dump Trucks	0.05	40
Total Heavy Truck Miles		2
Tractors	0.05	13
Fork Lifts	0.05	10
Loader/Backhoe	0.05	6
Total Heavy-Heavy Duty Miles		1.45

	Emission Rate	
PM10	(lb/mi) ⁽¹⁾	Emissions (lb/day)
Light Duty	0.9021196	0.45
Medium Duty	1.2863357	1.29
Heavy Duty	2.1931267	4.39
Heavy Heavy Duty	2.4962390	3.62
Uncontrolled Total		9.74
Controlled Total ⁽²⁾		3.80

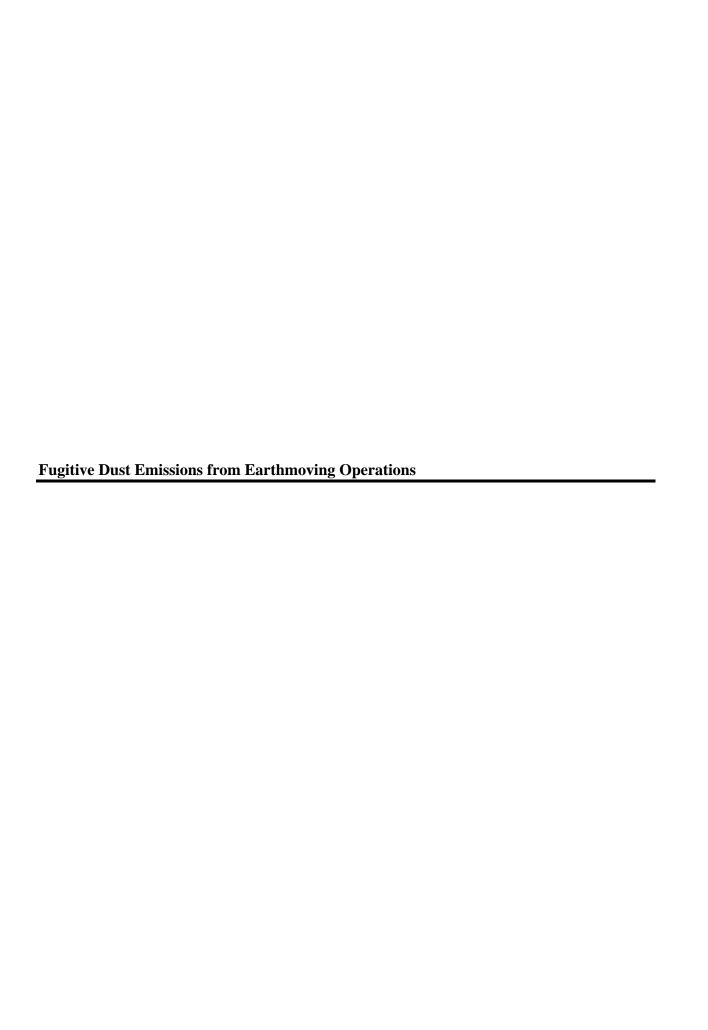

⁽¹⁾ Based on Section 13.2.2 of EPA's Compilation of Air Pollutant Emission Factors (AP-42).

Emission Rate = $1.5((s/12)^{\circ}.9)^{*}((W/3)^{\circ}.45)$

W = Vehicle Weight (ton) =2.5 for light, 5.5 for medium, 15 for heavy, and 24 for heavy heavy (EMFAC2007).

(2) Controlled Emissions assume that watering 3 times per day reduces emissions by 61 percent (Uncontrolled Emissions x 0.39)

s = silt content = 8.5%



Paint Emissions

Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
Volume paint applied per day (gal)	0.0	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0																							
VOC content (lb/gal) ⁽¹⁾	8.0	8.0	0.8	0.8	0.8	0.8	3.0	3 0.8	0.8	0.8	8.0	8.0	0.8	0.8	0.8	0.8	0.8	0.8	0.8	8.0	0.8	8.0	8.0	8.0	0.8	0.8	0.8	0.8	0.8	8.0	0.8	8.0	8.0	8.0	0.8	0.8	0.8
VOC Emissions (lb/day)	0.0	0.0	0.0	0.0	0.0	1.7	1.7	7 1.7	1.7	1.7	1.7	1.7	1.7	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Month	38	39	40	41	42	4	3	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67		68	69	70	71	72	73	74	75
Volume paint applied per day (gal)			75.0	75.0	75.0																	75.0	75.0	75.0														75.0	75.0	75.0
VOC content (lb/gal) ⁽¹⁾	0.8	8.0	8.0	0.8	8.0	0.	.8	8.0	8.0	0.8	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	0.8	8.0	0.8	8.0	8.0	0.8	0.8	0.8	8.0	8.0	0.8	0.8	3.0	3	8.0	8.0	8.0	0.8	8.0	8.0	0.8	8.0
VOC Emissions (lb/day)	0.0	0.0	62.3	62.3	62.3	0.	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	62.3	62.3	62.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0)	0.0	0.0	0.0	0.0	0.0	62.3	62.3	62.3

(1) Based on SCAQMD Rule 1113 VOC limit of 100g/L for industrial maintenance coatings.

Peak Monthly Fugitive PM Construction Emissions

Average Pieces of										
	Average	3000iG 700G		PM10		Average	0.00 DM10	Average	01WG 400G	
	ביי כ	חפשא חומכתה					קמא או	2 2	חמש און	
Ednib	pment	of Equipment	Hours of	Factor	Water Control	Emissions	Emissions	Emissions	Emissions	Emission Factor
Grading Operations Oper	Operating	Operating	Operation	(lb/hour)	Factor ⁽⁵⁾	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	Source
Construction Activities ⁽¹⁾	2	2	8	0.348	0.39	2.17	2.17	5.56218435	5.56218435	5.56218435 Table A9-9-F
						Controlled	Controlled Emissions	Uncontrolle	Incontrolled Emissions	
		Average Tons	Peak Tons	PM10		Average	Peak	Average	Peak	
		of Materials	of Materials	Emission		PM10	PM10	PM10	PM10	SCAQMD
		Handled Per	Handled	Factor	Water Control	Emissions	Emissions	Emissions	Emissions	Emission Factor
Stockpiles		Day	Per Day	(lb/ton)	Factor ⁽⁵⁾	Pounds/day	Pounds/day	Pounds/day	Pounds/day	Source
Construction Activities ⁽²⁾		1200	1200	0.00005	0.39	0.02411771	0.02411771 0.02411771	0.06184029	0.06184029	0.06184029 Table A9-9-G
Assumptions: 1cubic yard trench spoils =	: 1 ton									

		Average	Peak	PM10	Average	Peak	Average	Peak	
WIND EROSION Disturbed		Acreage	Acreage	Emission	PM10	PM10	PM10	PM10	SCAQMD
Area and Temporary	Days of	Disturbed	Disturbed	Factor	Emissions	Emissions	Emissions	Emissions	Emission Factor
Stockpiles	Construction	Per Day	Per Day	(lb/day/acre)	Pounds/day	Pounds/day	Tons/Year	Tons/Year	Source
Construction Activities ⁽³⁾	20	1	1	0.120	0.120	0.120	0.001	0.001	Table A9-9-E

					Controlled	Controlled Emissions	Uncontrolled Emissions	d Emissions	
	:								
	Estimated	Peak lons	PM10		Average	Peak	Average	Peak	
	Materials	of Materials	Emission		PM10	PM10	PM10	PM10	SCAQMD
	Handled Per	Handled	Factor	ō	Emissions	Emissions	Emissions	Emissions	Emission Factor
Filling and Dumping	Day (tons)	Per Day	(lb/ton)	Factor ⁽⁵⁾	Pounds/day	Pounds/day	Pounds/day	Pounds/day	Source
Truck Filling ⁽⁴⁾	1200.0	1200.0	5.15E-05	0.39	0.02411771	0.02411771 0.02411771	0.06184029	0.06184029 Table A9-9	Table A9-9
Truck Dumping	1200.0	1200.0	5.15E-05	0.39	0.02411771	0.02411771	0.02411771 0.02411771 0.06184029 0.06184029 Table A9-9	0.06184029	Table A9-9

TOTAL PM10 Pounds/day	Average	Peak
(Controlled Emissions)	2.3613	2.36133
(Uncontrolled Emissions)	5.749	5.749

⁽¹⁾ Emissions (lbs/hr) = $[0.75 \times (G^{1.5})/(H^{1.4}) \times J$

where G = silt content (7.5%), H = moisture content (15.0%) and J = hrs of operation (EPA AP-42 Table 11.9-1 for bulldozing overburden).

⁽²⁾ Emissions (lbs/ton) = $0.00112 \times [(G/5)^{1.3}/(H/2)^{1.4}] \times I/J$

⁽³⁾ Emissions (lbs/day/acre) = 1.7 x [(G/1.5)'(365-H)/235] x 1/15 x J where G = silt content (7.5%); H = days with >0.01 inch of rain (34); I = percentage of time wind speed exceeds 12 mph (0.3%) and J = fraction of TSP (0.5). Wind speed data acquired from Long Beach 2005-2007 where G = silt content (7.5%); H = days with >0.01 inch of rain (34); I = percentage of time wind speed exceeds 12 mph (0.3%) and J = fraction of TSP (0.5). Wind speed data acquired from Long Beach 2005-2007 where G=mean wind speed (4.1 mph), H=moisture content of surface material (15%); I=lbs of dirt handled per day; and J=2,000 lbs/ton. Wind speed data acquired from Long Beach 2005-2007

⁽⁴⁾ Used SCAQMD Table 9-9 Default emission factors.
(5) Mitigated Emissions assume that watering 3 times per day controls emissions by 61 percent (Uncontrolled Emissions x 0.39). www.AQMD.gov/CEQA/handbook/mitigation/fugitive/Table XI-A.doc

			2019	Emission	Factors Ib.	/hr ⁽¹⁾	
Equipment Type	Hp	VOC	co	NOx	SOx	PM10	CO2e ⁽²⁾
<40 T Cranes	Composite	0.05255	0.3982	0.72435	0.00147	0.03337	0.03536
>40T Cranes	500	0.06159	0.3951	0.91722	0.00213	0.03694	0.05143
Pile/Drill Rig	Composite	0.03316	0.5009	0.51942	0.00243	0.01889	0.05862
Tractors	Composite	0.02277	0.3630	0.27390	0.00080	0.01634	0.01916
Welders	50	0.03313	0.2271	0.18111	0.00039	0.01522	0.00937
Light Plants	50	0.03313	0.2890	0.18111	0.00039	0.01522	0.00937
Genertors	120	0.03398	0.4663	0.37708	0.00075	0.02830	0.01796
Hydro Vacs/Pumps	120	0.03398	0.4736	0.37708	0.00075	0.02830	0.01796
Fork Lifts	Composite	0.01468	0.2166	0.22583	0.00089	0.00988	0.02146
Loader/Backhoe	Composite	0.02277	0.3630	0.27390	0.00080	0.01634	0.01916
Air Compressors	50	0.03313	0.2078	0.18111	0.00039	0.01522	0.00937
Manlifts	Composite	0.00475	0.1715	0.09788	0.00044	0.00194	0.01066
Crawler Tractors	Composite	0.06860	0.5319	0.92566	0.00201	0.04558	0.04837
Scrapers	Composite	0.11433	0.8161	1.65588	0.00390	0.06690	0.09398
Rubber Tired Loaders	Composite	0.04734	0.4436	0.60035	0.00161	0.02688	0.0387
Graders	Composite	0.06321	0.5787	0.86117	0.00170	0.03744	0.0409
Rollers	Composite	0.02435	0.3859	0.23986	0.00068	0.01451	0.01636
Excavators	Composite	0.02485	0.5140	0.31031	0.00133	0.01294	0.03212

			2020	Emission	Factors Ib.	/hr ⁽¹⁾	
Equipment Type	Нр	VOC	СО	NOx	SOx	PM10	CO2e ⁽²⁾
<40 T Cranes	Composite	0.04866	0.3917	0.66105	0.00147	0.03031	0.03535
>40T Cranes	500	0.05656	0.3839	0.82455	0.00213	0.03305	0.05142
Pile/Drill Rig	Composite	0.07483	0.5008	0.93803	0.00277	0.03763	0.0668
Tractors	Composite	0.03343	0.6517	0.33335	0.00120	0.01797	0.029
Welders	50	0.03084	0.2219	0.17530	0.00039	0.01410	0.00937
Light Plants	50	0.03084	0.2833	0.17530	0.00039	0.01410	0.00937
Genertors	120	0.03204	0.4641	0.35638	0.00075	0.02642	0.01798
Hydro Vacs/Pumps	120	0.03204	0.4713	0.35638	0.00075	0.02642	0.01798
Fork Lifts	Composite	0.01383	0.2160	0.21047	0.00089	0.00873	0.02147
Loader/Backhoe	Composite	0.02060	0.3616	0.24635	0.00080	0.01403	0.01915
Air Compressors	50	0.03084	0.2030	0.17530	0.00039	0.01410	0.00937
Manlifts	Composite	0.00463	0.1696	0.09324	0.00044	0.00161	0.01066
Crawler Tractors	Composite	0.06477	0.5260	0.86009	0.00201	0.04230	0.04838
Scrapers	Composite	0.10693	0.7938	1.51072	0.00390	0.06101	0.09396
Rubber Tired Loaders	Composite	0.04449	0.4406	0.55197	0.00161	0.02448	0.03871
Graders	Composite	0.06068	0.5765	0.81642	0.00170	0.03517	0.04087
Rollers	Composite	0.02288	0.3837	0.22494	0.00068	0.01333	0.01636
Excavators	Composite	0.02341	0.5124	0.28128	0.00133	0.01158	0.03211

			2021	Emission	Factors Ib.	/hr ⁽¹⁾	
Equipment Type	Hp	voc	co	NOx	SOx	PM10	CO2e ⁽²⁾
<40 T Cranes	Composite	0.04494	0.3865	0.59772	0.00147	0.02738	0.03535
>40T Cranes	500	0.05211	0.3747	0.73491	0.00213	0.02957	0.05141
Pile/Drill Rig	Composite	0.07076	0.5007	0.84125	0.00277	0.03403	0.06676
Tractors	Composite	0.03012	0.6413	0.29307	0.00120	0.01547	0.029
Welders	50	0.02904	0.2163	0.17063	0.00039	0.01328	0.00936
Light Plants	50	0.02904	0.2789	0.17063	0.00039	0.01328	0.00936
Genertors	120	0.02973	0.4617	0.33282	0.00075	0.02416	0.01798
Hydro Vacs/Pumps	120	0.02973	0.4687	0.33282	0.00075	0.02416	0.01798
Fork Lifts	Composite	0.01279	0.2148	0.19482	0.00089	0.00757	0.02147
Loader/Backhoe	Composite	0.01858	0.3606	0.22118	0.00080	0.01191	0.01916
Air Compressors	50	0.02904	0.1979	0.17063	0.00039	0.01328	0.00936
Manlifts	Composite	0.00446	0.1677	0.08926	0.00044	0.00132	0.01066
Crawler Tractors	Composite	0.06067	0.5208	0.78831	0.00201	0.03885	0.04834
Scrapers	Composite	0.09948	0.7745	1.37187	0.00390	0.05517	0.094
Rubber Tired Loaders	Composite	0.04079	0.4381	0.48855	0.00161	0.02150	0.03874
Graders	Composite	0.05664	0.5747	0.75163	0.00170	0.03199	0.04084
Rollers	Composite	0.02085	0.3816	0.20626	0.00068	0.01180	0.01636
Excavators	Composite	0.02185	0.5113	0.24844	0.00133	0.01017	0.03209

			2022	Emission	Factors Ib.	/hr ⁽¹⁾	
Equipment Type	Hp	voc	co	NOx	SOx	PM10	CO2e ⁽²⁾
<40 T Cranes	Composite	0.04494	0.3822	0.59772	0.00147	0.02738	0.03535
>40T Cranes	500	0.05211	0.3670	0.73491	0.00213	0.02957	0.05141
Pile/Drill Rig	Composite	0.07076	0.5007	0.84125	0.00277	0.03403	0.06676
Tractors	Composite	0.03012	0.6320	0.29307	0.00120	0.01547	0.029
Welders	50	0.02904	0.2134	0.17063	0.00039	0.01328	0.00936
Light Plants	50	0.02904	0.2755	0.17063	0.00039	0.01328	0.00936
Genertors	120	0.02973	0.4606	0.33282	0.00075	0.02416	0.01798
Hydro Vacs/Pumps	120	0.02973	0.4676	0.33282	0.00075	0.02416	0.01798
Fork Lifts	Composite	0.01279	0.2087	0.19482	0.00089	0.00757	0.02147
Loader/Backhoe	Composite	0.01858	0.3599	0.22118	0.00080	0.01191	0.01916
Air Compressors	50	0.02904	0.1954	0.17063	0.00039	0.01328	0.00936
Manlifts	Composite	0.00446	0.1667	0.08926	0.00044	0.00132	0.01066
Crawler Tractors	Composite	0.06067	0.5163	0.78831	0.00201	0.03885	0.04834
Scrapers	Composite	0.09948	0.7579	1.37187	0.00390	0.05517	0.094
Rubber Tired Loaders	Composite	0.04079	0.4359	0.48855	0.00161	0.02150	0.03874
Graders	Composite	0.05664	0.5732	0.75163	0.00170	0.03199	0.04084
Rollers	Composite	0.02085	0.3799	0.20626	0.00068	0.01180	0.01636
Excavators	Composite	0.02185	0.5104	0.24844	0.00133	0.01017	0.03209

				20	23		
Equipment Type	Нр	VOC	СО	NOx	SOx	PM10	CO2e ⁽²⁾
<40 T Cranes	Composite	0.03735	0.3786	0.46633	0.00147	0.02150	0.03534
>40T Cranes	500	0.04169	0.3610	0.53594	0.00213	0.02168	0.0514
Pile/Drill Rig	Composite	0.05863	0.5007	0.61260	0.00277	0.02400	0.06676
Tractors	Composite	0.02417	0.6238	0.23057	0.00120	0.01091	0.02901
Welders	50	0.02491	0.2111	0.15992	0.00039	0.01119	0.00939
Light Plants	50	0.02491	0.2727	0.15992	0.00039	0.01119	0.00939
Genertors	120	0.02505	0.4597	0.28310	0.00075	0.01933	0.01797
Hydro Vacs/Pumps	120	0.02505	0.4668	0.28310	0.00075	0.01933	0.01797
Fork Lifts	Composite	0.01089	0.2146	0.16645	0.00089	0.00545	0.02147
Loader/Backhoe	Composite	0.01520	0.3593	0.17723	0.00080	0.00827	0.01919
Air Compressors	50	0.02491	0.1936	0.15992	0.00039	0.01119	0.00939
Manlifts	Composite	0.00424	0.1658	0.08311	0.00044	0.00108	0.01066
Crawler Tractors	Composite	0.04970	0.5125	0.60111	0.00201	0.03001	0.04832
Scrapers	Composite	0.08435	0.7432	1.08106	0.00390	0.04351	0.09406
Rubber Tired Loaders	Composite	0.03277	0.4340	0.35351	0.00161	0.01526	0.03878
Graders	Composite	0.04711	0.5718	0.59123	0.00169	0.02490	0.0408
Rollers	Composite	0.01665	0.3784	0.17006	0.00068	0.00872	0.01636
Excavators	Composite	0.01829	0.5097	0.18481	0.00133	0.00722	0.0321

[[]Control of Control of

Appendix B Tesoro Integration and Compliance Project

							Month						
	:			į			MOIIII	;	:				
Equipment	Hours (hr/day)	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	8	0	0	0	0	0	0	0	0	0	0	0	0
>40T Cranes	0	0	0	0	0	0	0	0	0	0	0	0	0
Pile/Drill Rig	8	0	0	0	0	0	0	0	0	0	0	0	0
Tractors	2	0	0	0	0	0	0	0	0	0	0	0	0
Welders	8	0	0	0	0	0	0	0	0	0	0	0	0
Light Plants	3	0	0	0	0	0	0	0	0	0	0	0	0
Genertors	8	0	0	0	0	0	0	0	0	0	0	0	0
Hydro Vacs/Pumps	2	0	0	0	0	0	0	0	0	0	0	0	0
Fork Lifts	8	0	0	0	0	0	0	0	0	0	0	0	0
Loader/Backhoe	8	0	0	0	0	0	0	0	0	0	0	0	0
Air Compressors	8	0	0	0	0	0	0	0	0	0	0	0	0
Manlifts	8	0	0	0	0	0	0	0	0	0	0	0	0
Crawler Tractors	8	0	0	0	0	0	0	0	0	0	0	0	0
Scrapers	8	0	0	0	0	0	0	0	0	0	0	0	0
Rubber Tired Loaders	8	0	0	0	0	0	0	0	0	0	0	0	0
Graders	10	0	0	0	0	0	0	0	0	0	0	0	0
Rollers	8	0	0	0	0	0	0	0	0	0	0	0	0
Excavators	8	0	0	0	0	0	0	0	0	0	0	0	0

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(Ib/hr)												
VOC	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.053	00.00	0.00	00.0	00.0	00.00	0.00	0.00	00.0	00.0	00.0	0.00	00.0
>40T Cranes	0.062	00.00	0.00	00.0	00.0	00.00	0.00	0.00	00.0	00.0	00.0	0.00	00.0
Pile/Drill Rig	0.033	00.0	0.00	0.00	00.0	00.00	00.00	0.00	0.00	0.00	0.00	0.00	00.0
Tractors	0.023	00.00	0.00	00.00	00.0	00.00	00.00	0.00	00.00	0.00	00.0	0.00	0.00
Welders	0.033	00.00	0.00	00.00	00.0	00.00	00.00	0.00	00.00	0.00	00.0	0.00	0.00
Light Plants	0.033	00.00	0.00	00.00	00.0	00.00	00.00	0.00	00.00	0.00	00.0	0.00	0.00
Genertors	0.034	00.00	0.00	00.00	00.0	00.00	00.00	0.00	00.00	0.00	00.0	0.00	0.00
Hydro Vacs/Pumps	0.034	00.00	0.00	00.00	00.0	00.00	00.00	0.00	00.00	0.00	00.0	0.00	00.0
Fork Lifts	0.015	00.0	0.00	0.00	00.0	00.0	00.00	0.00	0.00	0.00	0.00	0.00	0.00
Loader/Backhoe	0.023	00.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00
Air Compressors	0.033	00.00	0.00	00.00	00.0	00.00	00.00	0.00	00.0	0.00	00.0	0.00	0.00
Manlifts	0.005	00.00	0.00	00.00	00.0	00.00	00.00	0.00	00.0	0.00	00.0	0.00	00.0
Crawler Tractors	690'0	00.00	0.00	00.00	00.0	00.00	00.00	0.00	00.0	0.00	00.0	0.00	00.0
Scrapers	0.114	00.00	0.00	00.00	00.0	00.00	00.00	0.00	00.0	0.00	00.0	0.00	00.0
Rubber Tired Loaders	0.047	00.00	0.00	00.00	00.0	00.00	00.00	0.00	00.0	0.00	00.0	0.00	00.0
Graders	0.063	00.00	0.00	00.00	00.0	00.00	00.00	0.00	00.0	0.00	00.0	0.00	00.0
Rollers	0.024	00.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00
Excavators	0.025	00.0	0.00	0.00	00.0	00.0	00.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		00.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00
					•								

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
O	(ID/III) 2019	25	96	27	28	29	30	34	32	33	34	35	36
<40 T Cranes	0.398	0.00	0.00	00.0	00.0	00.0	0.00	00.0	00.0		00.0	0.00	0.00
>40T Cranes	0.395	0.00	00.0	00.00	00.0	0.00	0.00	00.00	0.00	0.00	00.0	00.00	00.0
Pile/Drill Rig	0.501	00.0	00.0	00.0	00.0	0.00	0.00	00.00	00.00	0.00	0.00	00.00	0.00
Tractors	0.363	00.0	00.0	00.00	00.0	00.0	00.0	00.00	0.00	0.00	00.00	00.00	0.00
Welders	0.227	00.0	00.00	0.00	00.0	00.0	0.00	00.00	00.00	0.00	0.00	00.00	00.00
Light Plants	0.289	00.0	00.0	00.00	00.0	00.0	00.0	00.00	0.00	0.00	00.00	00.00	0.00
Genertors	0.466	00.0	00.0	00.00	00.0	00.0	00.0	00.0	00.0	0.00	00.00	00.00	0.00
Hydro Vacs/Pumps	0.474	00.0	00.0	00.00	00.0	00.0	00.0	00.0	00.0	0.00	00.00	00.00	0.00
Fork Lifts	0.217	00.0	00.00	0.00	00.0	00.0	0.00	00.00	00.0	0.00	0.00	00.00	00.00
Loader/Backhoe	0.363	00.0	00.00	0.00	00.0	00.0	0.00	00.00	00.0	0.00	0.00	00.00	00.00
Air Compressors	0.208	00.0	00.00	0.00	00.0	00.0	0.00	00.00	00.0	0.00	0.00	00.00	00.00
Manlifts	0.172	00.0	00.0	00.00	00.0	00.0	00.0	00.0	00.0	0.00	00.00	00.00	0.00
Crawler Tractors	0.532	00.0	00.00	0.00	00.0	00.0	0.00	00.00	00.0	0.00	0.00	00.00	00.00
Scrapers	0.816	00.0	00.00	0.00	00.0	00.0	0.00	00.00	00.0	0.00	0.00	00.00	00.00
Rubber Tired Loaders	0.444	00.0	00.00	0.00	00.0	00.0	0.00	00.00	00.0	0.00	0.00	00.00	00.00
Graders	0.579	00.0	00.00	0.00	00.0	00.0	0.00	00.00	00.0	0.00	0.00	00.00	00.00
Rollers	0.386	0.00	00.00	00.0	00.00	0.00	0.00	00.0	00.0	0.00	00.0	00.00	0.00
Excavators	0.514	00.0	00.00	0.00	00.0	00.0	0.00	00.00	00.0	0.00	0.00	00.00	00.00
Total		0.00	00.00	00.00	00.00	0.00	0.00	0.00	00.0	00.00	00.00	00.00	0.00

Appendix B Tesoro Integration and Compliance Project

	Fmission Rate												
	(Ib/hr)						Month						
XON	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.724	0.00	0.00	00.0	00.00	0.00	00.00	0.00	0.00	00.0	00.0	0.00	00.0
>40T Cranes	0.917	0.00	00.0	00.00	00.00	0.00	00.00	00.00	0.00	00'0	00.0	0.00	0.00
Pile/Drill Rig	0.519	0.00	00.0	00.00	00.00	0.00	00.00	00.00	0.00	00'0	00.0	0.00	0.00
Tractors	0.274	0.00	00.0	00.00	00.00	00.0	00.00	00.00	0.00	00'0	00.0	0.00	0.00
Welders	0.181	0.00	00.0	00.0	00.00	0.00	00.00	00.00	0.00	0.00	00.0	0.00	0.00
Light Plants	0.181	0.00	00.0	00.00	00.00	00.0	00.00	00.00	0.00	00'0	00.0	0.00	0.00
Genertors	0.377	0.00	00.0	00.00	00.00	00.0	00.00	00.00	00.00	00'0	00.0	0.00	0.00
Hydro Vacs/Pumps	0.377	0.00	00.0	00.00	00.00	00.0	00.00	00.00	00.00	00'0	00.0	0.00	0.00
Fork Lifts	0.226	0.00	00.0	00.00	00.00	00.0	00.00	00.00	00.0	00'0	00.0	0.00	0.00
Loader/Backhoe	0.274	0.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00
Air Compressors	0.181	0.00	00.0	00.00	00.00	00.0	00.00	00.00	00.0	00'0	00.0	0.00	0.00
Manlifts	860'0	0.00	00.0	00.00	00.00	00.0	00.00	00.00	00.0	00'0	00.0	0.00	0.00
Crawler Tractors	0.926	00.0	00.0	00.00	0.00	00.0	00.00	00.00	00.0	00'0	0.00	0.00	00.00
Scrapers	1.656	00.0	00.0	00.00	0.00	00.0	00.00	00.00	00.0	00'0	0.00	0.00	00.00
Rubber Tired Loaders	009'0	00.0	00.0	00.00	0.00	00.0	00.00	00.00	00.0	00'0	0.00	0.00	00.00
Graders	0.861	0.00	0.00	00.0	00.00	0.00	00.00	00.00	0.00	00'0	0.00	0.00	0.00
Rollers	0.240	0.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00
Excavators	0.310	0.00	0.00	00.00	00.00	0.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00

	Emission Kate (Ib/hr)						Month						
SOx	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.001	00.0	0.00	00.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	00.00	0.00
>40T Cranes	0.002	00.0	0.00	00.00	0.00	0.00	00.00	0.00	0.00	00.0	0.00	00.00	0.00
Pile/Drill Rig	0.002	00.00	00.00	00.0	0.00	0.00	00.00	0.00	0.00	00'0	0.00	00.00	00.0
Tractors	0.001	00.00	00.00	00.0	0.00	0.00	00.0	00.00	0.00	00'0	0.00	00.00	00.0
Welders	0.000	00.00	00.00	00.0	0.00	0.00	00.0	00.00	0.00	00'0	0.00	00.00	00.0
Light Plants	0.000	00.00	00.00	00.0	0.00	0.00	00.0	00.00	0.00	00'0	0.00	00.00	00.0
Genertors	0.001	00.00	00.00	00.0	0.00	0.00	00.0	00.0	0.00	00'0	0.00	00.00	00.0
Hydro Vacs/Pumps	0.001	00.00	00.00	00.0	0.00	0.00	00.0	00.0	0.00	00'0	0.00	00.00	0.00
Fork Lifts	0.001	00.00	00.00	00.0	0.00	0.00	00.0	00.0	0.00	00'0	0.00	00.00	0.00
Loader/Backhoe	0.001	00.00	00.00	00.0	0.00	00.0	00.0	00.0	0.00	00'0	0.00	00.00	00.0
Air Compressors	0.000	00.00	00.00	00.0	0.00	00.0	00.0	00.0	0.00	00'0	0.00	00.00	0.00
Manlifts	0.000	00.00	00.00	00.0	0.00	00.0	00.0	00.0	0.00	00'0	0.00	00.00	0.00
Crawler Tractors	0.002	00.00	00.00	0.00	0.00	0.00	0.00	00.0	00.0	00.0	00.0	0.00	0.00
Scrapers	0.004	00.00	00.00	00.0	0.00	00.0	00.0	00.0	0.00	00'0	0.00	00.00	00.0
Rubber Tired Loaders	0.002	00.00	00.00	0.00	0.00	0.00	0.00	00.0	00.0	00.0	00.0	0.00	0.00
Graders	0.002	00.00	00.00	00.0	0.00	00.0	00.0	00.0	0.00	00'0	0.00	00.00	0.00
Rollers	0.001	00.00	00.00	0.00	0.00	0.00	00.00	00.00	0.00	00.0	0.00	00.00	0.00
Excavators	0.001	00.0	0.00	00'0	0.00	0.00	00.00	00.00	0.00	00'0	0.00	00.00	0.00
Total		00.0	0.00	00.00	0.00	0.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00

Appendix B Tesoro Integration and Compliance Project

													Ī
	Emission Kate (Ib/hr)						Month						
PM10	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.033	00.00	00.00	00.0	00.00	00.0	0.00	0.00	00.00	00.0	0.00	0.00	00.0
>40T Cranes	0.037	00.0	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pile/Drill Rig	0.019	00.0	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tractors	0.016	00.0	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Welders	0.015	00.0	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Light Plants	0.015	00.00	00.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00
Genertors	0.028	00.00	00.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00
Hydro Vacs/Pumps	0.028	00.00	00.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00
Fork Lifts	0.010	00.00	00.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00
Loader/Backhoe	0.016	00.00	00.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00
Air Compressors	0.015	00.00	00.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00
Manlifts	0.002	00.00	00.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00
Crawler Tractors	0.046	00.00	00.00	00.00	00.00	00.0	0.00	0.00	00.00	0.00	00.0	00.00	00.00
Scrapers	290:0	00.00	00.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00
Rubber Tired Loaders	0.027	00.00	00.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00
Graders	0.037	00.00	00.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00
Rollers	0.015	00.0	00.00	0.00	00.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00
Excavators	0.013	00.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
Total		00.0	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						:						
	(MT/hr)						Month						
COZEQ	2019	25	26	27	28	29	30	31	32	33	34	35	36
<40 T Cranes	0.035	00.0	00.0	0.00	00.00	0.00	00.0	0.00	0.00	00.0	0.00	00.00	0.00
>40T Cranes	0.051	00.0	00.0	0.00	00.00	0.00	00.0	0.00	0.00	00.0	0.00	00.00	0.00
Pile/Drill Rig	0.059	00.0	00.0	00.0	00.00	0.00	00.00	0.00	0.00	00.0	0.00	00.00	0.00
Tractors	0.019	00.0	00.0	00.0	00.00	0.00	00.0	0.00	0.00	00.0	0.00	00.00	0.00
Welders	600.0	00.0	00.0	0.00	00.00	0.00	00.0	0.00	0.00	00.0	0.00	00.00	0.00
Light Plants	600.0	00.0	00.0	00.0	00.00	0.00	00.0	0.00	0.00	00.0	0.00	00.00	0.00
Genertors	0.018	00.0	00.0	00.0	00.00	0.00	00.0	00.0	0.00	00.0	0.00	00.00	0.00
Hydro Vacs/Pumps	0.018	00.0	00.0	00.0	00.00	0.00	00.0	00.0	0.00	00.0	0.00	00.00	0.00
Fork Lifts	0.021	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00	00.00	0.00	00.00	0.00
Loader/Backhoe	0.019	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Air Compressors	0.009	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Manlifts	0.011	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Crawler Tractors	0.048	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Scrapers	0.094	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Rubber Tired Loaders	0.039	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Graders	0.041	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Rollers	0.016	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Excavators	0.032	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Total		00.0	00.0	0.00	00.00	0.00	00.0	00.0	0.00	00.0	0.00	00.00	0.00
			•										Ī

Appendix B Tesoro Integration and Compliance Project

							Month						
Equipment	Hours (hr/day)	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	8	1	1	1	2	7	2	2	2	2	2	2	2
>40T Cranes	0	0	0	0	0	0	0	0	0	0	0	0	0
Pile/Drill Rig	8	1	0	1	0	0	0	0	0	0	0	0	0
Tractors	2	1	1	1	1	Į.	1	1	1	1	1	-	1
Welders	8	0	0	0	0	0	0	0	0	0	0	0	0
Light Plants	3	2	2	2	2	7	2	2	2	2	2	2	2
Genertors	8	0	0	0	0	0	0	0	0	0	0	0	0
Hydro Vacs/Pumps	2	0	0.5	0.5	0.5	9.0	0.5	0	0	0	0	0	0
Fork Lifts	8	1	1	1	2	7	2	2	2	2	2	2	2
Loader/Backhoe	8	1	1	1	2	7	2	2	2	2	2	2	2
Air Compressors	8	0	0	0	0	0	0	0	0	0	0	0	0
Manlifts	8	0	0	1	1	Į.	2	2	2	2	2	2	2
Crawler Tractors	8	1	1	1	1	0	0	0	0	0	0	0	0
Scrapers	8	1	1	1	1	0	0	0	0	0	0	0	0
Rubber Tired Loaders	8	1	1	1	1	0	0	0	0	0	0	0	0
Graders	10	1	1	1	1	0	0	0	0	0	0	0	0
Rollers	8	1	1	1	1	0	0	0	0	0	0	0	0
Excavators	8	1	1	1	1	0	0	0	0	0	0	0	0

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Menth						
	(lb/hr)												
VOC	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.049	0.39	0.39	0.39	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
>40T Cranes	0.057	00.0	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00
Pile/Drill Rig	0.075	09:0	0.00	09.0	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00
Tractors	0.033	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Welders	0.031	00.0	0.00	00.0	0.00	0.00	00.0	00.00	0.00	0.00	00.00	0.00	0.00
Light Plants	0.031	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
Genertors	0.032	00.00	00.0	00.0	0.00	00.0	00.0	0.00	00.00	0.00	00.0	0.00	0.00
Hydro Vacs/Pumps	0.032	00.00	0.08	0.08	0.08	0.08	0.08	0.00	00.00	0.00	00.0	0.00	0.00
Fork Lifts	0.014	0.11	0.11	0.11	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
Loader/Backhoe	0.021	0.16	0.16	0.16	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Air Compressors	0.031	00.00	00.0	00.0	0.00	00.0	00.0	0.00	00.0	0.00	00.0	0.00	0.00
Manlifts	0.005	00.00	00.0	0.04	0.04	0.04	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Crawler Tractors	0.065	0.52	0.52	0.52	0.52	00.0	00.0	0.00	00.0	0.00	00.0	0.00	0.00
Scrapers	0.107	98.0	98.0	0.86	0.86	00.0	00.0	0.00	00.0	0.00	00.0	0.00	0.00
Rubber Tired Loaders	0.044	98.0	0.36	0.36	0.36	00.0	00.0	0.00	00.0	0.00	00.0	0.00	0.00
Graders	0.061	0.61	0.61	0.61	0.61	00.0	00.0	0.00	00.0	0.00	00.0	0.00	0.00
Rollers	0.023	0.18	0.18	0.18	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Excavators	0.023	0.19	0.19	0.19	0.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		3.93	3.41	4.05	3.73	1.02	1.06	0.98	0.98	0.98	0.98	0.98	0.98

Appendix B
Tesoro Integration and Compliance Project

	Emission Rate (Ib/hr)						Month						
00	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.392	3.13	3.13	3.13	6.27	6.27	6.27	6.27	6.27	6.27	6.27	6.27	6.27
>40T Cranes	0.384	00.0	00.00	0.00	0.00	0.00	00.00	0.00	0.00	00.0	0.00	0.00	0.00
Pile/Drill Rig	0.501	4.01	00.00	4.01	0.00	00.00	00.00	0.00	00.00	00.0	00.0	00.00	00.0
Tractors	0.652	3.26	3.26	3.26	3.26	3.26	3.26	3.26	3.26	3.26	3.26	3.26	3.26
Welders	0.222	00.0	00.00	00.0	0.00	00.0	00.0	0.00	00.00	00.0	00.0	00.00	0.00
Light Plants	0.283	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70
Genertors	0.464	00.0	00.00	00.0	0.00	00.0	00.0	0.00	00.00	00.0	00.0	00.00	0.00
Hydro Vacs/Pumps	0.471	0.00	1.18	1.18	1.18	1.18	1.18	0.00	00.00	00.0	00.0	00.0	0.00
Fork Lifts	0.216	1.73	1.73	1.73	3.46	3.46	3.46	3.46	3.46	3.46	3.46	3.46	3.46
Loader/Backhoe	0.362	2.89	2.89	2.89	5.79	5.79	5.79	5.79	5.79	5.79	62.5	5.79	5.79
Air Compressors	0.203	0.00	00.00	00.0	0.00	0.00	00.0	0.00	00.00	00.0	00.0	00.0	0.00
Manlifts	0.170	00.0	00.00	1.36	1.36	1.36	2.71	2.71	2.71	2.71	2.71	2.71	2.71
Crawler Tractors	0.526	4.21	4.21	4.21	4.21	00.0	00.0	0.00	00.00	00.0	00.0	00.00	0.00
Scrapers	0.794	6.35	6.35	6.35	6.35	00.0	00.0	0.00	00.00	00.0	00.0	00.00	00.0
Rubber Tired Loaders	0.441	3.53	3.53	3.53	3.53	00.0	00.0	0.00	00.00	00.0	00.0	00.00	0.00
Graders	0.577	2.77	2.77	5.77	5.77	00.0	00.0	0.00	00.00	00.0	00.0	00.00	00.0
Rollers	0.384	3.07	3.07	3.07	3.07	00.0	00.0	0.00	00.00	00.0	00.0	00.00	0.00
Excavators	0.512	4.10	4.10	4.10	4.10	00.0	00.0	0.00	00.00	00.0	00.0	00.00	00.0
Total		43.74	40.91	46.27	50.02	23.00	24.36	23.18	23.18	23.18	23.18	23.18	23.18
											1		

Appendix B Tesoro Integration and Compliance Project

													Ī
	Emission Rate (Ib/hr)						Month						
XON	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.661	5.29	5.29	5.29	10.58	10.58	10.58	10.58	10.58	10.58	10.58	10.58	10.58
>40T Cranes	0.825	00.0	00.0	00.00	00.00	00.00	00.0	00.0	0.00	0.00	00.00	00.0	00.0
Pile/Drill Rig	0.938	7.50	00.0	7.50	00.00	00.00	00.0	00.0	0.00	0.00	00.00	00.0	00.0
Tractors	0.333	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67
Welders	0.175	00.0	00.0	00.00	00.00	00.0	00.0	00.0	0.00	0.00	00.00	00.0	00.0
Light Plants	0.175	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Genertors	0.356	00.0	00.0	00.00	00.00	00.0	00.0	00.0	00.00	0.00	00.00	00.0	00.0
Hydro Vacs/Pumps	0.356	00.0	0.89	0.89	0.89	0.89	0.89	00.0	00.00	0.00	00.00	00.0	00.0
Fork Lifts	0.210	1.68	1.68	1.68	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37
Loader/Backhoe	0.246	1.97	1.97	1.97	3.94	3.94	3.94	3.94	3.94	3.94	3.94	3.94	3.94
Air Compressors	0.175	00.0	00.0	00.00	00.00	00.0	00.0	00.0	00.0	0.00	00.00	00.0	00.0
Manlifts	0.093	00.0	00.0	0.75	0.75	0.75	1.49	1.49	1.49	1.49	1.49	1.49	1.49
Crawler Tractors	098'0	6.88	6.88	6.88	6.88	00.0	00.0	00.0	00.0	0.00	00.00	00.0	00.0
Scrapers	1.511	12.09	12.09	12.09	12.09	00.00	00.0	00.0	00.0	0.00	0.00	00.00	00.0
Rubber Tired Loaders	0.552	4.42	4.42	4.42	4.42	00.00	00.0	00.0	00.00	00.0	00.00	00.00	0.00
Graders	0.816	8.16	8.16	8.16	8.16	00.00	00.0	00.0	00.0	0.00	0.00	00.00	00.0
Rollers	0.225	1.80	1.80	1.80	1.80	00.00	00.0	00.0	00.00	00.0	00.00	00.00	0.00
Excavators	0.281	2.25	2.25	2.25	2.25	00.00	00.0	00.0	00.00	00.0	00.00	00.00	0.00
Total		54.76	48.15	56.40	57.84	22.24	22.99	22.10	22.10	22.10	22.10	22.10	22.10

Appendix B
Tesoro Integration and Compliance Project

	Emission Rate						Month						
ò	(lb/hr)	37	30	30	9	74	42	43	77	45	91	17	97
YOS	2020	70	9	60	2	,	74	?	‡	5	ţ	ř	ç
<40 T Cranes	0.001	0.01	0.01	0.01	0.02	0.02	0.05	0.02	0.02	0.02	0.02	0.02	0.02
>40T Cranes	0.002	00.00	00.0	00.00	0.00	00.00	00.00	0.00	00.00	0.00	00.00	0.00	0.00
Pile/Drill Rig	0.003	0.02	00.0	0.02	0.00	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Tractors	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Welders	000'0	00.0	00.0	00.00	0.00	00.00	00.0	0.00	00.00	0.00	00.00	00.00	0.00
Light Plants	000'0	00.0	00.0	00.00	0.00	00.00	00.0	0.00	00.00	0.00	00.00	00.00	0.00
Genertors	0.001	00.0	00.0	00.00	0.00	00.00	00.0	00.0	00.00	0.00	00.00	00.00	0.00
Hydro Vacs/Pumps	0.001	00.0	0.00	00.00	0.00	00.00	00.0	0.00	00.00	0.00	00.00	00.00	0.00
Fork Lifts	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Loader/Backhoe	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Air Compressors	0.000	00.00	00.0	00.00	0.00	00.0	00.0	00.0	00.0	0.00	00.00	0.00	0.00
Manlifts	0.000	00.00	00.0	00.00	0.00	00.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Crawler Tractors	0.002	0.02	0.02	0.02	0.02	00.0	00.0	00.0	00.0	0.00	00.00	0.00	0.00
Scrapers	0.004	0.03	0.03	0.03	0.03	00.0	00.0	00.0	00.0	0.00	00.00	0.00	0.00
Rubber Tired Loaders	0.002	0.01	0.01	0.01	0.01	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Graders	0.002	0.02	0.02	0.02	0.02	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Rollers	0.001	0.01	0.01	0.01	0.01	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Excavators	0.001	0.01	0.01	0.01	0.01	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Total		0.15	0.13	0.15	0.16	90.0	0.07	0.07	0.07	0.07	0.07	0.07	0.07

Appendix B
Tesoro Integration and Compliance Project

	Emission Rate						:						
	(lb/hr)						Month						
PM10	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0:030	0.24	0.24	0.24	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
>40T Cranes	0.033	00.0	0.00	0.00	00.0	0.00	00.00	00.00	0.00	0.00	00.0	0.00	00.0
Pile/Drill Rig	0.038	0:30	00.00	0.30	00.0	0.00	00.00	00.00	00.00	0.00	00.0	0.00	00.0
Tractors	0.018	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	0.09	60.0	0.09	0.09
Welders	0.014	00.0	00.00	0.00	00.0	00.00	00.00	00.00	00.00	0.00	00.0	0.00	00.0
Light Plants	0.014	80.0	0.08	0.08	0.08	0.08	0.08	0.08	0.08	80.08	0.08	0.08	0.08
Genertors	0.026	00.0	0.00	00.0	00.00	00.00	00.0	00.00	00.00	00.00	00.0	0.00	00.00
Hydro Vacs/Pumps	0.026	0.00	0.07	0.07	0.07	0.07	0.07	00.00	00.00	00.00	0.00	0.00	0.00
Fork Lifts	600'0	0.07	0.07	0.07	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Loader/Backhoe	0.014	0.11	0.11	0.11	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
Air Compressors	0.014	00.0	0.00	00.0	00.00	00.00	00.0	00.00	00.00	00.00	00.0	0.00	00.00
Manlifts	0.002	00.00	0.00	0.01	0.01	0.01	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Crawler Tractors	0.042	0.34	0.34	0.34	0.34	0.00	0.00	00.00	00.00	00.00	0.00	0.00	0.00
Scrapers	0.061	0.49	0.49	0.49	0.49	0.00	0.00	00.00	00.00	00.00	0.00	0.00	0.00
Rubber Tired Loaders	0.024	0.20	0.20	0.20	0.20	00.00	00.0	00.00	00'0	00.00	00.0	0.00	0.00
Graders	0.035	0.35	0.35	0.35	0.35	0.00	0.00	00.0	00.0	00.00	0.00	0.00	0.00
Rollers	0.013	0.11	0.11	0.11	0.11	0.00	0.00	00.00	00'0	00.00	0.00	0.00	0.00
Excavators	0.012	60.0	0.09	60.0	0.09	0.00	0.00	00.00	00'0	00.00	0.00	0.00	0.00
Total		2.47	2.24	2.55	2.68	1.10	1.12	1.05	1.05	1.05	1.05	1.05	1.05
													Ī

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
COZEQ	2020	37	38	39	40	41	42	43	44	45	46	47	48
<40 T Cranes	0.035	0.28	0.28	0.28	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57
>40T Cranes	0.051	00:00	00.0	00.0	0.00	0.00	00.0	0.00	00:00	0.00	00.00	00:00	0.00
Pile/Drill Rig	0.067	0.53	00.0	0.53	00.0	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.0
Tractors	0.029	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Welders	600:0	00.0	00.0	00.0	00.0	00.00	00.0	00.00	0.00	0.00	00.00	0.00	00.0
Light Plants	600:0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
Genertors	0.018	00.0	00.0	00.0	00.0	00.00	00.0	00.0	0.00	0.00	00.00	0.00	00.0
Hydro Vacs/Pumps	0.018	00.00	0.04	0.04	0.04	0.04	0.04	0.00	00.00	0.00	00.00	00.00	0.00
Fork Lifts	0.021	0.17	0.17	0.17	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
Loader/Backhoe	0.019	0.15	0.15	0.15	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31
Air Compressors	600:0	00.00	00.0	0.00	00.0	0.00	00.0	0.00	00.0	0.00	00.00	00.00	0.00
Manlifts	0.011	00.00	00.0	60.0	60.0	60.0	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Crawler Tractors	0.048	0.39	0.39	0.39	0.39	0.00	00.0	0.00	00.0	0.00	00.00	00.00	0.00
Scrapers	0.094	0.75	0.75	0.75	0.75	0.00	00.0	0.00	00.0	0.00	00.00	00.00	0.00
Rubber Tired Loaders	0.039	0.31	0.31	0.31	0.31	0.00	00.0	0.00	00.0	0.00	00.00	00.00	0.00
Graders	0.041	0.41	0.41	0.41	0.41	0.00	00.0	0.00	00.0	0.00	00.00	00.00	0.00
Rollers	0.016	0.13	0.13	0.13	0.13	0.00	00.0	0.00	00.0	0.00	00.00	00.00	0.00
Excavators	0.032	0.26	0.26	0.26	0.26	0.00	00.0	0.00	00.0	0.00	00.00	00.00	0.00
Total		3.59	3.10	3.72	3.79	1.55	1.63	1.59	1.59	1.59	1.59	1.59	1.59

Appendix B Tesoro Integration and Compliance Project

							Month						
Equipment	Hours (hr/day)	49	20	51	52	53	54	55	26	22	28	29	09
<40 T Cranes	8	2	1	1	1	1	1	1	1	1	2	2	2
>40T Cranes	0	0	0	0	0	0	0	0	0	0	0	0	0
Pile/Drill Rig	8	0	0	0	0	0	0	1	0	1	0	0	0
Tractors	2	1	1	1	1	1	1	1	1	1	1	1	1
Welders	8	0	0	0	0	0	0	0	0	0	0	0	0
Light Plants	3	2	2	2	2	2	2	2	2	2	2	2	2
Genertors	8	0	0	0	0	0	0	0	0	0	0	0	0
Hydro Vacs/Pumps	2	0	0	0	0	0	0	0	0.5	0.5	0.5	0.5	0.5
Fork Lifts	8	2	2	2	2	1	1	1	1	1	2	2	2
Loader/Backhoe	8	2	2	2	2	1	1	1	1	1	2	2	2
Air Compressors	8	0	0	0	0	0	0	0	0	0	0	0	0
Manlifts	8	2	2	2	1	1	1	0	0	1	1	1	2
Crawler Tractors	8	0	0	0	0	0	0	0	0	0	0	0	0
Scrapers	8	0	0	0	0	0	0	0	0	0	0	0	0
Rubber Tired Loaders	8	0	0	0	0	0	0	0	0	0	0	0	0
Graders	10	0	0	0	0	0	0	0	0	0	0	0	0
Rollers	8	0	0	0	0	0	0	0	0	0	0	0	0
Excavators	8	0	0	0	0	0	0	0	0	0	0	0	0

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)						MOLI						
VOC	2021	49	20	51	52	53	54	22	26	25	28	29	09
<40 T Cranes	0.045	0.72	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.72	0.72	0.72
>40T Cranes	0.052	00.0	00.00	0.00	00.0	00.00	00.00	00.00	00'0	00.0	00.0	0.00	0.00
Pile/Drill Rig	0.071	00.0	00.00	0.00	00.0	00.00	00.00	0.57	00'0	0.57	00.0	0.00	0.00
Tractors	0:030	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Welders	0.029	00.0	00.00	0.00	00.0	00.0	0.00	00.00	0.00	00.0	00.0	0.00	0.00
Light Plants	0.029	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Genertors	0:030	00.0	00.00	0.00	00.0	00.00	00.0	00.0	00'0	00.0	00.0	0.00	0.00
Hydro Vacs/Pumps	0:030	00.0	00.00	0.00	00.0	00.00	00.0	00.0	0.07	0.07	0.07	0.07	0.07
Fork Lifts	0.013	0.20	0.20	0.20	0.20	0.10	0.10	0.10	0.10	0.10	0.20	0.20	0.20
Loader/Backhoe	0.019	0.30	0:30	0.30	0:30	0.15	0.15	0.15	0.15	0.15	0:30	0.30	0.30
Air Compressors	0.029	00.0	00.00	0.00	00.0	00.00	00.0	00.0	00'0	00.0	00.0	0.00	0.00
Manlifts	0.004	20.0	0.07	0.07	0.04	0.04	0.04	00.0	00'0	0.04	0.04	0.04	0.07
Crawler Tractors	0.061	00.00	00.00	00.0	00.0	00.0	00.0	00.0	00'0	0.00	00.0	0.00	00.00
Scrapers	660'0	00.0	00.00	0.00	00.0	00.00	00.0	00.0	00'0	00.0	00.0	0.00	0.00
Rubber Tired Loaders	0.041	00.0	00.00	0.00	00.0	00.00	00.0	00.0	00'0	00.0	00.0	0.00	0.00
Graders	0.057	00.0	00.00	0.00	00.0	00.00	00.0	00.0	00'0	00.0	00.0	0.00	0.00
Rollers	0.021	00.0	00.00	0.00	0.00	0.00	00.00	00.00	00.0	00.0	0.00	0.00	0.00
Excavators	0.022	00.0	00.00	0.00	0.00	0.00	00.00	00.00	00.0	00.0	0.00	0.00	0.00
Total		06.0	06.0	06.0	0.86	0.61	0.61	1.14	0.65	1.25	0.94	0.94	0.97

Appendix B Tesoro Integration and Compliance Project

	Emission Rate												
	(lb/hr)						Month						
00	2021	49	20	51	52	53	54	55	26	22	28	29	09
<40 T Cranes	0.387	6.18	3.09	3.09	3.09	3.09	3.09	3.09	3.09	3.09	6.18	6.18	6.18
>40T Cranes	0.375	00.0	00.00	0.00	00.0	00.00	0.00	00.00	0.00	0.00	00.0	0.00	0.00
Pile/Drill Rig	0.501	00.0	00.00	0.00	00.0	00.00	0.00	4.01	0.00	4.01	00.0	0.00	0.00
Tractors	0.641	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21
Welders	0.216	00.0	00.00	0.00	00.0	00.0	00.0	00.00	0.00	0.00	00.0	0.00	0.00
Light Plants	0.279	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67
Genertors	0.462	00.00	00.00	0.00	00.0	00.00	00.0	0.00	0.00	00.0	0.00	0.00	0.00
Hydro Vacs/Pumps	0.469	00.00	00.00	0.00	00.0	00.00	00.0	0.00	1.17	1.17	1.17	1.17	1.17
Fork Lifts	0.215	3.44	3.44	3.44	3.44	1.72	1.72	1.72	1.72	1.72	3.44	3.44	3.44
Loader/Backhoe	0.361	5.77	5.77	5.77	5.77	2.88	2.88	2.88	2.88	2.88	5.77	5.77	5.77
Air Compressors	0.198	00.00	00.00	00.0	00.0	00.00	00.0	0.00	00.0	0.00	0.00	00.00	0.00
Manlifts	0.168	2.68	2.68	2.68	1.34	1.34	1.34	0.00	00'0	1.34	1.34	1.34	2.68
Crawler Tractors	0.521	00.00	00.00	0.00	00.0	00.00	00.0	0.00	00'0	00.0	0.00	0.00	0.00
Scrapers	922'0	00.00	00.00	0.00	00.0	00.00	00.0	0.00	00'0	00.0	0.00	0.00	0.00
Rubber Tired Loaders	0.438	00.00	00.00	0.00	00.0	00.00	00.0	0.00	00'0	00.0	0.00	0.00	0.00
Graders	9/9:0	00.00	00.00	0.00	00.0	00.00	00.0	0.00	00'0	00.0	0.00	0.00	0.00
Rollers	0.382	00.00	00.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
Excavators	0.511	00.00	00.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
Total		22.95	19.86	19.86	18.52	13.92	13.92	16.58	13.75	19.10	22.78	22.78	24.13

Appendix B Tesoro Integration and Compliance Project

	Fmission Rate												
	(lb/hr)						Month						
XON	2021	49	20	51	52	53	54	55	26	22	28	29	09
<40 T Cranes	0.598	9:26	4.78	4.78	4.78	4.78	4.78	4.78	4.78	4.78	9:26	9.56	9.56
>40T Cranes	0.735	00.0	00.0	00.00	0.00	00.0	0.00	00.00	0.00	0.00	00.0	0.00	0.00
Pile/Drill Rig	0.841	00.0	00.0	00.00	0.00	00.0	0.00	6.73	0.00	6.73	00.0	0.00	0.00
Tractors	0.293	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47
Welders	0.171	00.0	00.0	00.00	0.00	00.0	00.0	00.00	0.00	0.00	00.0	0.00	0.00
Light Plants	0.171	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
Genertors	0.333	0.00	00.0	0.00	0.00	00.00	0.00	00.00	00.00	0.00	00.00	0.00	0.00
Hydro Vacs/Pumps	0.333	0.00	00.0	0.00	0.00	00.00	0.00	00.00	0.83	0.83	0.83	0.83	0.83
Fork Lifts	0.195	3.12	3.12	3.12	3.12	1.56	1.56	1.56	1.56	1.56	3.12	3.12	3.12
Loader/Backhoe	0.221	3.54	3.54	3.54	3.54	1.77	1.77	1.77	1.77	1.77	3.54	3.54	3.54
Air Compressors	0.171	0.00	00.0	0.00	0.00	00.00	0.00	00.00	00'0	0.00	00.00	0.00	0.00
Manlifts	680'0	1.43	1.43	1.43	0.71	0.71	0.71	00.00	00'0	0.71	0.71	0.71	1.43
Crawler Tractors	0.788	0.00	00.0	0.00	0.00	00.00	0.00	00.00	00'0	0.00	00.00	0.00	0.00
Scrapers	1.372	0.00	00.0	0.00	0.00	00.00	0.00	00.00	00'0	0.00	00.00	0.00	0.00
Rubber Tired Loaders	0.489	0.00	00.0	0.00	0.00	00.00	0.00	00.00	00'0	0.00	00.00	0.00	0.00
Graders	0.752	0.00	00.0	0.00	0.00	00.00	0.00	00.00	00'0	0.00	00.00	0.00	0.00
Rollers	0.206	0.00	00.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00
Excavators	0.248	0.00	00.00	0.00	0.00	00.00	0.00	00.00	00.0	0.00	0.00	0.00	0.00
Total		20.14	15.36	15.36	14.64	11.31	11.31	17.33	11.43	18.88	20.25	20.25	20.97

Appendix B
Tesoro Integration and Compliance Project

	Emission Rate						Month						
SOx	(IB/nr) 2021	49	20	51	52	53	54	55	26	22	28	29	09
<40 T Cranes	0.001	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02
>40T Cranes	0.002	0.00	00.0	00.0	0.00	00.00	0.00	0.00	00.00	0.00	00.0	00.0	0.00
Pile/Drill Rig	0.003	00.0	0.00	00.0	00.0	00.0	0.00	0.02	0.00	0.02	0.00	00.00	0.00
Tractors	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Welders	0.000	00.0	0.00	00.0	00.0	00.0	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Light Plants	0.000	00.0	0.00	00.0	00.0	00.0	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Genertors	0.001	00.0	00.0	00.0	0.00	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Hydro Vacs/Pumps	0.001	00.0	00.0	00.0	0.00	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Fork Lifts	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Loader/Backhoe	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Air Compressors	0.000	00.0	0.00	00.00	0.00	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Manlifts	0.000	0.01	0.01	0.01	0.00	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.01
Crawler Tractors	0.002	00.0	00.0	00.0	0.00	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Scrapers	0.004	00.0	00.0	00.0	0.00	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Rubber Tired Loaders	0.002	00.0	00.0	00.0	0.00	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Graders	0.002	00.0	00.0	00.0	0.00	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Rollers	0.001	00.0	0.00	00.00	0.00	00.00	0.00	0.00	00.00	0.00	00.00	00.00	0.00
Excavators	0.001	0.00	00.00	00.00	0.00	00.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00
Total		0.07	0.05	0.05	0.02	0.04	0.04	90.0	0.04	0.08	90.0	90.0	0.07

Appendix B Tesoro Integration and Compliance Project

	Emission Date												
	(lb/hr)						Month						
PM10	2021	49	20	51	52	53	54	55	26	22	28	29	09
<40 T Cranes	0.027	0.44	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.44	0.44	0.44
>40T Cranes	0:030	00.0	00.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.00	0.00
Pile/Drill Rig	0.034	00.0	00.00	00.0	0.00	0.00	0.00	0.27	0.00	0.27	00.0	00.00	0.00
Tractors	0.015	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Welders	0.013	00.00	00.00	00.0	00.0	00.00	0.00	0.00	0.00	0.00	0.00	00.00	00.0
Light Plants	0.013	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Genertors	0.024	00.00	00.00	00.0	00.0	00.00	00.0	0.00	0.00	0.00	0.00	00.00	00.0
Hydro Vacs/Pumps	0.024	00.00	00.00	00.0	00.0	00.00	00.0	0.00	90.0	90.0	90.0	90.0	90.0
Fork Lifts	0.008	0.12	0.12	0.12	0.12	90.0	90.0	90.0	90.0	90.0	0.12	0.12	0.12
Loader/Backhoe	0.012	0.19	0.19	0.19	0.19	0.10	0.10	0.10	0.10	0.10	0.19	0.19	0.19
Air Compressors	0.013	00.00	00.00	00.0	00.0	00.00	00.0	00.0	00.0	0.00	0.00	00.00	0.00
Manlifts	0.001	0.02	0.02	0.02	0.01	0.01	0.01	00.0	00.0	0.01	0.01	0.01	0.02
Crawler Tractors	0.039	00.00	00.00	00.0	00.0	00.00	00.0	00.0	00.0	0.00	0.00	00.00	0.00
Scrapers	0.055	00.00	00.00	00.0	00.0	00.00	00.0	00.0	00.0	0.00	0.00	00.00	0.00
Rubber Tired Loaders	0.021	00.00	00.00	00.0	00.0	00.00	00.0	00.0	00.0	0.00	0.00	00.00	0.00
Graders	0.032	00.00	00.00	00.0	00.0	00.00	00.0	00.0	00.0	0.00	0.00	00.00	0.00
Rollers	0.012	00.00	00.00	00.0	00.0	00.00	00.0	00.0	00.0	0.00	0.00	00.00	0.00
Excavators	0.010	00.00	00.00	00.0	00.0	00.00	00.0	0.00	00.0	0.00	0.00	00.00	0.00
Total		0.93	0.71	0.71	0.70	0.54	0.54	0.80	0.59	0.88	0.98	0.98	0.99

Appendix B Tesoro Integration and Compliance Project

	Emission Rate (MT/hr)						Month						
COZEQ	2021	49	20	51	25	53	24	22	26	22	28	29	09
<40 T Cranes	0.035	0.57	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.57	0.57	0.57
>40T Cranes	0.051	00.0	00.0	00.00	00.0	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pile/Drill Rig	0.067	00.0	00.0	00.00	00.0	00.00	0.00	0.53	0.00	0.53	0.00	0.00	0.00
Tractors	0.029	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Welders	600.0	00.0	00.0	00.00	00.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Light Plants	600.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90'0	90.0	90.0	90.0
Genertors	0.018	00.0	00.0	00.0	00.0	00.00	0.00	0.00	00.00	00'0	00.0	0.00	00.00
Hydro Vacs/Pumps	0.018	00.0	00.0	00.0	00.0	00.00	0.00	0.00	0.04	0.04	0.04	0.04	0.04
Fork Lifts	0.021	0.34	0.34	0.34	0.34	0.17	0.17	0.17	0.17	0.17	0.34	0.34	0.34
Loader/Backhoe	0.019	0.31	0.31	0.31	0.31	0.15	0.15	0.15	0.15	0.15	0.31	0.31	0.31
Air Compressors	600.0	00.0	00.0	00.0	00.0	00.00	0.00	0.00	00.0	00'0	00.0	0.00	00.00
Manlifts	0.011	0.17	0.17	0.17	60.0	60.0	60.0	0.00	00.0	60'0	0.09	0.09	0.17
Crawler Tractors	0.048	00.0	00.0	00.0	00.0	00.00	0.00	0.00	00.0	00'0	00.0	0.00	00.00
Scrapers	0.094	00.0	00.0	00.0	00.0	00.00	0.00	0.00	00.0	00'0	00.0	0.00	00.00
Rubber Tired Loaders	0.039	00.0	00.0	00.0	00.0	00.00	0.00	0.00	00.0	00'0	00.0	0.00	00.00
Graders	0.041	00.0	00.0	00.0	00.0	00.00	0.00	0.00	00.0	00'0	00.0	0.00	00.00
Rollers	0.016	00.0	00.0	00.0	00.0	00.00	0.00	0.00	00.0	00'0	00.0	0.00	00.00
Excavators	0.032	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00
Total		1.59	1.30	1.30	1.22	0.89	0.89	1.34	0.85	1.47	1.55	1.55	1.63

Appendix B Tesoro Integration and Compliance Project

							Month						
Equipment	Hours (hr/day)	61	62	63	64	65	99	29	89	69	20	7	72
<40 T Cranes	80	2	2	2	2	2	2	2	1	-	_	-	-
>40T Cranes	0	0	0	0	0	0	0	0	0	0	0	0	0
Pile/Drill Rig	8	0	0	0	0	0	0	0	0	0	0	0	0
Tractors	2	-	1	1	1	Į.	1	1	1	1	1	1	1
Welders	8	0	0	0	0	0	0	0	0	0	0	0	0
Light Plants	3	2	2	2	2	7	2	2	2	2	2	2	2
Genertors	8	0	0	0	0	0	0	0	0	0	0	0	0
Hydro Vacs/Pumps	2	0	0	0	0	0	0	0	0	0	0	0	0
Fork Lifts	8	2	2	2	2	7	2	2	2	2	2	1	~
Loader/Backhoe	8	2	2	2	2	7	2	2	2	2	2	1	~
Air Compressors	8	0	0	0	0	0	0	0	0	0	0	0	0
Manlifts	8	2	2	2	2	7	2	2	2	2	1	1	~
Crawler Tractors	8	0	0	0	0	0	0	0	0	0	0	0	0
Scrapers	8	0	0	0	0	0	0	0	0	0	0	0	0
Rubber Tired Loaders	8	0	0	0	0	0	0	0	0	0	0	0	0
Graders	10	0	0	0	0	0	0	0	0	0	0	0	0
Rollers	8	0	0	0	0	0	0	0	0	0	0	0	0
Excavators	8	0	0	0	0	0	0	0	0	0	0	0	0

Appendix B Tesoro Integration and Compliance Project

	Emission Bate												Ī
	(lb/hr)						Month						
VOC	2022	61	62	63	64	65	99	29	89	69	20	71	72
<40 T Cranes	0.045	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.36	0.36	0.36	0.36	0.36
>40T Cranes	0.052	0.00	0.00	00.0	00.0	00.00	00.00	0.00	00.0	0.00	00.0	0.00	0.00
Pile/Drill Rig	0.071	00.0	0.00	00.00	00.0	0.00	0.00	0.00	00.00	0.00	00.00	0.00	00.0
Tractors	0:030	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Welders	0.029	00.0	0.00	00.00	00.0	00.0	0.00	0.00	00.00	0.00	00.00	0.00	00.0
Light Plants	0.029	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Genertors	0:030	00.0	0.00	00.00	00.0	00.0	0.00	0.00	00.00	0.00	00.00	0.00	00.0
Hydro Vacs/Pumps	0:030	00.0	0.00	00.00	00.0	00.0	0.00	0.00	00.00	0.00	00.00	0.00	00.0
Fork Lifts	0.013	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.10	0.10
Loader/Backhoe	0.019	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.15	0.15
Air Compressors	0.029	00.0	0.00	00.00	00.0	00.0	0.00	0.00	00.00	0.00	00.00	0.00	00.0
Manlifts	0.004	0.07	0.07	0.07	20.0	0.07	0.07	0.07	0.07	0.07	0.04	0.04	0.04
Crawler Tractors	0.061	00.0	0.00	00.00	00.0	00.0	0.00	0.00	00.00	0.00	00.00	0.00	00.0
Scrapers	0.099	0.00	0.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	00.00
Rubber Tired Loaders	0.041	00.0	0.00	00.00	00.0	00.0	0.00	0.00	00.00	0.00	00.00	0.00	00.0
Graders	0.057	00.0	0.00	00.00	00.0	00.0	0.00	0.00	00.00	0.00	00.00	0.00	00.0
Rollers	0.021	0.00	0.00	00.0	00.00	00.00	00.0	0.00	00.0	0.00	00.0	0.00	0.00
Excavators	0.022	0.00	0.00	00.0	00.00	00.00	00.0	0.00	00.0	0.00	00.0	0.00	0.00
Total		06.0	06.0	06.0	06.0	06.0	06.0	06.0	06.0	0.90	98.0	0.61	0.61

Appendix B Tesoro Integration and Compliance Project

	Emission Rate (Ib/hr)						Month						
00	2022	61	62	63	64	9	99	29	89	69	20	71	72
<40 T Cranes	0.382	6.11	6.11	6.11	6.11	6.11	6.11	6.11	3.06	3.06	3.06	3.06	3.06
>40T Cranes	298'0	00.00	00.0	00.0	0.00	00.00	00.00	0.00	0.00	0.00	00.0	00.00	0.00
Pile/Drill Rig	0.501	00.00	00.0	00.0	0.00	00.00	00.00	0.00	0.00	0.00	00.0	00.00	0.00
Tractors	0.632	3.16	3.16	3.16	3.16	3.16	3.16	3.16	3.16	3.16	3.16	3.16	3.16
Welders	0.213	00.00	00.0	00.0	0.00	00.00	00.0	0.00	0.00	0.00	00.0	00.00	0.00
Light Plants	0.275	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65
Genertors	0.461	00.00	00.0	00.0	0.00	00.00	00.0	00.0	0.00	0.00	00.0	00.00	0.00
Hydro Vacs/Pumps	0.468	00.00	00.0	00.0	0.00	00.00	00.0	00.0	0.00	0.00	00.0	00.00	0.00
Fork Lifts	0.209	3.34	3.34	3.34	3.34	3.34	3.34	3.34	3.34	3.34	3.34	1.67	1.67
Loader/Backhoe	098'0	5.76	5.76	5.76	5.76	5.76	5.76	5.76	5.76	5.76	5.76	2.88	2.88
Air Compressors	0.195	00.00	00.0	0.00	0.00	00.00	00.00	0.00	00.0	0.00	00.0	0.00	0.00
Manlifts	0.167	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	1.33	1.33	1.33
Crawler Tractors	0.516	00.00	00.0	0.00	0.00	00.00	00.00	0.00	00.0	0.00	00.0	0.00	0.00
Scrapers	0.758	00.00	00.0	00.0	0.00	00.00	00.0	00.0	00.0	0.00	00.0	00.00	0.00
Rubber Tired Loaders	0.436	00.00	00.0	00.0	0.00	00.00	00.0	00.0	00.0	0.00	00.0	00.00	0.00
Graders	0.573	00.0	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Rollers	0.380	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Excavators	0.510	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		22.69	22.69	22.69	22.69	22.69	22.69	22.69	19.63	19.63	18.30	13.75	13.75

Appendix B Tesoro Integration and Compliance Project

	Emission Bate												
	(lb/hr)						Month						
XON	2022	61	62	63	64	65	99	29	89	69	20	71	72
<40 T Cranes	0.598	9:26	9:26	9.56	9:26	9.56	9:26	9:26	4.78	4.78	4.78	4.78	4.78
>40T Cranes	0.735	00:00	0.00	0.00	00.0	00.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00
Pile/Drill Rig	0.841	0.00	0.00	0.00	00.0	00.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0
Tractors	0.293	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47
Welders	0.171	00:00	0.00	0.00	00.0	00.00	00.0	0.00	00.00	0.00	00.00	0.00	0.00
Light Plants	0.171	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
Genertors	0.333	00:00	0.00	0.00	00.0	00.00	00.0	00.0	00.00	0.00	00.00	0.00	0.00
Hydro Vacs/Pumps	0.333	0.00	0.00	00.0	00.00	0.00	0.00	00.0	0.00	0.00	0.00	00.00	00.0
Fork Lifts	0.195	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	1.56	1.56
Loader/Backhoe	0.221	3.54	3.54	3.54	3.54	3.54	3.54	3.54	3.54	3.54	3.54	1.77	1.77
Air Compressors	0.171	0.00	0.00	00.0	00.00	0.00	0.00	00.0	0.00	0.00	0.00	00.00	00.0
Manlifts	680'0	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	0.71	0.71	0.71
Crawler Tractors	0.788	0.00	0.00	00.0	00.00	0.00	0.00	00.0	0.00	0.00	0.00	00.00	00.0
Scrapers	1.372	0.00	0.00	00.0	00.00	0.00	0.00	00.0	0.00	0.00	0.00	00.00	00.0
Rubber Tired Loaders	0.489	0.00	0.00	00.0	00.00	0.00	0.00	00.0	0.00	0.00	0.00	00.00	00.0
Graders	0.752	0.00	0.00	00.0	00.00	0.00	0.00	00.0	0.00	0.00	0.00	00.00	00.0
Rollers	0.206	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Excavators	0.248	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	00.00
Total		20.14	20.14	20.14	20.14	20.14	20.14	20.14	15.36	15.36	14.64	11.31	11.31

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						:						
	(lb/hr)						Month						
SOx	2022	61	62	63	64	65	99	29	89	69	20	71	72
<40 T Cranes	0.001	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01
>40T Cranes	0.002	00.0	00.00	0.00	00.0	00.00	00.00	0.00	0.00	0.00	0.00	00.00	0.00
Pile/Drill Rig	0.003	00.0	00.00	0.00	00.0	00.00	00.00	0.00	0.00	0.00	0.00	00.00	0.00
Tractors	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Welders	0.000	00.0	00.00	0.00	00.0	00.0	00.0	00.00	0.00	0.00	0.00	00.00	0.00
Light Plants	0.000	00.00	00.00	0.00	00.0	00.00	00.0	0.00	0.00	0.00	00.00	00.00	00.0
Genertors	0.001	00.00	00.00	0.00	00.0	00.00	00.0	00.0	0.00	0.00	00.00	00.00	00.0
Hydro Vacs/Pumps	0.001	00.00	00.00	0.00	00.0	00.00	00.0	00.0	0.00	0.00	00.00	00.00	0.00
Fork Lifts	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Loader/Backhoe	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Air Compressors	0.000	00.00	00.00	00.0	00.0	00.00	00.00	0.00	00.0	0.00	00.00	0.00	0.00
Manlifts	0.000	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	00.00	00.00	00.0
Crawler Tractors	0.002	00.00	00.00	00.0	00.0	00.00	00.00	0.00	00.0	0.00	00.00	0.00	0.00
Scrapers	0.004	00.00	00.00	0.00	00.0	00.00	00.0	0.00	00.0	0.00	00.00	00.00	00.0
Rubber Tired Loaders	0.002	00.00	00.00	0.00	00.0	00.00	00.0	0.00	00.0	0.00	00.00	00.00	00.0
Graders	0.002	00.00	00.00	0.00	00.0	00.00	00.0	0.00	00.0	0.00	00.00	00.00	00.0
Rollers	0.001	00.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	00.00	00.00	0.00
Excavators	0.001	00.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	00.00	00.00	0.00
Total		0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.02	0.05	0.02	0.04	0.04

Appendix B Tesoro Integration and Compliance Project

	Chaiceian Date												
	(Ib/hr)						Month						
PM10	2022	61	62	63	64	65	99	29	89	69	20	71	72
<40 T Cranes	0.027	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.22	0.22	0.22	0.22	0.22
>40T Cranes	0:030	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00
Pile/Drill Rig	0.034	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00
Tractors	0.015	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Welders	0.013	0.00	0.00	00.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Light Plants	0.013	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Genertors	0.024	0.00	0.00	00.00	00.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydro Vacs/Pumps	0.024	0.00	0.00	00.00	00.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fork Lifts	800'0	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	90.0	90.0
Loader/Backhoe	0.012	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.10	0.10
Air Compressors	0.013	0.00	0.00	00.00	00.0	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00
Manlifts	0.001	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01
Crawler Tractors	680.0	0.00	0.00	00.00	00.0	0.00	0.00	0.00	00.0	0.00	0.00	00.00	0.00
Scrapers	990'0	0.00	0.00	00.00	00.0	0.00	0.00	0.00	00.0	0.00	0.00	00.00	0.00
Rubber Tired Loaders	0.021	0.00	0.00	00.00	00.0	0.00	0.00	0.00	00.0	0.00	0.00	00.00	0.00
Graders	0.032	0.00	0.00	00.00	00.0	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00
Rollers	0.012	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Excavators	0.010	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.71	0.71	0.70	0.54	0.54

Appendix B Tesoro Integration and Compliance Project

	- 100 mission												
	(MT/hr)						Month						
COZEQ	2022	61	62	63	64	65	99	29	89	69	20	71	72
<40 T Cranes	0.035	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.28	0.28	0.28	0.28	0.28
>40T Cranes	0.051	00.0	00.0	00.00	00.0	0.00	0.00	0.00	00.00	0.00	00.0	00.0	0.00
Pile/Drill Rig	0.067	00.0	00.0	00.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	00.00	0.00
Tractors	0.029	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Welders	600.0	00.0	00.0	00.00	00.00	0.00	00.0	0.00	0.00	0.00	0.00	00.00	0.00
Light Plants	600.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
Genertors	0.018	00.0	00.0	00.00	00.00	0.00	00.0	0.00	00.0	0.00	0.00	00.00	0.00
Hydro Vacs/Pumps	0.018	00.0	00.00	00.00	00.00	0.00	00.00	0.00	00.00	0.00	00.00	00.00	0.00
Fork Lifts	0.021	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.17	0.17
Loader/Backhoe	0.019	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.15	0.15
Air Compressors	600.0	00.0	00.00	00.00	00.00	0.00	00.00	0.00	00.00	0.00	00.00	00.00	0.00
Manlifts	0.011	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	60.0	60.0	0.09
Crawler Tractors	0.048	00.0	00.00	00.00	00.00	0.00	00.00	0.00	00.00	0.00	00.00	00.00	0.00
Scrapers	0.094	00.0	00.00	00.00	00.00	0.00	00.00	0.00	00.00	0.00	00.00	00.00	0.00
Rubber Tired Loaders	0.039	00.0	00.00	00.00	00.00	0.00	00.00	0.00	00.00	0.00	00.00	00.00	0.00
Graders	0.041	00.0	00.00	00.00	00.00	0.00	00.00	0.00	00.00	0.00	00.00	00.00	0.00
Rollers	0.016	0.00	00.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00
Excavators	0.032	00.0	00.00	00.00	00.00	0.00	00.00	0.00	00.00	0.00	00.00	00.00	0.00
Total		1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.30	1.30	1.22	0.89	0.89

Appendix B Tesoro Integration and Compliance Project

							Month						
Equipment	Hours (hr/day)	73	74	75	92	2.2	78	42	80	81	82	83	84
<40 T Cranes	8	-	-	-	2	2	2	2	2	2	2	2	2
>40T Cranes	0	0	0	0	0	0	0	0	0	0	0	0	0
Pile/Drill Rig	8	1	0	1	0	0	0	0	0	0	0	0	0
Tractors	2	1	1	1	1	1	1	1	1	1	1	1	1
Welders	8	0	0	0	0	0	0	0	0	0	0	0	0
Light Plants	3	2	2	2	7	2	2	2	2	2	2	2	2
Genertors	8	0	0	0	0	0	0	0	0	0	0	0	0
Hydro Vacs/Pumps	2	0	0.5	0.5	9.0	0.5	0.5	0	0	0	0	0	0
Fork Lifts	8	1	1	1	7	2	2	2	2	2	2	2	2
Loader/Backhoe	8	1	1	1	7	2	2	2	2	2	2	2	2
Air Compressors	8	0	0	0	0	0	0	0	0	0	0	0	0
Manlifts	8	0	0	1	l	1	2	2	2	2	2	2	2
Crawler Tractors	8	0	0	0	0	0	0	0	0	0	0	0	0
Scrapers	8	0	0	0	0	0	0	0	0	0	0	0	0
Rubber Tired Loaders	8	0	0	0	0	0	0	0	0	0	0	0	0
Graders	10	0	0	0	0	0	0	0	0	0	0	0	0
Rollers	8	0	0	0	0	0	0	0	0	0	0	0	0
Excavators	8	0	0	0	0	0	0	0	0	0	0	0	0

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Manath						
	(lb/hr)						Month						
VOC	2023	73	74	75	92	77	78	79	80	81	82	83	84
<40 T Cranes	0.037	0:30	0:30	0:30	09.0	09.0	09.0	09.0	09.0	09.0	09.0	09:0	09.0
>40T Cranes	0.042	00.0	0.00	00.0	00.0	00.00	00.00	00.00	0.00	00.0	0.00	00.00	0.00
Pile/Drill Rig	0.059	0.47	0.00	0.47	00.0	00.00	00.00	00.00	0.00	00.0	0.00	00.00	0.00
Tractors	0.024	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Welders	0.025	00.0	0.00	00.0	00.0	00.0	00.0	00.0	0.00	00.0	0.00	00.00	0.00
Light Plants	0.025	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Genertors	0.025	00.00	00.0	0.00	00.0	00.00	00.0	00.0	0.00	00'0	00.0	00.00	0.00
Hydro Vacs/Pumps	0.025	00.00	90.0	90.0	90.0	90.0	90.0	00.0	0.00	00'0	00.0	00.00	0.00
Fork Lifts	0.011	60.0	60.0	60.0	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Loader/Backhoe	0.015	0.12	0.12	0.12	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
Air Compressors	0.025	00.00	00.0	0.00	00.0	00.00	00.0	00.0	0.00	00'0	00.0	00.00	0.00
Manlifts	0.004	00.00	00.0	0.03	0.03	0.03	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Crawler Tractors	090'0	00.00	00.0	0.00	00.0	00.00	00.0	00.0	0.00	00'0	00.0	00.00	0.00
Scrapers	0.084	00.00	00.0	0.00	00.0	00.00	00.0	00.0	0.00	00'0	00.0	00.00	0.00
Rubber Tired Loaders	0.033	00.00	00.0	0.00	00.0	00.00	00.0	00.0	0.00	00'0	00.0	00.00	0.00
Graders	0.047	00.00	00.0	0.00	00.0	00.00	00.0	00.0	0.00	00'0	00.0	00.00	0.00
Rollers	0.017	00.00	00.0	0.00	00.0	00.00	00.0	00.0	0.00	00'0	00.0	00.00	0.00
Excavators	0.018	00.0	0.00	0.00	0.00	00.0	00.0	0.00	0.00	00.0	0.00	00.00	0.00
Total		0.95	0.54	1.04	0.78	0.78	0.82	0.76	0.76	92.0	0.76	0.76	0.76

Appendix B Tesoro Integration and Compliance Project

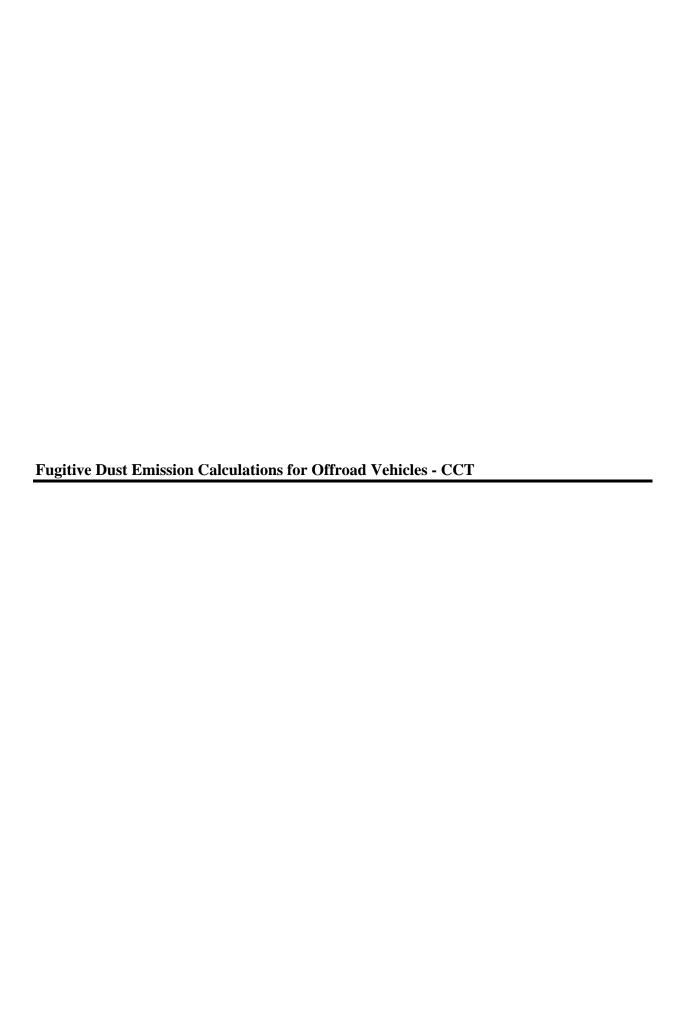
	Emission Rate (Ib/hr)						Month						
00	2023	73	74	75	92	77	78	79	80	81	82	83	84
<40 T Cranes	628.0	3.03	3.03	3.03	90.9	90.9	90.9	90.9	90.9	90.9	90.9	90.9	90.9
>40T Cranes	0.361	0.00	00.00	00.0	00.0	00.00	0.00	0.00	0.00	0.00	00.0	00.00	00.0
Pile/Drill Rig	0.501	4.01	00.00	4.01	00.0	00.00	0.00	0.00	0.00	0.00	00.0	00.00	00.0
Tractors	0.624	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12
Welders	0.211	0.00	00.00	00.0	00.0	00.00	00.0	0.00	0.00	0.00	00.0	00.00	00.0
Light Plants	0.273	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64
Genertors	0.460	0.00	00.00	00.0	00.0	00.00	00.0	00.0	0.00	0.00	00.0	00.00	00.0
Hydro Vacs/Pumps	0.467	0.00	1.17	1.17	1.17	1.17	1.17	00.0	0.00	0.00	00.0	00.00	00.0
Fork Lifts	0.215	1.72	1.72	1.72	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43
Loader/Backhoe	0.359	2.87	2.87	2.87	5.75	5.75	5.75	5.75	5.75	5.75	5.75	5.75	5.75
Air Compressors	0.194	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Manlifts	0.166	0.00	00.00	1.33	1.33	1.33	2.65	2.65	2.65	2.65	2.65	2.65	2.65
Crawler Tractors	0.513	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Scrapers	0.743	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
Rubber Tired Loaders	0.434	0.00	00.00	00.0	0.00	00.00	00.0	00.0	00.0	0.00	00.0	00.00	0.00
Graders	0.572	0.00	00.00	00.0	0.00	00.00	00.0	00.0	00.0	0.00	00.0	00.00	00.0
Rollers	0.378	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
Excavators	0.510	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
Total		16.38	13.54	18.87	22.49	22.49	23.82	22.65	22.65	22.65	22.65	22.65	22.65

Appendix B Tesoro Integration and Compliance Project

	C												
	Emission Kate (lb/hr)						Month						
NOX	2023	73	74	75	92	22	78	62	80	81	82	83	84
<40 T Cranes	0.466	3.73	3.73	3.73	7.46	7.46	7.46	7.46	7.46	7.46	7.46	7.46	7.46
>40T Cranes	0.536	00.0	0.00	00.0	00.00	00.00	00.0	0.00	0.00	0.00	00.0	0.00	0.00
Pile/Drill Rig	0.613	4.90	00.00	4.90	00.00	00.00	00.00	0.00	0.00	00'0	00'0	00.00	0.00
Tractors	0.231	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15
Welders	0.160	00.0	00.00	00.00	00.00	00.00	00.0	00.00	0.00	00'0	00'0	00.00	0.00
Light Plants	0.160	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96'0	96.0	96.0	96.0
Genertors	0.283	00.0	00.00	00.00	00.00	00.00	00.0	00.0	00.00	00'0	00'0	00.00	0.00
Hydro Vacs/Pumps	0.283	00.0	0.71	0.71	0.71	0.71	0.71	00.0	00.00	00'0	00'0	00.00	0.00
Fork Lifts	0.166	1.33	1.33	1.33	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66
Loader/Backhoe	0.177	1.42	1.42	1.42	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84
Air Compressors	0.160	00.0	00.00	00.00	00.00	00.00	00.0	00.0	00.0	00'0	00'0	00.00	0.00
Manlifts	0.083	00.0	00.00	99.0	99.0	99.0	1.33	1.33	1.33	1.33	1.33	1.33	1.33
Crawler Tractors	0.601	00.0	00.00	00.00	00.00	00.00	00.0	00.0	00.0	00'0	00'0	00.00	0.00
Scrapers	1.081	00.0	00.00	00.00	00.00	00.00	00.0	00.0	00.0	00'0	00'0	00.00	0.00
Rubber Tired Loaders	0.354	00.0	00.00	00.00	00.00	00.00	00.0	00.0	00.0	00'0	00'0	00.00	0.00
Graders	0.591	00'0	0.00	00.0	0.00	0.00	00.0	00'0	0.00	00'0	00.0	0.00	0.00
Rollers	0.170	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00
Excavators	0.185	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00
Total		13.49	9.30	14.87	16.45	16.45	17.11	16.40	16.40	16.40	16.40	16.40	16.40

Appendix B Tesoro Integration and Compliance Project

													Ī
	Emission Rate (Ib/hr)						Month						
SOx	2023	73	74	75	92	22	78	62	80	81	82	83	84
<40 T Cranes	0.001	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
>40T Cranes	0.002	00.0	00.0	00.0	00.0	0.00	00.00	0.00	0.00	0.00	0.00	00.00	0.00
Pile/Drill Rig	0.003	0.02	00.0	0.02	0.00	0.00	00.00	0.00	00.00	0.00	00.00	00.00	00.0
Tractors	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Welders	0.000	00.00	00.0	0.00	0.00	0.00	00.0	0.00	00.00	0.00	00.00	00.00	00.0
Light Plants	0.000	00.00	00.0	0.00	0.00	0.00	00.0	0.00	00.00	0.00	00.00	00.00	0.00
Genertors	0.001	00.00	00.0	0.00	0.00	0.00	00.0	0.00	00.00	0.00	00.00	00.00	0.00
Hydro Vacs/Pumps	0.001	00.00	00.0	0.00	0.00	0.00	00.0	0.00	00.00	0.00	00.00	00.00	0.00
Fork Lifts	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Loader/Backhoe	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Air Compressors	0.000	00.00	00.0	0.00	0.00	0.00	00.0	0.00	00.0	0.00	00.00	00.00	0.00
Manlifts	0.000	00.00	00.0	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Crawler Tractors	0.002	00.00	00.0	0.00	0.00	0.00	0.00	00.0	00.0	0.00	00.00	0.00	0.00
Scrapers	0.004	00.00	00.0	0.00	0.00	0.00	00.0	0.00	00.0	0.00	00.00	00.00	0.00
Rubber Tired Loaders	0.002	00.00	00.0	0.00	0.00	0.00	0.00	00.0	00.0	0.00	00.00	0.00	0.00
Graders	0.002	00.00	00.0	0.00	0.00	0.00	00.0	0.00	00.0	0.00	00.00	00.00	0.00
Rollers	0.001	00.00	00.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	00.00	0.00
Excavators	0.001	00.0	00.00	00.0	0.00	0.00	00.00	0.00	0.00	0.00	0.00	00.00	0.00
Total		90.0	0.04	90.0	90.0	90.0	0.07	0.07	0.07	0.07	0.07	0.02	0.07


Appendix B Tesoro Integration and Compliance Project

	Emission Rate						Month						
	(lb/hr)												
PM10	2023	73	74	75	92	77	78	62	80	81	82	83	84
<40 T Cranes	0.022	0.17	0.17	0.17	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
>40T Cranes	0.022	0.00	00.00	00.0	0.00	0.00	0.00	0.00	00.00	0.00	00.0	00.0	0.00
Pile/Drill Rig	0.024	0.19	0.00	0.19	0.00	00.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00
Tractors	0.011	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Welders	0.011	00.0	00.00	00.0	0.00	00.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00
Light Plants	0.011	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	20.0	0.07	0.07
Genertors	0.019	00.0	00.00	00.0	0.00	00.00	0.00	00.00	00.00	0.00	00.0	0.00	0.00
Hydro Vacs/Pumps	0.019	00.0	0.05	0.05	0.05	0.05	0.05	00.00	00.00	0.00	00.0	0.00	0.00
Fork Lifts	0.005	0.04	0.04	0.04	60.0	60.0	60.0	60.0	60.0	0.09	60.0	60.0	60.0
Loader/Backhoe	800'0	0.07	0.07	0.07	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Air Compressors	0.011	00.0	00.00	00.0	0.00	00.00	0.00	00.00	00.0	0.00	00.0	0.00	0.00
Manlifts	0.001	00.0	00.00	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Crawler Tractors	0:030	00.0	00.00	00.0	0.00	00.00	0.00	00.00	00.0	0.00	00.0	0.00	0.00
Scrapers	0.044	00.0	00.00	00.0	0.00	00.00	0.00	00.00	00.0	0.00	00.0	0.00	0.00
Rubber Tired Loaders	0.015	00.0	00.00	00.0	0.00	00.00	0.00	00.00	00.0	0.00	00.0	0.00	0.00
Graders	0.025	0.00	0.00	0.00	0.00	00.0	0.00	00.00	0.00	0.00	00.00	0.00	0.00
Rollers	600.0	0.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00
Excavators	0.007	0.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00
Total		09.0	0.45	0.65	0.74	0.74	0.75	0.70	0.70	0.70	0.70	0.70	0.70

Appendix B Tesoro Integration and Compliance Project

	Emission Rate						-17						
	(MT/hr)						Mont						
COZEQ	2023	73	74	75	92	22	78	62	80	81	82	83	84
<40 T Cranes	0.035	0.28	0.28	0.28	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57
>40T Cranes	0.051	00.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	00.0	00.0	0.00	0.00
Pile/Drill Rig	0.067	0.53	0.00	0.53	00.0	00.00	0.00	0.00	0.00	0.00	00.0	00.00	0.00
Tractors	0.029	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Welders	600'0	00.0	0.00	0.00	00.0	00.00	00.0	0.00	0.00	0.00	00.0	00.00	0.00
Light Plants	600'0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
Genertors	0.018	00.00	0.00	0.00	00.0	0.00	00.0	00.0	00.00	00.0	00.0	0.00	0.00
Hydro Vacs/Pumps	0.018	00.00	0.04	0.04	0.04	0.04	0.04	00.0	00.00	00.0	00.0	0.00	0.00
Fork Lifts	0.021	0.17	0.17	0.17	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
Loader/Backhoe	0.019	0.15	0.15	0.15	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31
Air Compressors	600'0	00.00	0.00	0.00	00.0	0.00	00.0	00.0	00.0	00.0	00.0	0.00	0.00
Manlifts	0.011	00.00	0.00	0.09	60.0	60.0	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Crawler Tractors	0.048	00.00	0.00	0.00	00.0	0.00	00.0	00.0	00.0	00.0	00.0	0.00	0.00
Scrapers	0.094	00.00	0.00	00.00	00.0	0.00	00.0	00.0	00.00	0.00	00.0	0.00	0.00
Rubber Tired Loaders	660.0	00.00	0.00	0.00	00.0	0.00	00.0	00.0	00.0	00.0	00.0	0.00	0.00
Graders	0.041	00.00	0.00	0.00	00.0	0.00	00.0	00.0	00.0	00.0	00.0	0.00	0.00
Rollers	0.016	00.00	0.00	00.00	00.0	0.00	00.0	00.0	00.00	0.00	00.0	0.00	0.00
Excavators	0.032	00.0	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	00.00	0.00	0.00
Total		1.34	0.85	1.47	1.55	1.55	1.63	1.59	1.59	1.59	1.59	1.59	1.59

This page intentionally left blank.

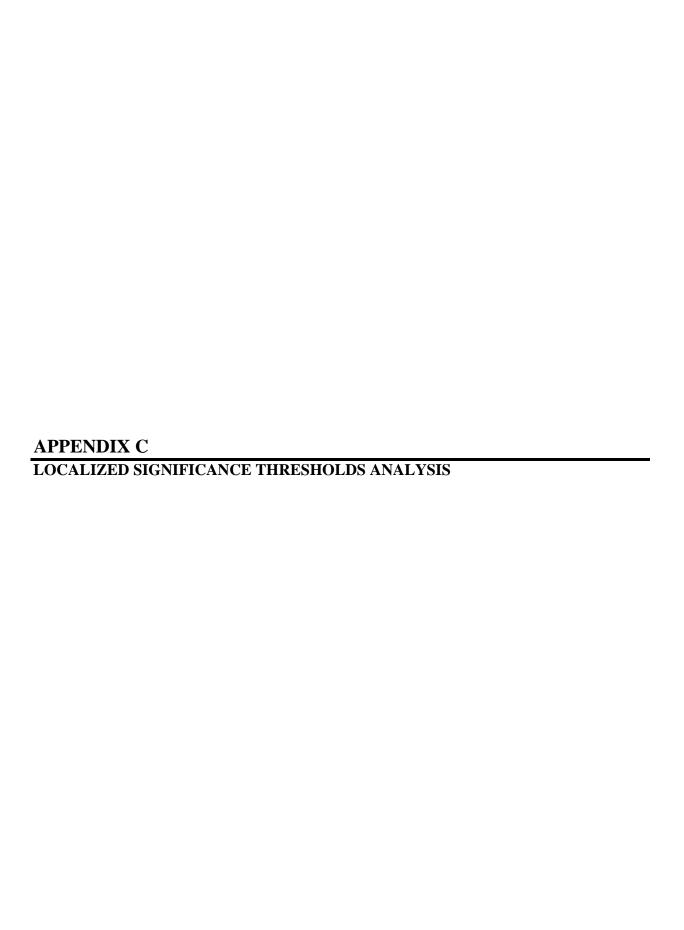
Appendix B Tesoro Integration and Compliance Project

Crude Tank Offroad Construction Vehicle Dust Emissions

Vehicle	Miles/Trip	Trips/Day
Light Vehicles	0.1	2
Total Light Vehicle Miles		0.2
Delivey Trucks	0.1	0
Water Trucks	0.1	1
Total Medium Truck Miles		0.1
Concrete Truck	0.1	0
Dump Trucks	0.1	40
Total Heavy Truck Miles		4
Tractors	0.1	3
Fork Lifts	0.1	2
Loader/Backhoe	0.1	2
Total Heavy-Heavy Duty Miles		0.7

	Emission Rate	
PM10	(lb/mi) ⁽¹⁾	Emissions (lb/day)
Light Duty	0.9021196	0.18
Medium Duty	1.2863357	0.13
Heavy Duty	2.1931267	8.77
Heavy Heavy Duty	2.4962390	1.75
Uncontrolled Total		10.83
Controlled Total ⁽²⁾		4.22

⁽¹⁾ Based on Section 13.2.2 of EPA's Compilation of Air Pollutant Emission Factors (AP-42).


Emission Rate = $1.5((s/12)^{\circ}.9)^{*}((W/3)^{\circ}.45)$


W = Vehicle Weight (ton) =2.5 for light, 5.5 for medium, 15 for heavy, and 24 for heavy heavy (EMFAC2007).

(2) Controlled Emissions assume that watering 3 times per day reduces emissions by 61 percent (Uncontrolled Emissions x 0.39)

s = silt content = 8.5%

This page intentionally left blank.

Tesoro Refining & Marketing Company LLC Addendum to the Los Angeles Refinery Integration and Compliance Project South Coast AQMD Localized Significance Threshold Analysis

October 2019

Prepared for: Tesoro Refining & Marketing Company LLC

By: Environmental Audit, Inc.

1000-A Ortega Way Placentia, CA 92870

714-632-8521

Tesoro Refining & Marketing Company LLC Addendum to the Los Angeles Refinery Integration and Compliance Project South Coast AQMD Localized Significance Threshold Analysis

INTRODUCTION

This Localized Significance Threshold (LST) analysis has been prepared to evaluate the potential impacts of the criteria pollutants carbon monoxide (CO), nitrogen dioxide (NO₂), particulate matter less than 10 microns in diameter (PM10), and particulate matter less than 2.5 microns in diameter (PM2.5) emitted by the construction activities associated with the proposed modifications to the Tesoro Refining & Marketing Company LLC Los Angeles Refinery (Refinery) Integration and Compliance (LARIC) Project.

Tesoro is currently proposing the following modifications: 1) relocate the propane recovery project component from the Carson Operations Naphtha Isomerization Unit to the Carson Operations C3 Splitter Unit; 2) include an increase to the throughput of the Carson Operations Tank 35; and, 3) update the toxic air contaminant (TAC) speciation for the six crude oil storage tanks at the CCT with additional data. The currently proposed modifications are for LARIC Project components that were approved in the May 2017 Final EIR, but have not yet been issued South Coast AQMD permits to construct. Additionally, due to delays, the construction schedule presented in the May 2017 Final EIR needs to be updated. Potential emission changes are evaluated and discussed in the Addendum to the May 2017 Final EIR (Addendum). The proposed modifications will not change the overall conclusions in the May 2017 Final EIR, result in any new significant adverse impacts, or make existing significant adverse environmental impacts substantially worse.

As part of the Addendum to the proposed project, Environmental Audit, Inc. (EAI) has calculated construction emissions to evaluate the potential impacts from construction activities associated with the changes to the proposed project. The LST analysis includes an air quality analysis of the criteria pollutants for the peak daily construction emissions from the LARIC Project. The results of this analysis are provided below.

FACILITY LOCATION

The proposed project will occur at both the Wilmington and Carson Operations of the Tesoro Los Angeles Refinery (see Figure C-1). Tesoro will more fully integrate the Carson Operations with the Wilmington Operations, to become a more efficient single entity owned and operated by Tesoro. The Refinery will be comprised of approximately 950 contiguous acres in size and operate within the Cities of Los Angeles (Wilmington District) and Carson, California.

The Wilmington Operations are located within Wilmington, a community under the jurisdiction of the City of Los Angeles, at 2101 East Pacific Coast Highway, Wilmington, Los Angeles County, California 90744. The Carson Operations are located at 2350 East 223rd Street, Carson, California, 90745. Both new and modified equipment, as well as connecting piping, will be located within portions of the Refinery under both the City of Carson jurisdiction and the City of Los Angeles jurisdiction.

The Wilmington Operations are bounded to the north by Sepulveda Boulevard (as well as other tank farms and refinery activities), to the west by Alameda Street (as well as the Alameda Corridor and other tank farms), to the south by railroad tracks (as well as tank farms and metal

Appendix C

Tesoro Refining & Marketing Company LLC Addendum to the Los Angeles Refinery Integration and Compliance Project South Coast AQMD Localized Significance Threshold Analysis

recycling/scrap yards), and to the east by the Dominguez Channel (as well as other tank farms and rail yard activities). The Wilmington Operations are bisected by Pacific Coast Highway, with the larger portion of the Wilmington Operations to the north of Pacific Coast Highway and the smaller portion to the south. The closest residential area to the Wilmington Operations is about 200 feet southwest of the Truck Loading Rack.

The Carson Operations are bounded by Wilmington Avenue to the west, 223rd Avenue to the north, Alameda Street to the east, and Sepulveda Boulevard to the south. The Dominguez Channel flows through the Carson Operations, dividing the property into two sections: Northeastern and Southern. Several industrial/commercial facilities and the 405 Freeway border the Carson Operations to the north. The Alameda Corridor and other industrial facilities, including the Tesoro Coke Barn, the Air Products Hydrogen Plant, and the Tesoro Sulfur Recovery Plant (SRP), are located to the east of the Carson Operations. Commercial and residential areas are located to the west of the Carson Operations. The Phillips 66 Refinery and tank farms occupy the area located to the south of the Carson Operations.

The Carson Operations and all adjacent facilities and properties are zoned manufacturing heavy (MH) according to the City of Carson's Land Use element of its General Plan. The closest residential area to the Carson Operations is approximately 250 feet southwest of the Refinery on the southwest corner of the Sepulveda Boulevard/Wilmington Avenue intersection.

Additionally, the SRP (considered to be a portion of the Wilmington Operations) is located at 23208 South Alameda Street in the City of Carson (see Figure 1). The SRP is zoned MH according to the City of Carson's Land Use element of its General Plan. Adjacent land uses to the SRP also are heavy industrial and include other refineries, a hydrogen plant, undeveloped lots, and container storage areas.

EMISSION ESTIMATES

Construction emission estimates for the peak day are calculated by each project component that will be under construction during that peak period for the proposed project. A summary of construction emissions is found on Table C-1. More detailed construction emissions can be found in Attachment A. Construction emissions vary based on activities and the worst-case scenario has been evaluated. It is expected that the calculated peak day emissions estimates will occur infrequently during the proposed project construction activities and, most of the time, construction emissions will be less.

Construction activities by month for the proposed project are calculated to determine the peak construction day, based on the updated construction schedule. Only on-site emissions sources are included, and though equipment (such as cranes) would be shared between project components, no equipment sharing was assumed for this LST analysis. The peak on-site construction day for most project components is spread over 12 hours and is expected to occur during Month 11 for all pollutants (CO, NO₂, PM10, and PM2.5). Construction activities included in this evaluation are the use of construction equipment and fugitive dust emissions from earth moving activities.

Tesoro Refining & Marketing Company LLC Addendum to the Los Angeles Refinery Integration and Compliance Project South Coast AQMD Localized Significance Threshold Analysis

CRITERIA POLLUTANT IMPACT MODELING

In order to determine the groundlevel concentrations associated with the revised peak construction activities, the U.S. EPA AERMOD air dispersion model was used to model the peak day construction emissions (see Table C-1) and calculate the annual average and maximum 1-hour, 8-hour, and 24-hour concentrations. NO₂ emissions were estimated using the U.S. EPA recommended ambient ratio method (ARM), which converts NOx to NO₂ based on a fixed ratio (U.S EPA, 2014).

The location of the source is identified based on data provided by Tesoro and the Long Beach USGS Quadrangle (see Figure C-2). The dispersion model was run using the Long Beach meteorological data available from the South Coast AQMD and used regulatory defaults.

The model only includes area sources, which are not subject to building downwash effects. Therefore, the model was not set to include algorithms to model the effects of building downwash on emissions.

Terrain elevations were taken into account even though the facility and the vicinity are in a relatively flat area.

The AERMOD model was run using a coarse receptor grid of 500 meters that extends at least 1,000 meters in every cardinal direction from the boundaries of the Refinery, and a fine receptor grid of 100 meters in the residential area most affected by the construction emissions (see Figure C-2). The maximum impact location was determined for the applicable averaging periods from the AERMOD model output. The maximum groundlevel concentration and the Universal Transverse Mercator (NAD 83) coordinates for each maximum impact point at a sensitive receptor are presented in Table C-2.

MODELED CRITERIA POLLUTANT IMPACT ANALYSIS

The proposed project maximum groundlevel concentrations were compared to the localized significance thresholds to determine if the project would cause or contribute to a violation of any state ambient air quality standard. The ambient air quality data for South Coastal Los Angeles County (Station No. 033 and 077) was used to establish background levels of the pollutants. Table C-3 identifies the ambient air quality data for CO, NO₂, PM10, and PM2.5 published by the South Coast AQMD in the last three years (2014, 2015, and 2016), as well as federal NO₂ ambient background concentration data published by South Coast AQMD.

The CO and NO₂ concentrations were combined with the ambient background concentrations and compared to the Most Stringent Air Quality Standard. The PM10 and PM2.5 24-hour, and PM10 and PM2.5 annual average concentrations were compared to the Significant Change in Air Quality Concentration thresholds. PM2.5 emissions were conservatively modeled as PM10 for this analysis. Impacts from other criteria pollutants are regional in nature or in attainment and,

Appendix C

Tesoro Refining & Marketing Company LLC Addendum to the Los Angeles Refinery Integration and Compliance Project South Coast AQMD Localized Significance Threshold Analysis

therefore, were not included as part of the localized air quality analysis. The maximum impact locations are shown in Figure 2.

State Standards

The maximum CO impact concentrations for 1-hour and 8-hour averages are 4,295.97 and 2,672.38 micrograms per cubic meter (μ g/m³), respectively. The maximum NO₂ impact concentrations for 1-hour and annual averages are 363.67 and 39.72 μ g/m³, respectively. The maximum PM10 impact concentrations for 24-hour and annual averages are 1.14 and 0.12 μ g/m³, respectively. The maximum PM2.5 impact concentrations for 24-hour and annual averages are 1.14 and 0.12 μ g/m³, respectively. Therefore, the proposed project modeling results only exceed State criteria pollutant significance thresholds for 1-hour NO₂. The results are presented in Table C-4.

Federal Standards

The maximum CO impact concentrations for 1-hour and 8-hour averages are 4,295.97 and 2,672.38 $\mu g/m^3$, respectively. The maximum NO₂ impact concentrations for 1-hour and annual averages are 216.16 and 39.72 $\mu g/m^3$, respectively. The maximum PM10 impact concentrations for 24-hour and annual averages are 1.14 and 0.12 $\mu g/m^3$, respectively. The maximum PM2.5 impact concentrations for 24-hour and annual averages are 1.14 and 0.12 $\mu g/m^3$, respectively. Therefore, the proposed project modeling results only exceed Federal criteria pollutant significance thresholds for 1-hour NO₂. The results are presented in Table C-4.

Comparison to May 2017 Final EIR

As shown in Table C-5, the impacts from modifications to the proposed project are less than the reported impacts in the May 2017 Final EIR for all pollutants. Therefore, no significant impact to local air quality is expected from the modification to the proposed project.

CONCLUSIONS

Impacts from modifications to the proposed project as analyzed in the Addendum are expected to be less than the LST impacts and do not change the significance determinations reported in the May 2017 Final EIR for all pollutants. However, the emission impacts from the modifications to the proposed project will remain significant for both state and federal air quality standards for 1-hour NO₂ during the peak of on-site construction. The emission impacts from the modifications to the proposed project will remain less than significant for CO, annual NO₂, or PM emissions during the construction phase. Therefore, no new significant and no substantial increases in an already significant impact to air quality are expected from the modifications to the proposed project.

M:\MC\2844 Tesoro - Synergy\Construction\LST\2844 LST Addendum Report (rev 4).doc

TABLES

Tesoro Integration and Compliance Project Addendum Localized Significance Threshold Analysis

Table C-1. Onsite Construction Emission Summary for Month 12 - Peak NO2 and PM2.5

					Component	onent			
Emissions from Equipment		C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	W-HCU	C-LHU	W-HTU12
VOC (lb/day)		4.14	3.60	3.60	3.61	2.49	3.02	1.87	3.05
CO (lb/day)		35.07	28.79	28.79	30.64	24.53	30.29	14.47	31.73
NOx (lb/day)		36.11	35.42	35.42	40.94	30.44	36.92	15.50	31.75
SOx (lb/day)		80.0	0.07	20.0	0.08	0.07	60.0	0.03	0.08
PM10 (lb/day)		2.29	2.13	2.13	2.24	1.61	1.87	1.01	1.79
PM2.5 (Ib/day) ⁽¹⁾		2.25	2.09	2.09	2.19	1.58	1.83	66.0	1.76
CO ₂ (lb/day)		1.88	1.65	1.65	1.98	1.71	2.28	0.75	1.96
				•	Component	onent	•		
Emission from Trips - Onsite	6	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	W-HCU	C-LHU	W-HTU12
VOC (lb/day)		10.0	0.01	10.0	0.01	00'0	0.01	0.01	0.01
CO (lb/day)		0.10	0.18	0.18	0.09	0.04	0.09	0.08	0.10
NOx (lb/day)		0.11	0.14	0.14	0.11	0.10	0.11	0.11	0.11
SOx (lb/day)		00:00	00.0	00.00	00:00	00.0	00:00	00:00	00.0
PM10 (lb/day)		0.02	0.03	0.03	0.05	0.01	0.05	0.05	0.02
Exhuast PM (Ib/day)		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Fugitive PM (Ib/day)		0.01	0.02	0.05	0.01	0.01	0.01	0.01	0.01
PM2.5 (Ib/dav) ⁽¹⁾		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Exhiast PM (lb/dav)		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Fugitive PM (Ib/dav)		0.00	00.00	0.00	00:0	00:0	0.00	0.00	00.0
					Component	onent			
Fugitive Earthmoving PM - Peak	eak	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	W-HCU	C-LHU	W-HTU12
PM10 (lb/day) ⁽²⁾			2.36	2.36	2.36				2.36
PM2.5 (Ib/day) ⁽¹⁾⁽²⁾			1.37	1.37	1.37				1.37
					Component	onent			
Offroad Fugitive PM - Peak		C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	W-HCU	C-LHU	W-HTU12
PM10 (lb/day) ⁽²⁾			0.37	0.37	0.37				0.37
PM2.5 (lb/day) ⁽¹⁾⁽²⁾			0.08	0.08	0.08				0.08
					Component	nent			
Total Emissions	Thresholds	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	W-HCU	C-LHU	W-HTU12
VOC (lb/day)	75	4.15	3.61	3.61	3.61	2.49	3.03	1.88	3.05
CO (lb/day)	220	35.17	28.97	28.97	30.73	24.57	30.38	14.55	31.83
NOx (lb/day)	100	36.22	35.55	35.55	41.05	30.54	37.02	15.61	31.85
SOx (lb/day)	150	80.0	0.07	20.0	0.08	0.07	0.10	0.03	0.08
PM10 (lb/day) ⁽²⁾	150	2.31	4.89	4.89	4.98	1.62	1.88	1.03	4.54
PM2.5 (Ib/day) ⁽¹⁾⁽²⁾	22	2.26	3.55	3.55	3.65	1.59	1.84	1.00	3.21
CO (lb/hr)	NA	2.93	2.41	2.41	2.56	2.05	2.53	1.21	2.65
NOx (lb/hr)	AN	3.02	2.96	2.96	3.42	2.54	3.09	1.30	2.65
SOx (lb/hr)	NA	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01
PM10 (lb/hr) ⁽²⁾	NA	0.19	0.41	0.41	0.42	0.14	0.16	0.09	0.38
PM2.5 (lb/hr) ⁽¹⁾⁽²⁾	AN	0.19	0:30	0.30	0:30	0.13	0.15	0.08	0.27
dbaed/epes/woo babe many/:satt(1)	oly 01402 5 Cma/2 CVQ/1000	2							

PM2.5 (Ib/hr)⁽¹⁾⁽²⁾ NA (1) https://www.aqmd.gov/ceqa/handbook/PM2_5/pm2_5ratio.xls (2) Mitigated PM.

Modeled Source	Pipe1	Pipe2	WILHTU4	CARLPGRAIL LHU	댐	WHTU
CO (lb/hr)	2.41	2.41	2.56	2.05	1.21	5.18
NOx (lb/hr)	2.96	2.96	3.42	2.54	1.30	5.74
SOx (lb/hr)	10.0	0.01	0.01	10.0	00.00	10.0
PM10 (lb/hr) ⁽²⁾	0.41	0.41	0.42	0.14	0.09	0.54
PM2.5 (lb/hr) ⁽¹⁾⁽²⁾	08.0	0:30	08'0	0.13	0.08	0.42

Tesoro Integration and Compliance Project Addendum Localized Significance Threshold Analysis

Table C-2. Modeling Results

Criteria	Averaging	Max (μg/m3)	UTME	UTMN	Construction
Pollutant	Period	iviax (µg/iii5)	OTIVIE	OTIVIN	Month
СО	1-hr	99.39	384900	3740000	Month 11
CO	8-hr	25.89	384900	3740000	Month 11
	1-hr	110.48	384900	3740000	Month 11
NO ₂	1-hr (98%)	82.33	384900	3740000	Month 11
	Annual	1.15	385249.6	3739502.9	Month 11
PM10	24-hr	1.14	384900	3740000	Month 11
PIVIIU	Annual	0.12	385249.6	3739502.9	Month 11
PM2.5	24-hr	1.14	384900	3740000	Month 11
FIVIZ.J	Annual	0.12	385249.6	3739502.9	Month 11

Model results based on the last 5 years of available meterological data from SCAQMD for Long Beach. Assumes PM2.5 is 100% of PM10.

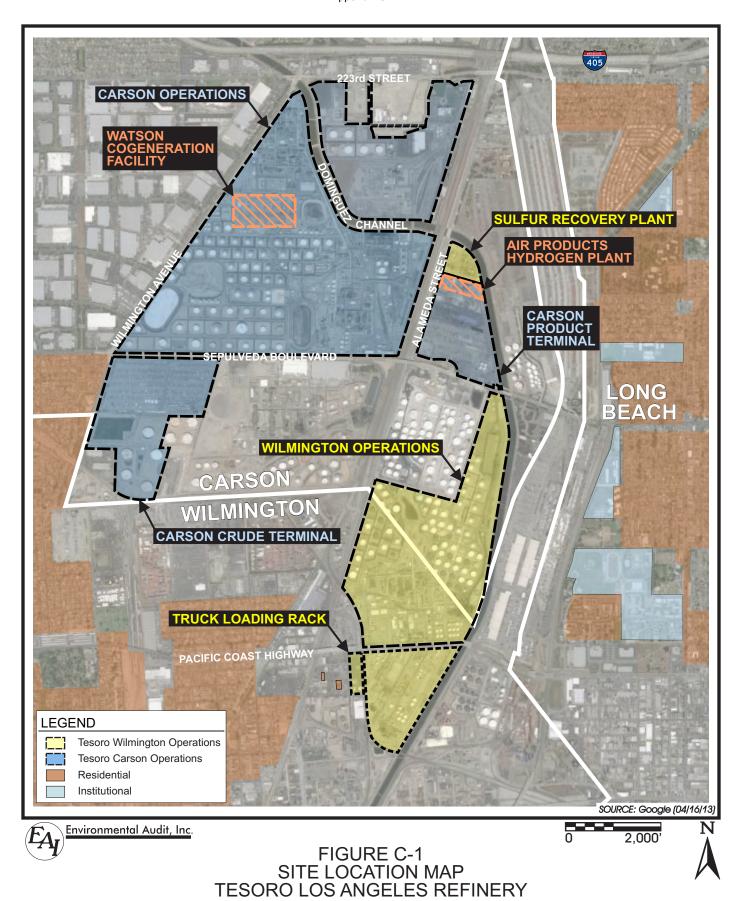
Table C-3. Ambient Concentrations

Criteria	Averaging	Coi	ncentration (pp	om)	Max	Conc.
Pollutant	Period	2014	2015	2016	(ppm)	(µg/m³)
СО	1-hr	3.7	3.3	3.3	3.7	4196.58
	8-hr	2.6	2.2	2.2	2.3	2646.49
NO ₂	1-hr	0.1359	0.1018	0.0756	0.1359	253.19
	1-hr (98%)	0.0848	0.0644	0.0663	0.0718	133.83
	AAM	0.0207	0.0198	0.0185	0.0207	
		Con	centration (μg/	['] m³)		
PM10	24-hr	59	62	56		62.0
	AAM	26.6	26.5	27.8		27.8
PM2.5	24-hr	52.2	48.3	28.93	·	52.2
	AAM	10.72	10.26	9.62	·	10.7

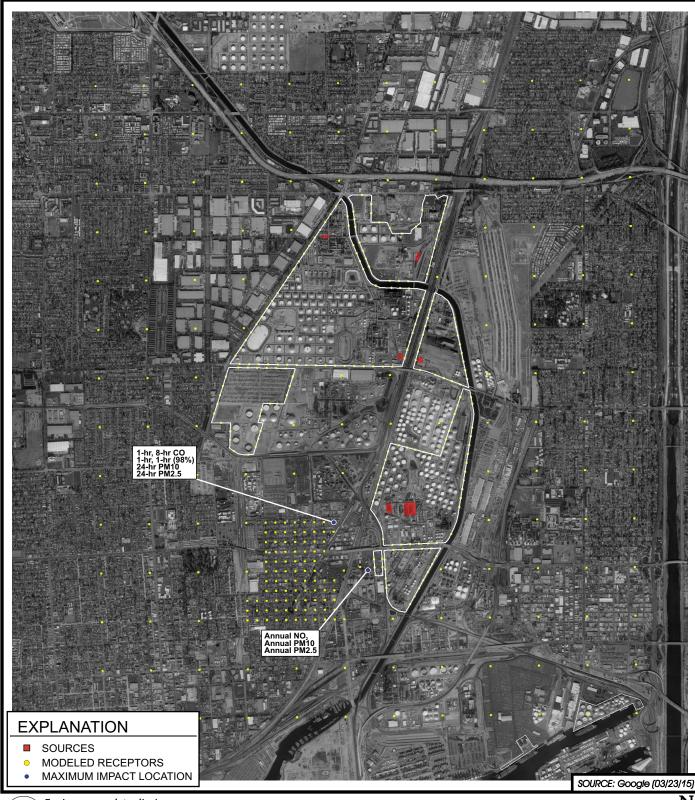
Data from South Coastal LA County Station number 33 and 77. Missing PM2.5 substituted with PM10.

AAM = Annual Arithmetic Mean

Table C-4. Localized Significance Threshold Summary


Criteria Pollutant	Averaging Period	Max Modeled GLC Conc. (μg/m³)	Background GLC Conc. (μg/m³)	Total GLC Conc. (μg/m³)	Most Stringent Air Quality Standard (ug/m³)	Significant
со	1-hour	99.39	4196.58	4295.97	23000	NO
CO	8-hour	25.89	2646.49	2672.38	10000	NO
	1-hour	110.48	253.19	363.67	339	YES
NO ₂	1-hour (Federal)	82.33	133.83	216.16	188	YES
	Annual	1.15	38.57	39.72	57	NO
PM10	24-hour	1.14			10.4	NO
LIVITO	Annual	0.12			1	NO
PM2.5	24-hour	1.14			10.4	NO
PIVIZ.3	Annual	0.12			1	NO

Tesoro Integration and Compliance Project Addendum Localized Significance Threshold Analysis


Table C-5. Comparison of LST Summaries

Criteria Pollutant	Averaging Period	Proposed Modification (µg/m³)	May 2017 FEIR (μg/m³)
СО	1-hour	4295.97	8211.10
CO	8-hour	2672.38	4967.40
	1-hour	363.67	455.90
NO ₂	1-hour (Federal)	216.16	302.80
	Annual	39.72	52.70
PM10	24-hour	1.14	3.46
PIVITO	Annual	0.12	0.86
PM2.5	24-hour	1.14	3.46
FIVIZ.J	Annual	0.12	0.86

FIGURES

Project No. 2844

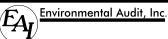


FIGURE C-2 LST MAXIMUM IMPACT LOCATION MAP TESORO LOS ANGELES REFINERY

Project No. 2844

ATTACHMENTS

Attachment A Tesoro Integration and Compliance Project Addendum Peak Project Component Construction Emission Summary

Pipe1 3.39 26.96 34.28 34.28 3.428 1.99 1.99 1.60 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Pipe1 3.39 0.07 2.696 0.07 2.696 0.07 2.08 0.07 2.09 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0	W-H	C-LI	Component Comp	OH-W	C-Steg	C-LHU 1.87 14.47 15.50	W-HTU12 3.05 31.73
1,000 1,00	25 6.96 26 96 27 26.96 28 0.07 29 2.03 25 1.99 88 1.60 10 0.01 00 0.00 00 0.00 00 0.00 01 0.01 01 0.01 01 0.01 00 0.00 00 00 0.00 00 00 0.00 00 00 0.00 00 00 0.00 00 00 0.00 00 00 0.00 00 0	000 000 000 000 000 000 000 000 000 00	C-LI	Onent C-NF	M H-M	2 2	1.87 14.47 15.50	3.05
196 26.96 35.07 26.96 36.01 36.18	11 34.28 2.03 2	W-H W-H 100 100 100 100 100 100 100 1	C-L	Onent C-NF	M-H-M	2 2	14.47	31.73
100 100	11 34.28 1.60 1	W-H W-H 100 W-H 118 W-H 100 000 000	C-LI	Onent C-NF	H-M	2	15.50	
0.08 0.07	229 2.03 2.25 1.99 8.88 1.60 1.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	W-HTI W-HTI 003 003 003 003 003 003	C-LI	Onent C-NF	M H			31.75
yy ⁽¹⁾ om Trips - Onsite c. 51V om (biday) om (bida	2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03	W-HTI W-HT	619 C-LI		M-HC		0.03	0.08
1.89 1.60 1.89 1.60 1.80 1.60	1.60	W-HTU W-HTU W-HTU 000 001 001 001	6119 000 001 001 001 001 001 001 001		он-м		1.01	1.79
1.88 1.60	Pipe1 1.10 0.18 0.00 0.00 0.01 0.01 0.01 0.0	W-HTI W-HTI 000 001 001 001	C-L		M-HC	1.48	66.0	1.76
C-51V Pipe1	Pipe1 1.1 0.18 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	W-HTI 1.18 W-HTI 0.00 0.03 0.03 0.01 0.01	C-F		W-HC	1.65	0.75	1.96
thmoving PM · Peak C-51V Pipe1 Out 0.18 Out 0.10 Out 0.00	Pipe1 (11) 0.18 (00) 0.00 (01) 0.01 (01) 0.01 (01) 0.01 (01) 0.01 (01) 0.01	W-HT 118 0.00 0.00 0.01 0.01	C-1		W-HC	,		
om Trips - Onsite C-51V Pipe1 0.10 0.18 0.18 0.11 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 NM (Ib/day) 0.01 0.01 NM (Ib/day) 0.00 0.00 NM (Ib/day) 0.00 0.00 Ny(n/c) 0.00 0.00 Itive PM - Peak C-51V Pipe1 Itive PM - Peak C-51V Pipe1 Ny(n/c) 0.08 0.37 Ny(n/c) 0.08 0.08 Intrasholds C-51V Pipe1 Ny(n/c) 0.08 0.07 150 0.08 0.07 150 0.08 0.07 NA 2.23 3.45 NA 2.23 2.26 101 0.07 102	Pipe1 0.01 0.02 0.03 0.01	W-HTI (1.14 (2.02) (2.0	C-LP	SOUTH THE STATE OF	M-HC			
10 0.18 0.14 0.18 0.14 0.18 0.10 0.00 0.						C-Stea	C-LHU	W-HTU12
1							0.08	0.10
Peak C-51V Pipe1 Thresholds C-51V T T T T T T T T T T T T T T T T T T T							0.11	0.11
Peak C-51V Pipe1 Thresholds C-51V Theta Thresholds C							0.00	0.00
0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02					0.02	0.02	0.02	0.02
Peak C51V Pipe1 Co.51V Pipe1 Thresholds C51V Pipe1 Thresholds C51V Pipe1 Thresholds C51V Pipe1 Thresholds C51V Pipe1 To.08 38.17 27.14 To.09 36.22 34.42 To.0 2.31 4.79 SS 2.23 3.45 NAA 2.22 2.22 AAB 2.22 2.22 AAB 2.22 2.22						10.0	0.01	0.01
Peak C-51V Pipe1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.37 1.					10.0	10.0	0.01	0.01
Peak C-51V Pipe1 C-51V Pipe1							0.01	0.01
C-51V Pipe1		0.01					0.01	0.01
C-51V Pipe1 1.37					00:00	00.00	00.00	00:0
C-51V Pipe1								T
C-51V Pipe1			Comp	Component				
C-51V Pipe1	Pipe1	Pipe2 W-HTU4	J4 C-LPG	C-NHDS	NOH-M	C-Steam	C-LHU	W-HTU12
1.37	2.36	2.36	2.36					2.36
C-51V Pipe1	1.37	1.37	1.37					1.37
C-51V Pipet 0.37 0.08								
C-51V Pipe1			Comp	Component				
Continue	Pipe1	Pipe2 W-HTU4	J4 C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
Thresholds C-51V Pipe1 3.39 550 35.17 27.14 100 36.22 34.42 150 0.08 0.07 150 2.31 4.79 55 2.28 3.45 2.28 3.45 2.28 3.45 2.28 3.45 2.28 3.45 2.28 3.45 2.28 3.45 2.28 3.45 2.28 3.45 3	0.37	0.37	0.37					0.37
Thresholds C-51V Pipe1 75 4.15 3.39 550 35.17 27.14 100 36.22 34.42 150 0.08 0.07 150 2.31 4.79 55 2.28 3.45 NA 2.23 2.24	0.08	0.08	0.08					0.08
Thresholds C-51V Pipe1 75 4.15 3.39 550 35.17 27.14 100 36.22 34.42 150 0.08 0.07 150 2.31 4.79 55 2.28 3.45 NA 2.23 2.24				1				
1100 120		-		Component				141
550 35.17 2 550 35.17 2 100 36.22 3 150 0.08 150 2.31 55 2.26	Fipe:	Pipez W-HIU4	7	C-NHUS	DOH-M	C-Steam	C-LHU	W-H1012
100 36.22 3 150 0.08 1 150 2.31 2.56 NA 2 9.93							14.55	31.83
150 0.08 150 2.31 55 2.26 NA 2.93								31.85
150 2.31 55 2.26 NA 2.03								0.08
55 2.26 NA 2.03							1.03	4.54
NA 2 93		3.45	3.65 1.59			1.48	1.00	3.21
00:3							1.21	2.65
(2.87	3.42 2.54		3.09		1.30	2.65
		0.01	0.01 0.01		0.01	0.01	0.00	0.01
NA 0.19		0.40	0.42 0.14	0.14	0.16	0.13	0.09	0.38
PM2.5 (lb/hr) ⁽¹⁾⁽²⁾ NA 0.19 0.29		0.29	0.30 0.13	0.14	0.15	0.12	0.08	0.27

(1) https://www.aqmd.gov/ceqa/handbook/PM2_5/pm2_5ratio.xls (2) Mitigated PM.

Modeled Source	CARALKY	Pipe1	Pipe2	WILHTU4	CARLPGRAIILHU	LHU	WHTU
CO (lb/hr)	7.06	2.26	2.26	2.56	2.05	1.2	5.18
NOx (Ib/hr)	8.09	2.87	2.87	3.42	2.54	1.30	5.74
SOx (lb/hr)	0.02	0.01	0.01	0.01	0.01	0.0	0.01
PM10 (lb/hr) ⁽²⁾	0.46	0.40	0.40	0.42	0.14	0.09	0.54
PM2.5 (lb/hr) ⁽¹⁾⁽²⁾	0.45	0.29	0.29	0:30	0.13	0.08	3 0.42

Appendix C

Attachment A Tesoro Integration and Compliance Project Addendum

			2017	Emission	Factors Ib)/hr ⁽¹⁾	
Equipment Type	Нр	VOC	СО	NOx	SOx	PM10	CO2e ⁽²⁾
<40 T Cranes	Composite	0.06537	0.4152	0.90923	0.00147	0.04291	0.03535
>40T Cranes	500	0.07236	0.4243	1.11689	0.00213	0.04535	0.05139
Pile Rig	Composite	0.04029	0.5013	0.67483	0.00244	0.02483	0.05882
Tractors	Composite	0.03046	0.3666	0.35832	0.00080	0.02366	0.0192
Welders	50	0.03579	0.2408	0.18867	0.00039	0.01662	0.00938
Light Plants	50	0.03579	0.3047	0.18867	0.00039	0.01662	0.00938
Genertors	120	0.04173	0.4728	0.45336	0.00074	0.03547	0.01794
Hydro Vacs	120	0.04173	0.4802	0.45336	0.00074	0.03547	0.01794
Fork Lifts	Composite	0.01948	0.4522	0.29726	0.00089	0.01519	0.02146
Loader/Backhoe	Composite	0.03046	0.3666	0.35832	0.00080	0.02366	0.0192
Air Compressors	50	0.03579	0.2209	0.18867	0.00039	0.01662	0.00938
Manlifts	Composite	0.00586	0.1548	0.11635	0.00044	0.00353	0.01066
Crawler Tractors	Composite	0.08013	0.5464	1.12114	0.00201	0.05470	0.04843
Scrapers	Composite	0.13882	0.8713	2.07961	0.00390	0.08569	0.094
Rubber Tired Loaders	Composite	0.05859	0.4510	0.77443	0.00161	0.03545	0.03869
Graders	Composite	0.07261	0.5844	1.01224	0.00170	0.04497	0.04101
Rollers	Composite	0.03177	0.3913	0.30830	0.00068	0.01994	0.01635
Excavators	Composite	0.03202	0.5184	0.42996	0.00133	0.01874	0.03212

⁽¹⁾ Off-Road 2011. CO emissions from SCAQMD, 2006 : http://www.aqmd.gov/ceqa/handbook/offroad/offroadEF07_25.xls

⁽²⁾ Carbon Dioxide Equivalents (CO_{EQ}) are based on default emission factors for diesel. Metric tons per hour.

Construction Equipment

Equipment	C-51V	Pipe1	Pipe1	W-HTU4	C-LPG	C-NHDS	M-HCU	C-Steam	C-LHU	W-HTU12
<40 T Cranes	1	1.5	1.5	2	0.25	0.48	8.0	0.5	9.0	1
>40T Cranes	_	1	_	2	0.25	0.48	9.0	0.5		
Pile Rig		0	0		0.5	0.1	2	0.1		0.1
Tractors	0.5	0.5	0.5	0.5	0.1	0.16	0.25	0.1		0.5
Welders	8	4	4	3	1	1.6	2	1	3	4
Light Plants	0.5	0	0	1	0.5	8.0	1	0.5	2	1
Genertors	0	2	2	1	1					
Hydro Vacs	0.5	0	0	0.25	0.25	0.5	0.25	0.1		0.5
Fork Lifts	0.75	1	1	0.5	0.25	9.0	1	0.25		1
Loader/Backhoe	0.1	0.5	0.5	0.2	0.1	0.16	0.2	0.1	1.0	0.5
Air Compressors	0.1	2	2	0.1	0.5	8.0	0.1	0.5	0.2	0.1
Manlifts	4	1	1	3	2	2.4	3	2	1	9
Crawler Tractors										
Scrapers										
Rubber Tired Loaders										
Graders										
Rollers										
Excavators										

						Component	nent				
Equipment	Hours (hr/day)	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
<40 T Cranes	7	_	2	2	2	_	_	_	-	-	-
>40T Cranes	2	1	1	1	2	1	1	1	1	0	0
Pile Rig	8	0	0	0	0	1	1	2	1	0	1
Tractors	2	1	1	1	1	1	1	1	1	0	1
Welders	8	8	4	4	3	1	2	2	1	3	4
Light Plants	3	1	0	0	1	1	1	1	1	2	1
Genertors	3	0	2	2	1	1	0	0	0	0	0
Hydro Vacs	2	1	0	0	1	1	1	1	1	0	1
Fork Lifts	4	1	1	1	1	1	1	1	1	0	1
Loader/Backhoe	5	1	1	1	1	1	1	1	1	1	1
Air Compressors	4	1	2	2	1	1	1	1	1	1	1
Manlifts	8	4	1	1	3	2	3	3	2	1	9

	Emission Rate					Sound	***				
	(lb/hr)										
VOC	2017	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
<40 T Cranes	0.065	0.46	0.92	0.92	0.92	0.46	0.46	0.46	0.46	0.46	0.46
>40T Cranes	0.072	0.36	0.36	0.36	0.72	0.36	0.36	0.36	0.36	0.00	00.0
Pile Rig	0.040	00.00	00.0	00.00	00.00	0.32	0.32	0.64	0.32	00.0	0.32
Tractors	0.030	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.00	0.15
Welders	0.036	2.29	1.15	1.15	98.0	0.29	0.57	0.57	0.29	0.86	1.15
Light Plants	0.036	0.11	00.0	00.00	0.11	0.11	0.11	0.11	0.11	0.21	0.11
Genertors	0.042	00.00	0.25	0.25	0.13	0.13	00.00	00.0	00'0	0.00	00.0
Hydro Vacs	0.042	0.21	00.0	00.00	0.21	0.21	0.21	0.21	0.21	0.00	0.21
Fork Lifts	0.019	0.08	0.08	0.08	0.08	0.08	0.08	0.08	80.0	0.00	0.08
Loader/Backhoe	0.030	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Air Compressors	0.036	0.14	0.29	0.29	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Manlifts	900'0	0.19	0.05	0.05	0.14	60.0	0.14	0.14	60'0	0.05	0.28
Total		4.14	3.39	3.39	3.61	2.49	2.70	3.02	2.36	1.87	3.05

M:\MC\2778 P66 - Crude Capacity Project\2844 - 1-1 LST Construction Emissions - Month 11.xlsx: Equipment 2017

Attachment A Tesoro Integration and Compliance Project Addendum

	Emission Kate (lb/hr)					Component	ent				
00	2017	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
<40 T Cranes	0.415	2.91	5.81	5.81	5.81	2.91	2.91	2.91	2.91	2.91	2.91
>40T Cranes	0.424	2.12	2.12	2.12	4.24	2.12	2.12	2.12	2.12	0.00	00.0
Pile Rig	0.501	00.00	00.00	00'0	00.00	4.01	4.01	8.02	4.01	00.0	4.01
Tractors	0.367	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	0.00	1.83
Welders	0.241	15.41	7.71	7.71	5.78	1.93	3.85	3.85	1.93	5.78	7.71
Light Plants	0.305	0.91	00.00	00'0	0.91	0.91	0.91	0.91	0.91	1.83	0.91
Genertors	0.473	00.00	2.84	2.84	1.42	1.42	00.00	00.0	00'0	0.00	00.0
Hydro Vacs	0.480	2.40	00.00	00'0	2.40	2.40	2.40	2.40	2.40	0.00	2.40
Fork Lifts	0.452	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	0.00	1.81
Loader/Backhoe	0.367	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83
Air Compressors	0.221	0.88	1.77	1.77	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Manlifts	0.155	4.95	1.24	1.24	3.71	2.48	3.71	3.71	2.48	1.24	7.43
Total		35.07	26.96	26.96	30.64	24.53	26.28	30.29	23.12	14.47	31.73

	Emission Rate					tuenonmo	Jont				
	(lb/hr)						<u> </u>				
XON	2017	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
<40 T Cranes	606'0	98.36	12.73	12.73	12.73	98.39	6.36	98.3	98.9	96.36	6.36
>40T Cranes	1.117	5.58	5.58	5.58	11.17	5.58	5.58	5.58	5.58	0.00	00.00
Pile Rig	0.675	00.00	00.0	00'0	00'0	5.40	5.40	10.80	5.40	00.0	5.40
Tractors	0.358	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	0.00	1.79
Welders	0.189	12.08	6.04	6.04	4.53	1.51	3.02	3.02	1.51	4.53	6.04
Light Plants	0.189	0.57	00.0	00.0	0.57	0.57	0.57	0.57	0.57	1.13	0.57
Genertors	0.453	00.00	2.72	2.72	1.36	1.36	00.00	00.0	00.0	0.00	00.00
Hydro Vacs	0.453	2.27	00.0	00'0	2.27	2.27	2.27	2.27	2.27	0.00	2.27
Fork Lifts	0.297	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	0.00	1.19
Loader/Backhoe	0.358	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79
Air Compressors	0.189	0.75	1.51	1.51	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Manlifts	0.116	3.72	0.93	0.93	2.79	1.86	2.79	2.79	1.86	0.93	5.58
Total		36.11	34.28	34.28	40.94	30.44	31.52	36.92	29.08	15.50	31.75

M:\MC\2778 P66 - Crude Capacity Project\2844 - 1-1 LST Construction Emissions - Month 11.xlsx: Equipment 2017

Attachment A Tesoro Integration and Compliance Project Addendum

	Emission Rate					2	•				
	(lb/hr)					Component	1				
SOx	2017	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
<40 T Cranes	0.001	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01
>40T Cranes	0.002	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	00.00	0.00
Pile Rig	0.002	00.00	00.0	00'0	00'0	0.02	0.02	0.04	0.02	00.0	0.02
Tractors	0.001	00.00	00.0	00'0	00'0	00.00	00.00	00.0	00'0	00.00	0.00
Welders	0.000	0.02	0.01	0.01	0.01	00:00	0.01	0.01	00.0	0.01	0.01
Light Plants	0.000	00:00	00.0	00.0	00.0	00.00	00.00	00.0	00.0	00.00	0.00
Genertors	0.001	00.00	00.0	00'0	00'0	00.00	00.00	00.0	00'0	00.00	0.00
Hydro Vacs	0.001	00.00	00.0	00'0	00'0	00.00	00.00	00.0	00'0	00.00	0.00
Fork Lifts	0.001	00.00	00.0	00'0	00'0	00.00	00.00	00.0	00'0	00.00	0.00
Loader/Backhoe	0.001	00:00	00.0	00.0	00.0	00.00	00.00	00.0	00.0	00.0	0.00
Air Compressors	0.000	00.00	00.0	00'0	00'0	00.00	00.00	00.0	00'0	00.0	0.00
Manlifts	0.000	0.01	00.0	00'0	0.01	0.01	0.01	0.01	0.01	00.00	0.02
Total		0.08	20.0	0.07	0.08	0.07	0.08	60.0	0.07	0.03	0.08

	Emission Rate					20000	400				
	(lb/hr)						1				
PM10	2017	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
<40 T Cranes	0.043	0:30	09.0	09.0	09.0	0:30	0:30	0:30	0:30	0.30	0:30
>40T Cranes	0.045	0.23	0.23	0.23	0.45	0.23	0.23	0.23	0.23	00.00	0.00
Pile Rig	0.025	00:00	00.0	00.0	00.0	0.20	0.20	0.40	0.20	00.0	0.20
Tractors	0.024	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	00.00	0.12
Welders	0.017	1.06	0.53	0.53	0.40	0.13	0.27	0.27	0.13	0.40	0.53
Light Plants	0.017	0.05	00.0	00.0	0.05	0.05	0.05	0.05	0.05	0.10	0.05
Genertors	0.035	00.00	0.21	0.21	0.11	0.11	00.00	00.0	00'0	00.00	0.00
Hydro Vacs	0.035	0.18	00.0	00'0	0.18	0.18	0.18	0.18	0.18	00.00	0.18
Fork Lifts	0.015	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	00.00	90.0
Loader/Backhoe	0.024	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Air Compressors	0.017	0.07	0.13	0.13	20.0	0.02	0.07	20.0	0.07	0.07	0.07
Manlifts	0.004	0.11	0.03	0.03	80.0	90.0	0.08	0.08	90.0	0.03	0.17
Total		2.29	2.03	2.03	2.24	1.61	1.67	1.87	1.51	1.01	1.79

Construction Equipment Emissions

	Emission Rate					Component	ent				
CO2EQ	2017	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
<40 T Cranes	0.035	0.25	0.49	0.49	0.49	0.25	0.25	0.25	0.25	0.25	0.25
>40T Cranes	0.051	0.26	0.26	0.26	0.51	0.26	0.26	0.26	0.26	00.00	00.0
Pile Rig	0.059	00:00	00.0	00.0	00:00	0.47	0.47	0.94	0.47	00.0	0.47
Tractors	0.019	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	00.0	0.10
Welders	600.0	09:0	0:30	0.30	0.23	80.0	0.15	0.15	0.08	0.23	0.30
Light Plants	600.0	0.03	00.0	00.0	0.03	0.03	0.03	0.03	0.03	90.0	0.03
Genertors	0.018	00:00	0.11	0.11	0.05	0.05	00.00	00.0	00.0	00.0	00.0
Hydro Vacs	0.018	60:00	00.0	00.0	60:0	60.0	60.0	60.0	60.0	00.0	60.0
Fork Lifts	0.021	60:00	60.0	60.0	60:0	60.0	60.0	60.0	60.0	00.0	60.0
Loader/Backhoe	0.019	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Air Compressors	600.0	0.04	80.0	0.08	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Manlifts	0.011	0.34	60'0	60.0	0.26	0.17	0.26	0.26	0.17	60.0	0.51
Total		1.88	1.60	1.60	1.98	1.71	1.81	2.28	1.65	0.75	1.96

M:\MC\2778 P66 - Crude Capacity Project\2844 - 1-1 LST Construction Emissions - Month 11.xlsx: Equipment 2017

Appendix C

Attachment A

Tesoro Integration and Compliance Project Addendum

Onsite Construction Vehicle Trip Emissions

					Com	ponent (Ve	hicles per da	ay)			
Vehicle	Miles per Day	C-51V			W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
Cars	2										
Pickup Trucks	2	10	21	21	8	0	7	8	7	7	10
Total Light Vehicle Miles		20	42	42	16	0	14	16	14	14	20
Water Truck	10	1	1	1	1	1	1	1	1	1	1
Delivery Truck	2										
1 Ton Truck	2	1	2	2	1	1	1	1	1	1	1
Misc. MD Truck	5										
Total Medium Truck Miles		12	14	14	12	12	12	12	12	12	12
Truck, Dump Ford LT8000	2	0	0	0	0	0	0	0	0	0	0
Concrete Truck	2	0	0	0	0	0	0	0	0	0	0
Semi-Tractor, Diesel 20 Ton	2	0	0	0	0	0	0	0	0	0	0
Misc. HD Truck	2	0	0	0	0	0	0	0	0	0	0
Total Heavy Truck Miles		0	0	0	0	0	0	0	0	0	0

	Emission Rate (lb/mi) ⁽¹⁾				Com	ponent (Vel	nicles per d	ay)			
VOC	2017	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
Light Duty	0.0001035	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.0003717	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0006131	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01

СО	2017	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
Light Duty	0.0033327	0.07	0.14	0.14	0.05	0.00	0.05	0.05	0.05	0.05	0.07
Medium Duty	0.0030301	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Heavy Duty	0.0043046	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.10	0.18	0.18	0.09	0.04	0.08	0.09	0.08	0.08	0.10

NOx	2017	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
Light Duty	0.0005080	0.01	0.02	0.02	0.01	0.00	0.01	0.01	0.01	0.01	0.01
Medium Duty	0.0082326	0.10	0.12	0.12	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Heavy Duty	0.0154328	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.11	0.14	0.14	0.11	0.10	0.11	0.11	0.11	0.11	0.11

SOx	2017	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
Light Duty	0.0000090	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty	0.0000217	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Duty	0.0000359	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PM10	2017	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
Light Duty Exhaust	0.0001064	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty Exhaust	0.0004787	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Heavy Duty Exhaust	0.0004727	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Exhaust PM		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Light Duty Fugitive ⁽²⁾	0.000221	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Medium Duty Fugitve ⁽²⁾	0.000467	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Heavy Duty Fugitive (2)	0.002314	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Fugitive PM	_	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total		0.02	0.03	0.03	0.02	0.01	0.02	0.02	0.02	0.02	0.02

CO _{2EQ}	2017	C-51V	Pipe1	Pipe2	W-HTU4	C-LPG	C-NHDS	W-HCU	C-Steam	C-LHU	W-HTU12
Light Duty	0.907	18.14	38.10	38.10	14.51	0.00	12.70	14.51	12.70	12.70	18.14
Medium Duty	2.261	27.13	31.65	31.65	27.13	27.13	27.13	27.13	27.13	27.13	27.13
Heavy Duty	3.768	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		45.27	69.75	69.75	41.64	27.13	39.83	41.64	39.83	39.83	45.27

⁽¹⁾ Emfac2011 emission factors for the South Coast Air District.

Where: k = 0.016 lb/VMT for PM10, sL = road silt loading (gms/m2) from CARB Methodology 7.9 for paved roads

(0.240 for local roads and 0.037 for major/collector roads), W = weight of vehicles (2.4 tons for light; 5 for medium trucks,

where CO2 emissions factors are from Emfac2011. CH4 and N2O emissions factors are from Direct Emissions from Mobile Combustion Sources, EPA 2008. where light vehicle are gasoline light duty trucks.

where medium/heavy duty vehicle are diesel heavy duty trucks.

		2017	
Chemical	Light	Medium	Heavy
CO2 (lb/mi)	0.8956	2.2575	3.7642
CH4 (g/mi)	0.0148	0.0051	0.0051
N2O (g/mi)	0.0157	0.0048	0.0048
CO2e (lb/mi)	0.907	2.261	3.768

⁽²⁾ Emission Calculations for travel on paved roads from EPA AP-42 Section 13.2.1, December 2003

 $E = k(sL/2)^{0.65} \times (W/3)^{1.5} - C$

and 20 for heavy trucks), and C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear (0.00047 lbs/VMT).

⁽³⁾ Carbon Dioxide Equivalence (CO_E) = CO_2 + CH_4 * 21 + N2O*310

Offroad Construction Vehicle Dust Emissions

Vehicle	Miles/Trip	Trips/Day
Light Vehicles	0.05	1
Total Light Vehicle Miles		0.05
Delivey Trucks	0.05	0
Water Trucks	0.1	1
Total Medium Truck Miles		0.1
Concrete Truck	0.05	0
Dump Trucks	0.05	10
Total Heavy Truck Miles		0.5
Tractors	0.05	1
Fork Lifts	0.05	2
Loader/Backhoe	0.05	2
Total Heavy-Heavy Duty Miles		0.25

	Emission Rate	
PM10	(lb/mi) ⁽¹⁾	Emissions (lb/day)
Light Duty	0.9021196	0.05
Medium Duty	1.2863357	0.13
Heavy Duty	2.1931267	1.10
Heavy Heavy Duty	2.4962390	0.62
Uncontrolled Total		1.89
Controlled Total ⁽²⁾		0.74

⁽¹⁾ Based on Section 13.2.2 of EPA's Compilation of Air Pollutant Emission Factors (AP-42).

Emission Rate = $1.5((s/12)^{4}.9)((W/3)^{4}.45)$

s = silt content = 8.5%

W = Vehicle Weight (ton) =2.5 for light, 5.5 for medium, 15 for heavy, and 24 for heavy heavy (EMFAC2007).

⁽²⁾ Controlled Emissions assume that watering 3 times per day reduces emissions by 61 percent (Uncontrolled Emissions x 0.39)

Tesoro Integration and Compliance Project Addendum Attachment A

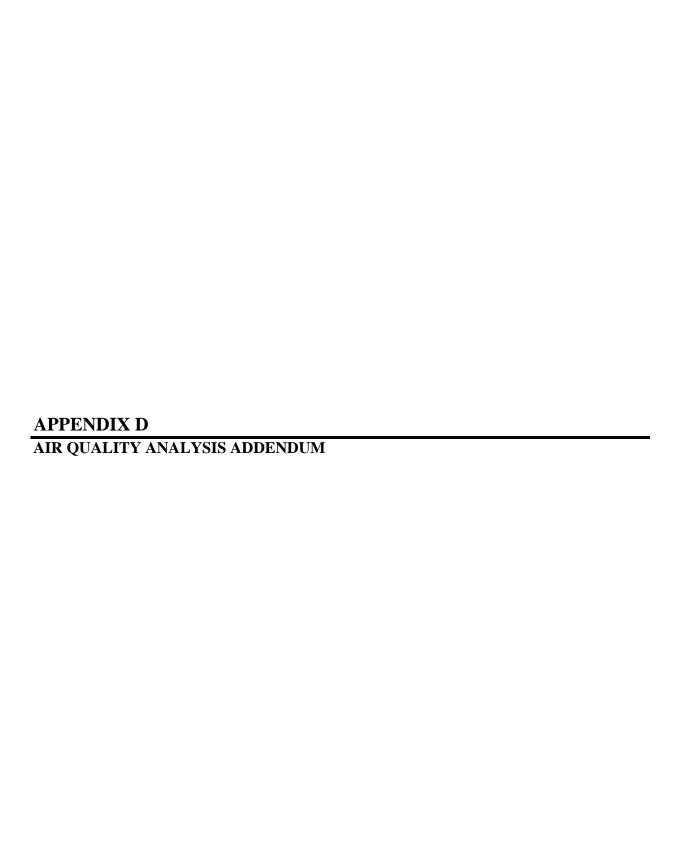
Peak Monthly Fugitive PM Construction Emissions

Average		PM10		Average		Average		
Pieces of Peak Pieces	es	Emission			Peak PM10	PM10	Peak PM10	Peak PM10 SCAQMD
Equipment of Equipment	ent Hours of	Factor	Water Control	Emissions Emissions	Emissions	Emissions		Emissions Emission Factor
Grading Operations Operating Operating	g Operation	(Ib/hour)	Factor ⁽⁵⁾	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	Source
Construction Activities ⁽¹⁾ 2 2	8	0.348	0.39	2.17	2.17	5.56218435	5.56218435	2.17 5.56218435 5.56218435 Table A9-9-F

					Controlled	Controlled Emissions	Uncontrolle	Uncontrolled Emissions	
	Average Tons	Peak Tons	PM10		Average	Peak	Average	Peak	
	of Materials	of Materials	Emission		PM10	PM10	PM10	PM10	SCAQMD
	Handled Per	Handled	Factor	Water Control	Emissions	Emissions	Emissions	Emissions	Emission Factor
Stockpiles	Day	Per Day	(lb/ton)	Factor ⁽⁵⁾	Pounds/day F	Pounds/day	Pounds/day	Pounds/day	Source
Construction Activities ⁽²⁾	1200	1200	0.00005	0.39	0.02411771	0.02411771	0.06184029	0.06184029	0.39 0.02411771 0.02411771 0.06184029 0.06184029 Table A9-9-G
Assumptions: 1cubic yard trench spoils = 1 ton									

		Average	Peak	PM10	Average	Peak	Average	Peak	
WIND EROSION Disturbed		Acreage	Acreage	Emission	PM10	PM10	PM10	PM10	SCAQMD
Area and Temporary	Days of	Disturbed	Disturbed	Factor	Emissions	Emissions	Emissions	Emissions	Emission Factor
Stockpiles	Construction	Per Day	Per Day	(lb/day/acre)	Pounds/day	, Pounds/day	Tons/Year	Tons/Year	Source
Construction Activities ⁽³⁾	20	0.25	-	0.120	0:030	0.120	0.000	0.001	Table A9-9-E

					Controlled	Sontrolled Emissions	Uncontrolled	Jncontrolled Emissions	
	Estimated Materials	Peak Tons of Materials	PM10 Emission		Average PM10	Peak PM10	Average PM10	Peak PM10	SCAQMD
	Handled Per	Handled	Factor	Water Control	Emissions	Emissions	Emissions	Emissions	Emission Factor
Filling and Dumping	Day (tons)	Per Day	(lb/ton)	Factor ⁽⁵⁾	Pounds/day	Pounds/day	Pounds/day	Pounds/day	Source
Truck Filling ⁽⁴⁾	1200.0	1200.0	5.153E-05	0.39	0.02411771	0.02411771 0.02411771 0.06184029 0.06184029 Table A9-9	0.06184029	0.06184029	Table A9-9
Truck Dumping	1200.0	1200.0	5.153E-05	0.39	0.02411771	0.02411771 0.02411771 0.06184029 0.06184029 Table A9-9	0.06184029	0.06184029	Table A9-9


TOTAL PM10 Pounds/day	Average	Peak
(Controlled Emissions)	2.2715	2.36133
(Uncontrolled Emissions)	5.748	5.749


Emissions (bs/day/acce) = 1.7 x [(G/1.5)7(365-H)/235] x I/15 x J with >0.01 inch of rain (34); I = percentage of time wind speed exceeds 12 mph (0.3%) and J= fraction of TSP (0.5). Wind speed data acquired from Long Beach 2005-2007 where G = silt content (7.5%); H = days with >0.01 inch of rain (34); I = percentage of time wind speed exceeds 12 mph (0.3%) and J= fraction of TSP (0.5). Wind speed data acquired from Long Beach 2005-2007 (1) Emissions (lbs/hr) = [0.75 x (G^{1.5})y(H^{1.4}) x J
where G = silt content (7.5%), H = moisture content (15.0%) and J = hrs of operation (EPA AP-42 Table 11.9-1 for buildozing overburden).

(2) Emissions (lbs/lbn) = 0.00112 x [(G/S) ^{1.3}(H/2) ^{1.4} x 1/J
where G=mean wind speed (4.1 mph), H=moisture content of surface material (15%); I=lbs of dirt handled per day; and J=2,000 lbs/lbn. Wind speed data acquired from Long Beach 2005-2007
SCAQMD meteorological file. <u>®</u>

Used SCAQMD Table 9-9 Default emission factors. SCAQMD meteorological file.

(4) Used SCAQMD Table 9-9 Default emission factors.
(5) Mitigated Emissions assume that watering 3 times per day controls emissions by 61 percent (Uncontrolled Emissions x 0.39). www.AQMD.gov/CEQA/handbook/mitigation/fugitive/Table XI-A.doc

Tesoro Refining & Marketing Company, LLC

<u>Air Quality Analysis -</u> Addendum

Los Angeles Refinery Integration & Compliance Project

Prepared by:

Ashworth Leininger Group 601 East Daily Drive, Suite 302 Camarillo, California 93010

> Tel: (805) 764-6010 Fax: (805) 764-6011

> > **April 2019**

Table of Contents

FACI		, 1
INTR	RODUCTION	. 3
AIR (QUALITY	. 3
2.1	Emissions Calculation Methodology	. 3
2.2	Summary of Emissions Changes	, 4
	2.2.1 Stationary Source Emissions	, 4
CRIT	ERIA POLLUTANT MODELING	. 8
HEA	LTH RISK ASSESSMENT	. 8
4.1	Methodology	. 8
4.2	Summary of Results (Operations)	13
4.3	Summary of Results (Construction)	20
GRE	ENHOUSE GASES (GLOBAL CLIMATE CHANGE)	25
REFE	RENCES	25
ole 2. ole 3. ole 4. ole 5. ole 6. ole 7. ole 8.	Summary of Emissions Changes (Pounds per Day)	. 4 . 6 . 9 10 11
		•
y) le 11	: Summary of Maximum Project Offsite Cancer and Non-cancer Risks (Operation Plus	
	·	
ıre 1.	. Addendum 1 Modeled Sources Location Map	L 2
	INTE AIR 0 2.1 2.2 CRIT HEA 4.1 4.2 4.3 GRE BIE 1. DIE 2. DIE 3. DIE 5. DIE 6. DIE 7. DIE 9: DIE 10 DIE 10 DIE 11 DIE 11	2.2 Summary of Emissions Changes 2.2.1 Stationary Source Emissions CRITERIA POLLUTANT MODELING HEALTH RISK ASSESSMENT 4.1 Methodology 4.2 Summary of Results (Operations)

Appendix D

Figure 2. Location of Maximum Calculated Health Risks. FEIR Sources with 2012-2016 Meteorological Data
Figure 3. Contours of Residential Cancer Risk, per million exposed, FEIR Sources with 2012-2016 Meteorological Data
Figure 4. Contours of Worker Cancer Risk, per million exposed, FEIR Sources with 2012-2016 Meteorological Data
Figure 5. Location of Maximum Calculated Health Risks. FEIR Addendum Sources with 2012-2016 Meteorological Data
Figure 6. Contours of Residential Cancer Risk, per million exposed, FEIR Addendum Sources with 2012-2016 Meteorological Data
Figure 7. Contours of Worker Cancer Risk, per million exposed, FEIR Addendum Sources with 2012-2016 Meteorological Data
Figure 8. Location of Maximum Calculated Health Risks, FEIR Addendum Sources Plus Construction Sources with 2012-2016 Meteorological Data
Figure 9. Contours of Residential Cancer Risk, per million exposed, FEIR Addendum Sources Plus Construction Sources with 2012-2016 Meteorological Data
Figure 10. Contours of Worker Cancer Risk, per million exposed, FEIR Addendum Sources Plus Construction Sources with 2012-2016 Meteorological Data

List of Attachments

Attachment A Emissions Summaries

Attachment B Storage Tank Emissions Calculations (EPA TANKS 4.0.9d)

- iii - April 2019

[This page intentionally left blank.]

PREFACE

This document evaluates the impact of operational emissions associated with the Tesoro Los Angeles Refinery Integration and Compliance (LARIC) project.

Summary of Changes to the Project

Following release of the May 2017 Tesoro Los Angeles Refinery Integration and Compliance (LARIC) Project Final Environmental Impact Report (FEIR), the following modifications were proposed for the project:

- Carson C3 Splitter Unit: The propane recovery project was relocated from the Carson Operations Naphtha Isomerization Unit to the Carson Operations C3 Splitter Unit. Relocation of this project will result in less VOC and toxic emissions than originally proposed. A permit application was submitted to the SCAQMD requesting the necessary modifications to the C3 Splitter Unit.
- 2. Carson Storage Tank 35: Tesoro submitted a permit application to the SCAQMD requesting an increase to the maximum permitted throughput of this tank. The throughput increase will result in an emissions increase of VOC and toxic emissions.
- 3. Carson Crude Terminal: The toxic air contaminant (TAC) speciation of crude oils stored was updated to include additional toxic concentration data.
- 4. Construction Schedule: The schedule and associated diesel particulate matter (DPM) emissions were updated.

These changes are incorporated in this Air Quality Analysis (AQA) Addendum. Summaries of the emissions associated with this Addendum are included as **Attachments A and B** to this analysis.

Effect to the Criteria Pollutant Air Quality Analysis

The proposed changes affect only VOC and TAC emissions. VOC and TACs are not modeled for criteria pollutant air quality impacts and revision of the Criteria Pollutant Air Quality Analysis is not necessary.

Health Risk Assessment (HRA)

Project updates resulted in the following modifications to the May 2017 FEIR Health Risk Assessment (HRA):

- 1. Carson C3 Splitter Unit: Removal of the Carson Naphtha Isomerization Unit modification portion of the project and addition of the Carson Operations C3 Splitter Unit change the quantities, types and location of TACs emitted from the project.
- 2. Carson Storage Tank 35: The proposed modification will increase the emissions of toxics from the project.
- 3. Carson Crude Terminal: Update to the TAC speciation for the crude oil storage tanks at the CCT affects the cancer, chronic, and acute risks of the project.
- 4. Construction Schedule: Updates to the schedule and associated diesel particulate matter (DPM) emissions (see Section 4.3, below).

The described changes resulted in the need to revise the May 2017 FEIR HRA. A summary of the results of the revised HRA is included in this document, the complete HRA Addendum is included under separate cover as Appendix E to this EIR Addendum.

Note that following the release of the May 2017 FEIR, the SCAQMD updated the meteorological datasets; the new meteorological dataset was used in this AQA Addendum. This analysis demonstrates that project impacts are still expected to be less than significant.

This analysis demonstrates that project impacts are expected to remain less than significant while modeling with the original meteorological dataset as well as while modeling with the new meteorological dataset. <u>Table 1</u>, below shows the May 2017 FEIR values, the results of modeling the May 2017 FEIR emissions with the updated meteorological dataset, as well as results of the modeling of this FEIR Addendum.

Table 1. Summary of Toxic Risk Increase at Maximum FEIR Receptors

	C	perations Only	1	Operations Plus Construction					
Receptor	FEIR sources (original, 06- 11 met data)	FEIR sources (12-16 met data)	FEIR + CCT with updated ERs + T35 + C3 Splitter - Naplsom (12- 16 met data)	FEIR sources + Construction (original, 06- 11 met data)	FEIR sources + Construction (12-16 met data)	FEIR + CCT with updated ERs + T35 + C3 Splitter - Naplsom + Construction (12-16 met data)			
Maximum cancer risk (per million)									
Residential receptor	3.7	2.8	2.9	5.7	4.7	4.7			
Offsite workplace receptor	9.3	7.0	7.0	9.3	7.0	7.0			
Sensitive receptor	2.1	2.4	2.4	4.2	4.1	4.1			
Maximum chronic risk									
Residential receptor	0.030	0.021	0.024	0.033	0.023	0.025			
Offsite workplace receptor	0.106	0.078	0.085	0.115	0.089	0.096			
Sensitive receptor	0.025	0.019	0.019	0.027	0.019	0.019			
Maximum 8-Hr chronic risk									
Residential receptor	0.006	0.005	0.005	0.006	0.005	0.005			
Offsite workplace receptor	0.108	0.084	0.084	0.108	0.084	0.084			
Sensitive receptor	0.005	0.006	0.006	0.005	0.006	0.006			
Maximum acute risk				-					
Residential receptor	0.052	0.039	0.040	0.052	0.039	0.040			
Offsite workplace receptor	0.052	0.076	0.076	0.052	0.076	0.076			
Sensitive receptor	0.010	0.009	0.009	0.010	0.009	0.009			

1. INTRODUCTION

Following release of the Final Environmental Impact Report (FEIR) in May 2017, the following modifications to the project were made:

- Carson C3 Splitter Unit: The propane recovery project was relocated from the Carson Operations Naphtha Isomerization Unit to the Carson Operations C3 Splitter Unit. Relocation of this project will result in less VOC and toxic emissions than originally proposed. A permit application was submitted to the SCAQMD requesting the necessary modifications to the C3 Splitter Unit.
- 2. Carson Storage Tank 35: Tesoro submitted a permit application to the SCAQMD requesting an increase to the maximum permitted throughput of this tank. The throughput increase will result in an emissions increase of VOC and toxic emissions.
- 3. Carson Crude Terminal: The toxic air contaminant (TAC) speciation of crude oils stored was updated to include additional toxic concentration data.
- 4. Construction Schedule: The schedule and associated diesel particulate matter (DPM) emissions were updated.

Summaries of the updates in emissions are included as Attachments A and B to this analysis.

This document is an addendum to the Air Quality Analysis (AQA) provided in the May 2017 LARIC project FEIR (Appendix B-3 of the FEIR). The purpose of the analysis is to determine if project emissions pose a threat to ambient air quality standards. The approach used in this assessment is described in detail and are based on written SCAQMD guidelines and discussions with SCAQMD staff.

2. AIR QUALITY

With the exception of the changes described in this addendum, emissions calculation methodologies presented in the May 2017 FEIR remain unchanged and are not discussed further in this AQA Addendum. Calculation worksheets which have been updated to reflect the noted changes are provided in **Attachments A and B** to this AQA Addendum.

2.1 Emissions Calculation Methodology

C3 Splitter

VOC emissions were calculated based on changes to fugitive component counts, and using SCAQMD's approved fugitive component calculation methodology. Toxic emissions were estimated based on weight fractions of liquid streams affected by the proposed modification. Calculation sheets supporting this modification are included with **Attachment A** to this Addendum.

Carson Storage Tank 35

VOC and toxic emissions for each product from Tank 35 were calculated using EPA's TANKS 4.0.9d emissions estimating software. Reports showing the inputs, VOC emissions and toxic emission for each product are included as **Attachment B** to this Addendum.

-3- April 2019

Carson Crude Terminal

VOC and toxic emissions were calculated using EPA's TANKS 4.0.9d emissions estimating software. Reports showing the inputs, VOC emissions and toxic emissions for each product are included as **Attachment B** to this Addendum.

Construction Emissions

Construction emissions calculations are addressed in Appendices B and C to the Addendum.

2.2 Summary of Emissions Changes

2.2.1 Stationary Source Emissions

As described in the May 2017 FEIR AQA, operation of the proposed project will result in increased emissions from fugitive equipment leaks, storage tanks, coke handling and combustion units. **Table 2** and **Table 3**, below, present the estimated stationary source emissions associated with the proposed project. Note that, with the exception of the VOC values for the Naphtha Isomerization Unit, C3 Splitter and Tank 35, no other criteria pollutant values have changed as a result of this Addendum. Calculation worksheets which have been updated with this Addendum are provided in **Attachments A** and **B** to this Addendum.

Table 2. Summary of Emissions Changes (Pounds per Day)

	Emissions (lbs/day)							
NEW AND MODIFIED SOURCES	NOx	SOx	со	PM ₁₀ *	voc			
51 Vac Unit Heater	32.72	1.80	233.85	45.49	32.85			
Naphtha HDS ULNB Conversion	1.87	0.64	10.23	5.56	1.73			
DCU H-100 Heater Duty Bump	(171.03)	86.69	(5.14)	(0.98)	(0.43)			
HC H-300 Heater Duty Bump	4.67	(14.98)	49.75	10.79	10.10			
HC H-301 Heater Duty Bump (incl with H-300)	(incl with H-300)							
Sulfuric Acid Regen Plant Process Air Heater	6.99	0.28	16.37	3.51	3.27			
Sulfuric Acid Regen Plant Decomp. Furnace	2.45	0.59	34.39	7.37	6.88			
Sulfuric Acid Regen Plant Converter Heater	1.75	0.07	4.09	0.88	0.82			
Sulfuric Acid Regen Plant Process Vent	-	31.12	-	6.00	-			
Carson Crude Tank Emissions	-	-	-	-	112.51			
Carson Tank 35 Emissions	-	-	-	-	7.89			
Wilmington Tank Project Emissions	-	-	-	-	141.64			

CARSON AND WILMINGTON FUGITIVE COMPONENT EMISSIONS

51 Vac (Carson)	-	-	-	-	11.74
Alkylation (Carson)	-	-	-	-	18.88
Crude Tanks (Fug Ems) (Carson)	-	-	-	-	43.05
HCU Mods (Carson)	-	-	-	-	6.77
Interconnect Piping (Carson)	-	-	-	-	27.22
LHU Mods (Carson)	-	-	-	-	14.34
LPG Railcar Load/Unload (Carson)	-	-	-	-	26.85
Mid Barrel Distillate Treater (Carson)	-	-	-	-	2.15
Naphtha Isom (Carson)	_	_	-	_	9.46

Appendix D

C3 Splitter (Carson)	-	-	-	-	0.59
NHDS Mods (Carson)	-	-	-	-	15.21
PSTU (Carson)	-	-	-	-	15.44
Wet Jet Treater (Carson)	-	-	-	-	50.45
CRU 3 (Wilmington)	-	-	-	-	10.24
Crude Tanks (Fug Ems) (Wilmington)	-	-	-	-	3.61
HCU (Wilmington)	-	-	-	-	20.69
HTU 1 (Wilmington)	-	-	-	-	3.50
HTU 2 (Wilmington)	-	-	-	-	3.80
HTU 4 (Wilmington)	-	-	-	-	6.32
Interconnect Piping (Wilmington)	-	-	-	-	37.20
Sulfuric Acid Plant (Fug Ems) (Wilmington)	-	-	-	-	-

CARSON AND WILMINGTON INCREASED UTILIZATION EMISSIONS

Carson FCCU Regenerator*		L		_	1 -
Carson FCCU Pre-Heater*	- _	<u> </u>	- -	- _	- _
Carson Cogeneration Units 1-4	20.60	2.50	4.50	9.85	4.15
Carson HC Heater R-1	18.00	4.61	1.04	5.38	1.77
Carson HC Heater R-2	14.40	9.81	1.38	7.18	2.36
Carson LHU Heater	6.00	1.50	0.36	1.87	0.62
Wilmington DCU Heater H-101	19.00	7.58	4.36	0.83	0.83
Wilmington HTU #3 Heater H-30	7.87	2.53	0.38	1.97	1.59
Wilmington HTU #3 Heater H-21/22	12.69	1.33	2.76	0.59	0.61
Wilmington CRU Heater H-510	0.48	0.24	0.60	0.15	0.05
Wilmington CRU Heater H-501A, B, 502, 503/504	1.27	0.41	0.95	0.59	0.18
Wilmington Boilers 7 and 8	12.00	3.07	0.37	1.89	0.63
Wilmington Boilers 9 and 10	12.00	3.07	0.37	1.89	0.63
Wilmington Coke Handling**					
SRP Boilers H-1601/1602	0.11	0.04	0.01	0.05	0.02
SRP Incinerators F-704	0.24	12.66	0.05	0.01	0.01
SRP Incinerators F-754	0.52	12.66	0.03	0.03	0.01
Carson Tank 14	-	-	-	-	0.54
Carson Tank 31	-	-	-	-	0.35
Carson Tank 62	-	-	-	-	17.58
Carson Tank 63	-	-	-	-	18.72
Carson Tank 64	-	-	-	-	0.32
Carson Tank 502	-	-	-	-	26.59
Carson Tank 959	-	-	-	-	0.26
Wilmington Tank 80044	-	-	-	-	3.02
Wilmington Tank 80074	-	-	-	-	0.15
Wilmington Tank 80211	-	-	-	-	0.32
Wilmington Tank 80215	-	-	-	-	0.31
Wilmington Tank 80217	-	-		-	0.31

WILMINGTON FCCU SHUTDOWN (HISTORIC ACTUAL EMISSIONS)

FCCU	(343.31)	(387.50)	(incl w/CO Boiler)	(98.59)	(274.03)
CO Boiler	(incl w/FCCU)	(incl w/FCCU)	(909.62)	(22.71)	(16.43)
H2 Heater	(16.53)	(1.28)	(4.06)	(0.87)	(0.81)
H3/H4 Heater	(209.75)	(27.59)	(45.30)	(49.01)	(9.93)
H5 Heater	-	-	-	-	-
Startup Heater	(3.00)	(0.01)	(0.81)	(0.17)	(0.16)
Fugitive Components					(17.60)

^{*}All PM emissions were conservatively assumed to be equal to PM_{10} , and those emissions were also conservatively assumed to be $PM_{2.5}$.

Table 3. Summary of Emissions Changes (Tons per Year)

	Emissions (tons/year)						
		_				CO2e	
NEW AND MODIFIED SOURCES	NOx	SOx	СО	PM ₁₀ *	VOC	(MT/Yr)	
51 Vac Unit Heater	18.04	0.25	42.75	8.55	6.12	59,707	
Naphtha HDS ULNB Conversion	0.18	0.11	1.86	1.07	0.32	3,910	
DCU H-100 Heater Duty Bump	6.12	35.38	3.63	0.75	0.80	33,282	
HC H-300 Heater Duty Bump	(0.10)	(1.24)	10.02	2.15	2.00	28,074	
HC H-301 Heater Duty Bump (incl with H-300)	(incl with H-300)	(incl with H-300)	(incl with H-300)	(incl with H-300)	(incl with H-300)	(incl with H-300)	
Sulfuric Acid Regen Plant Process Air Heater	1.28	0.05	2.99	0.64	0.60	9,306	
Sulfuric Acid Regen Plant Decomp. Furnace	0.45	0.11	6.28	1.34	1.26	19,542	
Sulfuric Acid Regen Plant Converter Heater	0.32	0.01	0.75	0.16	0.15	2,326	
Sulfuric Acid Regen Plant Process Vent	-	5.68	-	1.10	-	-	
Carson Crude Tank Emissions	-	-	-	-	20.53	-	
Carson Storage Tank 35 Emissions	-	-	-	-	1.44	-	
Wilmington Tank Project Emissions	-	-	-	-	25.85	-	

CARSON AND WILMINGTON FUGITIVE COMPONENT EMISSIONS

51 Vac (Carson)	-	-	-	-	2.14	-
Alkylation (Carson)	-	-	-	-	3.45	-
Crude Tanks (Fug Ems) (Carson)	-	-	-	-	7.86	-
HCU Mods (Carson)	-	-	-	-	1.24	-
Interconnect Piping (Carson)	-	-	-	-	4.97	-
LHU Mods (Carson)	-	-	-	-	2.62	-
LPG Railcar Load/Unload	-	-	-	-	4.90	-

^{*} Daily operating rates of the FCCU regenerator and Pre-Heater will not increase above previous maximum daily rates; as such, daily emissions increases are listed as zero.

^{**} Daily operating rates of the Wilmington Coke Handling will not increase above previous maximum daily rates; as such, daily emissions increases are listed as zero.

(Carson)						
Mid Barrel Distillate Treater (Carson)	-	-	-	-	0.39	-
Naphtha Isom (Carson)	-	-	-	-	1.73	-
C3 Splitter (Carson)	-	-	-	-	0.11	-
NHDS Mods (Carson)	-	-	-	-	2.78	-
PSTU (Carson)	-	-	-	-	2.82	-
Wet Jet Treater (Carson)	-	-	-	-	9.21	-
CRU 3 (Wilmington)	-	-	-	-	1.87	-
Crude Tanks (Fug Ems) (Wilmington)	-	-	-	-	0.66	-
HCU (Wilmington)	-	-	-	-	3.78	-
HTU 1 (Wilmington)	-	-	-	-	0.64	-
HTU 2 (Wilmington)	-	-	-	-	0.69	-
HTU 4 (Wilmington)	-	-	-	-	1.15	-
Interconnect Piping (Wilmington)	-	-	-	-	6.79	-
Sulfuric Acid Plant (Fug Ems) (Wilmington)	-	-	-	-	0.00	-

CARSON AND WILMINGTON INCREASED UTILIZATION EMISSIONS

Carson FCCII Degenerate:	14.50	20.00	10.24	7.44	0.60	00.020
Carson FCCU Regenerator	14.58	20.99	18.24	7.44	0.68	99,938
Carson FCCU Pre-Heater	1.39	0.34	0.13	0.69	0.23	5,048
Carson Cogeneration Units 1-4	3.76	0.46	0.82	1.80	0.76	20,147
Carson HC Heater R-1	3.29	0.84	0.19	0.98	0.32	7,146
Carson HC Heater R-2	2.63	1.79	0.25	1.31	0.43	9,528
Carson LHU Heater	1.10	0.27	0.07	0.34	0.11	2,377
Wilmington DCU Heater H-101	3.47	1.38	0.80	0.15	0.15	3,414
Wilmington HTU #3 Heater H-30	1.44	0.46	0.07	0.36	0.29	2,001
Wilmington HTU #3 Heater H- 21/22	2.32	0.24	0.50	0.11	0.11	1,998
Wilmington CRU Heater H-510	0.09	0.04	0.11	0.03	0.01	195
Wilmington CRU Heater H-501A, B, 502, 503/504	0.23	0.08	0.17	0.11	0.03	780
Wilmington Boilers 7 and 8	2.19	0.56	0.07	0.35	0.12	2,443
Wilmington Boilers 9 and 10	2.19	0.56	0.07	0.35	0.12	2,443
Wilmington Coke Handling	-	-	-	0.07	-	-
SRP Boilers H-1601/1602	0.02	0.01	0.00	0.01	0.00	53
SRP Incinerators F-704	0.04	2.31	0.01	0.00	0.00	33
SRP Incinerators F-754	0.10	2.31	0.01	0.01	0.00	33
Carson Tank 14	-	-	-	-	0.10	-
Carson Tank 31	-	-	-	-	0.06	-
Carson Tank 62	-	-	-	-	3.21	-
Carson Tank 63	-	-	-	-	3.42	-
Carson Tank 64	-	-	-	-	0.06	-
Carson Tank 502	-	-	-	-	4.85	-
Carson Tank 959	-	-	-	-	0.05	-
Wilmington Tank 80044	-	-	-	-	0.55	-
Wilmington Tank 80074	-	-	-	-	0.03	-
Wilmington Tank 80211	-	-	-	-	0.06	_
Wilmington Tank 80215	-	-	-	-	0.06	-

-7- **April 2019**

Wilmington Tank 80217	_	_	_	_	0.06	_
					0.00	

WILMINGTON FCCU SHUTDOWN (HISTORIC ACTUAL EMISSIONS)

Total Combined Emissions	(20.40)	(2.00)	(05.37)	(1 42)	74.76	(70 221 22)
	1	ı.	•	I.		
Fugitive Components	-	-	-	-	(3.21)	-
Startup Heater	(0.55)	(0.00)	(0.15)	(0.03)	(0.03)	(433)
H5 Heater	-		-	-	-	-
H3/H4 Heater	(38.28)	(5.03)	(8.27)	(8.94)	(1.81)	(60,739)
H2 Heater	(3.02)	(0.23)	(0.74)	(0.16)	(0.15)	(2,838)
CO Boiler	(incl w/FCCU)	(incl w/FCCU)	(166.01)	(4.14)	(3.00)	(72,569)
FCCU	(62.65)	(70.72)	(incl w/CO Boiler)	(17.99)	(50.01)	(247,466)

^{*}All PM emissions were conservatively assumed to be equal to PM_{10} , and those emissions were also conservatively assumed to be $PM_{2.5}$.

3. CRITERIA POLLUTANT MODELING

Other than the change in VOC emissions rates from the Naphtha Isomerization Unit, C3 Splitter and Storage Tank 35, no other changes to criteria pollutant emissions occurs as part of this addendum. As VOC emissions do not require criteria pollutant modeling, an update to the criteria pollutant modeling provided in with the May 2017 FEIR is not required. Construction emissions and impacts are addressed in Appendices B and C to the Addendum.

4. HEALTH RISK ASSESSMENT

The May 2017 FEIR demonstrated a project cancer risk increase below 10 in one million and chronic and acute hazard indices below 1. This addendum to the HRA shows that the project continues to remain below the applicable risk thresholds. A summary of the methodology is presented below; the complete analysis is provided in the April 2019 Addendum to the HRA (Appendix E to this EIR Addendum).

4.1 Methodology

This health risk assessment was performed following the Office of Environmental Health Hazard Assessment (OEHHA), Air Toxics Hot Spots Program Risk Assessment Guidelines¹. As recommended by this guideline, the California Air Resources Board (CARB) Hotspots Analysis and Reporting Program Version 2 (HARP2)² was used to perform a refined health risk assessment for the project's emission sources.

Consistent with SCAQMD modeling guidelines, the AMS/EPA Regulatory Model (AERMOD, v 18081) was used as the air dispersion model for this analysis. HARP2 includes AERMOD but also allows model runs to be performed with AERMOD outside of HARP2. For this project, AERMOD was run outside of HARP2, and the results were imported into HARP2 to complete the risk analysis. This HRA Addendum evaluates

¹ California Office of Environmental Health Hazard Assessment (OEHHA) 2015. <u>Air Toxics Hot Spots Program Risk Assessment Guidelines, Guidance Manual for Preparation of Health Risk Assessments</u>, February 2015.

⁴ HARP2 (Hotspots Analysis and Reporting Program) Air Dispersion Modeling & Risk Tool, v 17320.

risk following SCAQMD guidelines³. In addition to the addition of toxic emissions from Tank 35 and the C3 Splitter, the removal of fugitive emissions from the Naphtha Isomerization unit, and update to the toxic air contaminant (TAC) speciation for the crude oil storage tanks at the Carson Crude Terminal (CCT) to include additional toxic concentration data, modifications to the construction schedule and associated changes to the construction diesel particulate matter (DPM) emissions were made. The updated schedule and emissions were incorporated in the modeling analysis. No other changes to the HRA modeling approach were made as part of this Addendum. A complete description of the HRA modeling approach is provided in the HRA provided in the May 2017 FEIR, with updates included in the April 2019 HRA Addendum (Appendix E).

The modeled emission rates and source parameters are provided in the HRA of the May 2017 FEIR. Emission rates associated with the addition of Tank 35 and the C3 Splitter unit fugitives and the updated CCT emission rates are shown in **Table 4**, **Table 5**, and **Table 6**, below. The updated construction schedule and DPM emission rates are shown in **Table 7**. A detailed description of the construction emissions methodology is provided in Appendix B of this Addendum.

Table 4. Storage Tank 35 Modeled Emissions Rates

		Emission Ra	ite Increase
Pollutant	CAS Number	(lb/yr)	(lb/hr)
1,2,4-Trimethylbenzene	95636	12.42	1.42E-03
1,3-Butadiene	106990	0.07	7.99E-06
2,2,4Trimethylpentane	540841	60.94	6.96E-03
Benzene	71432	11.95	1.36E-03
Cresols (Mixtures of)	1319773	0.06	6.85E-06
Cumene	98828	4.31	4.92E-04
Cyclohexane	110827	13.49	1.54E-03
Ethyl Benzene	100414	9.12	1.04E-03
n-Hexane	110543	25.52	2.91E-03
Isoprene	78795	0.48	5.48E-05
Methanol	67561	0.01	1.14E-06
Naphthalene	91203	12.28	1.40E-03
Ammonia	7664417	0.02	2.28E-06
Phenanthrene	85018	0.96	1.10E-04
Phenol	108952	0.07	7.99E-06
Propylene (Propene)	115071	0.03	3.42E-06
Toluene	108883	66.55	7.60E-03
Xylenes (Mixed Isomers)	1330207	49.59	5.66E-03

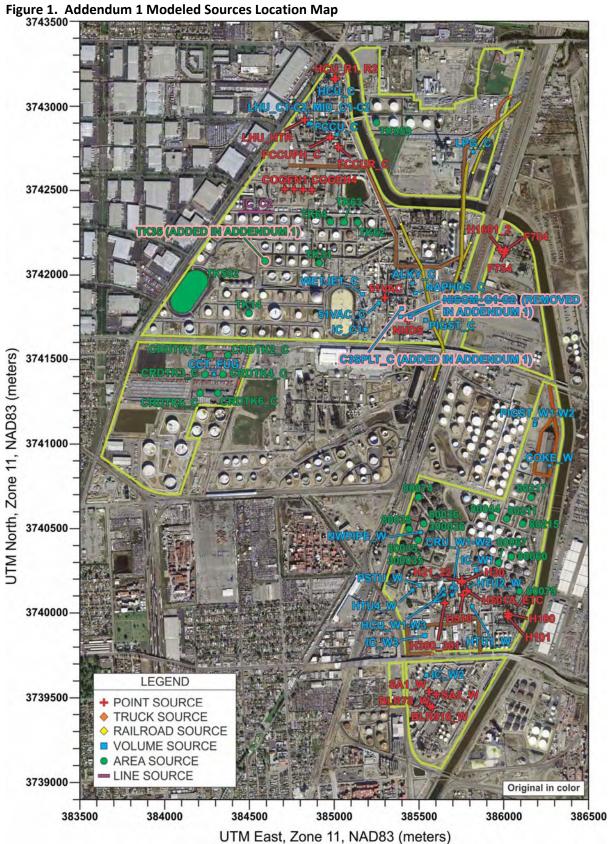
³ South Coast Air Quality Management District, <u>Supplemental Guidelines for Preparing Risk Assessments for the Air Toxics "Hot Spots"</u> Information and Assessment Act, June 5, 2015.

-9- **April 2019**

Table 5. C3 Splitter Modeled Emission Rates

		Emissio	n Rate ⁴
Pollutant	CAS Number	(lb/yr)	(lb/hr)
1,3-Butadiene	106-99-0	3.01E-04	3.44E-08
Ethylene	74-85-1	0.25	2.85E-05
H ₂ S	7783-06-4	0.11	1.31E-05
Propylene (Propene)	115-07-1	0.27	3.06E-05
Carbonyl Sulfide	463-58-1	9.34E-03	1.07E-06
Arsine	7784-42-1	4.94E-04	5.64E-08

Table 6. CCT Modeled Emission Rates


			FEIR Emis	sion Rates	ļ	FEIR A	ddendum	Emission	Rates
	CAS	CCT Fu	_	CCT St	_	CCT Fu	_	CCT St	_
Pollutant	Number	Compo	onents	Tank	(Each)	Compo	onents	Tank (Each)
		(lb/yr)	(lb/hr)	(lb/yr)	(lb/hr)	(lb/yr)	(lb/hr)	(lb/yr)	(lb/hr)
Benzo[a]pyrene	50-32-8	1.2E-01	1.3E-05	3.0E-02	3.4E-06	1.2E-01	1.3E-05	3.0E-02	3.4E-06
Dibenz[a,h]anthracene	53-70-3	3.9E-02	4.4E-06	1.0E-02	1.1E-06	3.9E-02	4.4E-06	1.0E-02	1.1E-06
Benz[a]anthracene	56-55-3	2.9E-01	3.3E-05	6.0E-02	6.9E-06	2.9E-01	3.3E-05	8.0E-02	9.1E-06
Benzene	71-43-2	7.4E+01	8.5E-03	2.9E+01	3.3E-03	7.4E+01	8.5E-03	2.9E+01	3.3E-03
Naphthalene	91-20-3	8.6E+00	9.9E-04	2.4E+00	2.7E-04	8.6E+00	9.9E-04	2.4E+00	2.7E-04
Cumene	98-82-8	6.9E+00	7.8E-04	1.9E+00	2.2E-04	6.9E+00	7.8E-04	1.9E+00	2.2E-04
Ethyl benzene	100-41-4	4.3E+01	4.9E-03	1.2E+01	1.4E-03	4.7E+01	5.4E-03	1.3E+01	1.5E-03
Toluene	108-88-3	1.3E+02	1.5E-02	4.1E+01	4.6E-03	1.9E+02	2.1E-02	5.7E+01	6.5E-03
Hexane	110-54-3	2.5E+02	2.9E-02	1.1E+02	1.3E-02	3.0E+02	3.4E-02	1.4E+02	1.6E-02
Benzo[b]fluoranthene	205-99-2	6.3E-01	7.2E-05	1.4E-01	1.6E-05	6.3E-01	7.2E-05	1.7E-01	1.9E-05
Chrysene	218-01-9	5.8E-01	6.6E-05	1.3E-01	1.5E-05	5.8E-01	6.6E-05	1.6E-01	1.8E-05
Xylene	1330-20-7	1.9E+02	2.1E-02	5.2E+01	6.0E-03	2.5E+02	2.9E-02	7.1E+01	8.1E-03
Hydrogen sulfide	7783-06-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.1E-01	8.1E-05	1.2E+01	1.4E-03

 $^{^{\}rm 4}$ The modeled emission rates are the emission $\it increases$ associated with the project.

Appendix D

Table 7. Summary of Construction Emissions

Construction Project	Duration (months)	Total DPM Emissions (lbs)
Wilmington	24	659
Wilmington Crude Tanks	12	169
SARP	14	201
Carson North	21	450
Carson South	29	569
Carson Crude Tanks	51	370
Pipeline	14	1,013
Electric	23	457

Following the release of the May 2017 FEIR, the SCAQMD updated the meteorological dataset to be used for modeling projects in the Long Beach area. The new dataset, covering the years 2012-2016, was used in this analysis. To assess the impacts of the project changes for this addendum, modeling with the new meteorological dataset was performed for the May 2017 FEIR emission sources and for this FEIR Addendum. The results of both modeling exercises are presented here.

4.2 Summary of Results (Operations)

May 2017 FEIR Sources with 2012-2016 Meteorological Dataset

The predicted increases in health risks at maximally exposed offsite receptors based on modeling the May 2017 FEIR sources with the 2012-2016 meteorological dataset are summarized by category in **Table 8** and shown in **Figure 2**, **Figure 3**, and **Figure 4**. As can be seen, the highest calculated cancer, chronic and acute risk at residential, sensitive, and worker receptors are below a cancer risk of 10 in a million, as well as a hazard index of 1.

FEIR Addendum Sources with 2012-2016 Meteorological Dataset

The predicted increases in health risks at maximally exposed offsite receptors based on modeling the May 2017 FEIR sources plus the additional sources in this addendum, with the 2012-2016 meteorological dataset, are summarized by category in **Table 8** and shown in **Figure 5**, **Figure 6**, and **Figure 7**. As can be seen, the highest calculated cancer, chronic and acute risk at residential, sensitive, and worker receptors are below a cancer risk of 10 in a million, as well as a hazard index of 1.

The complete HRA analysis is provided separately as the April 2019 HRA Addendum (Appendix E to this Addendum).

- 13 - April 2019

Table 8. Summary of Maximum Offsite Cancer and Non-Cancer Risks

		Cancer Risk)	Chronic Risk	k	1-8	8-Hr Chronic Risk	Risk		Acute Risk ^c	
	Increase Cases in-	UTM Coordina (NAD83)	l Coordinates (NAD83)	Hazard	UTM Coo	UTM Coordinates (NAD83)	Hazard	UTM Co (NA	UTM Coordinates (NAD83)	Hazard	UTM CO	UTM Coordinates (NAD83)
Location ^a	one- million	Easting (m)	Northing (m)	Index	Easting (m)	Northing (m)	Index	Easting (m)	Northing (m)	Index	Easting (m)	Northing (m)
May 2017 FEIR (2006-2011 meteorological data)	36-2011 met	teorological	data)									
Residential receptor ^b	3.7	383700	3741400	0:030	385251	3739503	900.0	383700	3741400	0.052	385305	3742454
Offsite workplace receptor	6.3	386006	3742921	0.106	386153	3741128	0.108	386153	3741128	0.052	385305	3742454
Sensitive Receptor ^b	2.1	386721	3739987	0.025	387304	3739447	0.005	386721	3739987	0.010	386721	3739987
May 2017 FEIR (2012-2016 met data)	12-2016 met	t data)										
Residential receptor ^b	2.8	383700	3741400	0.021	385251	3739503	0.005	383700	3741500	0.039	384329	3741584
Offsite workplace receptor	7.0	386019	3742969	0.078	386153	3741128	0.084	386153	3741128	0.076	386153	3741128
Sensitive Receptor ^b	2.4	386721	2739987	0.019	388750	3737361	900.0	386721	2866828	0.009	386721	3739987
FEIR Addendum (2012-2016 met data)	012-2016 me	et data)										
Residential receptor ^b	2.9	383700	3741400	0.024	385251	3739503	0.005	383700	3741500	0.040	384329	3741584
Offsite workplace receptor	7.0	386019	3742969	0.085	386153	3741128	0.084	386153	3741128	0.076	386153	3741128
Sensitive Receptor ^b	2.4	386721	3739987	0.019	388750	3737361	0.006	386721	3739987	0.009	386721	3739987
- Le												

D-20

^a Excluding onsite grid receptors ^b Worst-case residential exposure ^c Fenceline receptors were conservatively included as potential residential and worker receptors for determination of maximum acute risk.

April 2019

-14-

3742000 Maximum residential 8-hr chronic risk

Maximum residential cancer risk

Maximum worker 8-hr chronic risk

Maximum worker 8-hr chronic risk

Maximum worker acute risk

Maximum worker acute risk

Maximum sensitive receptor acute risk

3738000

3737000

384000

385000

Figure 2. Location of Maximum Calculated Health Risks. FEIR Sources with 2012-2016 Meteorological

- 15 - April 2019

Original in color

389000

388000

386000

UTM East, Zone 11, NAD83 (meters)

387000

Meteorological Data 3743000 (meters) 3743000 (meters) 3743000 (meters) 37440000 (meters) 37440000 (meters) 37430000 (meters) 3743000 (meters) 37430000 (meters) 3743000 (meters) 374300 (meters) 3743000 (meters) 374300 (meters) 37430 (met 381000

Figure 3. Contours of Residential Cancer Risk, per million exposed, FEIR Sources with 2012-2016

UTM East, Zone 11, NAD83 (meters)

Figure 4. Contours of Worker Cancer Risk, per million exposed, FEIR Sources with 2012-2016 Meteorological Data

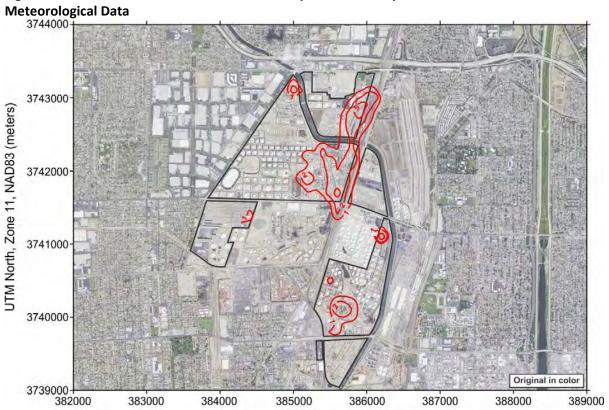


Figure 5. Location of Maximum Calculated Health Risks. FEIR Addendum Sources with 2012-2016 Meteorological Data

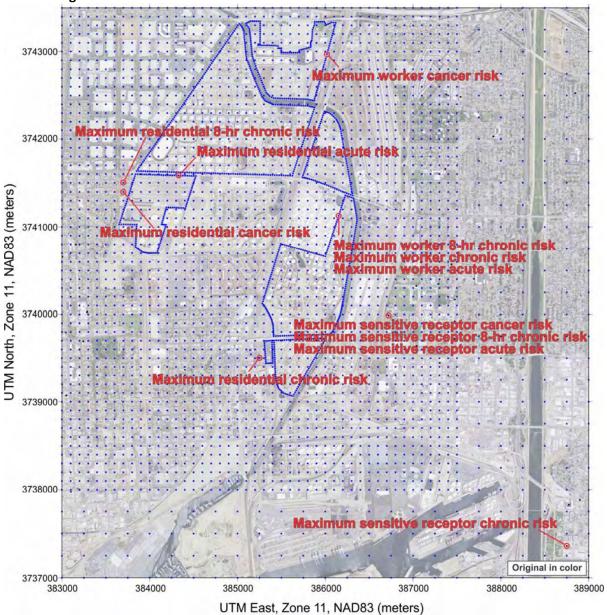
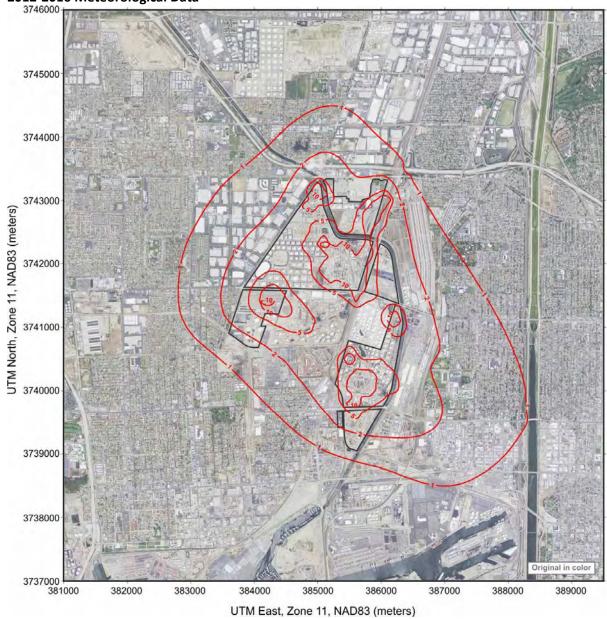



Figure 6. Contours of Residential Cancer Risk, per million exposed, FEIR Addendum Sources with 2012-2016 Meteorological Data

- 19 -

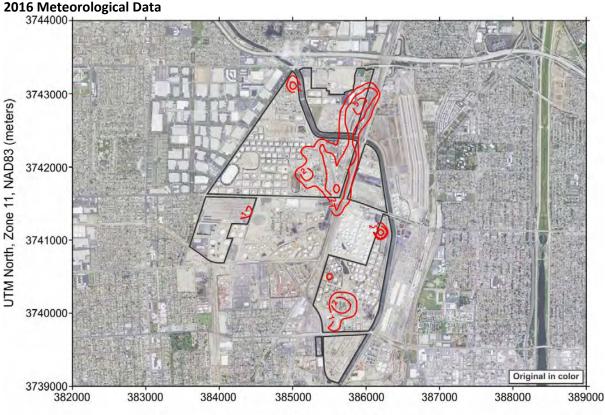


Figure 7. Contours of Worker Cancer Risk, per million exposed, FEIR Addendum Sources with 2012-2016 Meteorological Data

UTM East, Zone 11, NAD83 (meters)

4.3 Summary of Results (Construction)

Acute and 8-hr chronic reference exposure levels do not exist for DPM, therefore, the health risk associated with construction emissions was only evaluated for cancer and chronic risk. The predicted increases in chronic and cancer risks at maximally exposed offsite receptors based on modeling the May 2017 FEIR sources plus the additional sources in this addendum *including* the construction DPM emissions, with the 2012-2016 meteorological dataset, are summarized in **Table 9**, **Table 10**, and **Table 11**, and shown in **Figure 8**, **Figure 9**, and **Figure 10**. As can be seen, the highest calculated cancer risk at residential, sensitive, and worker receptors is below 10 in a million, and the chronic risks are below a hazard index of 1.

The complete HRA analysis is provided separately as the April 2019 HRA Addendum (Appendix E to this Addendum).

Table 9: Summary of Maximum Project Offsite Cancer and Non-cancer Risks (Operation Sources Only)

		Cancer Risk			Chronic Risk	
	Increase Cases in-one-	UTM Coordin	JTM Coordinates (NAD83)	Hazard Index	UTM Coordinates (NAD83)	ites (NAD83)
Location ^a	million	Easting (m)	Northing (m)		Easting (m)	Northing (m)
Residential receptor ^b	2.9	383700.0	3741400.0	0.024	385251.4	3739502.8
Offsite workplace receptor	7.0	386019.1	3742969.4	0.085	386152.5	3741127.8
Sensitive Receptor ^b	2.4	386720.8	3739987.2	0.019	388750.0	3737361.0

^a Excluding onsite grid receptors

^b Worst-case residential exposure

^c Maximum sensitive receptors: Cancer Risk: Bethune Mary School Chronic Risk: Cesar Chavez Elementary School

Table 10: Summary of Maximum Project Offsite Cancer and Non-cancer Risks (Construction Sources Only)

D-27

		Cancer Risk			Chronic Risk	
	Increase Cases in-one-	UTM Coordin	UTM Coordinates (NAD83)	Hazard Index	UTM Coordin	UTM Coordinates (NAD83)
Location ^a	million	Easting (m)	Northing (m)		Easting (m)	Northing (m)
Residential receptor ^b	2.3	385000.0	3743600.0	0.002	385000.0	3743600.0
Offsite workplace receptor	1.1	385701.4	3741819.3	0.018	385701.4	3741819.3
Sensitive Receptor ^b	1.7	386720.8	3739987.2	0.001	386720.8	3739987.2

^a Excluding onsite grid receptors

^b Worst-case residential exposure

^c Maximum sensitive receptors:

Cancer Risk: Bethune Mary School

Chronic Risk: Bethune Mary School

April 2019

Table 11: Summary of Maximum Project Offsite Cancer and Non-cancer Risks (Operation Plus Construction Sources)⁵

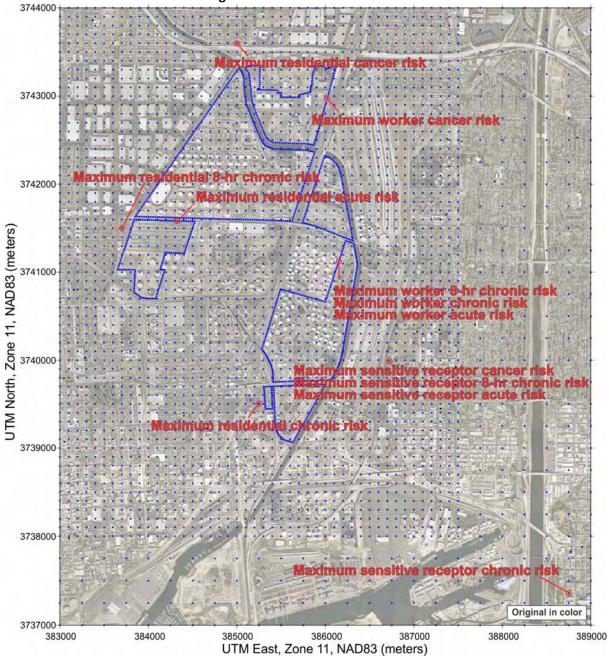
		Cancer Risk			Chronic Risk	
	Increase Cases in-one-	UTM Coordinates (NAD83)	ates (NAD83)	Hazard Index	UTM Coordinates (NAD83)	ates (NAD83)
Location ^a	million	Easting (m)	Northing (m)		Easting (m)	Northing (m)
Residential receptor ^b	4.7	385000.0	3743600.0	0.025	385251.4	3739502.8
Offsite workplace receptor	7.0	386019.1	3742969.4	960'0	386152.5	3741127.8
Sensitive Receptor ^b	4.1	386720.8	3739987.2	0.019	388750.0	3737361.0

^a Excluding onsite grid receptors

^b Worst-case residential exposure

^c Maximum sensitive receptors:

Cancer Risk: Bethune Mary School


Chronic Risk: Cesar Chavez Elementary School

D-28

⁵ It should be noted that because the maximum risk associated with operational emissions does not necessarily occur at the same receptor location as the maximum risk associated with construction emissions, the combined risk may not be equal to the sum of each maximum value.

April 2019

Figure 8. Location of Maximum Calculated Health Risks, FEIR Addendum Sources Plus Construction Sources with 2012-2016 Meteorological Data

Construction Sources with 2012-2016 Meteorological Data 3743000 3743000 37440000 37440000 37440000 Original in color 381000

UTM East, Zone 11, NAD83 (meters)

Figure 9. Contours of Residential Cancer Risk, per million exposed, FEIR Addendum Sources Plus

-24-April 2019

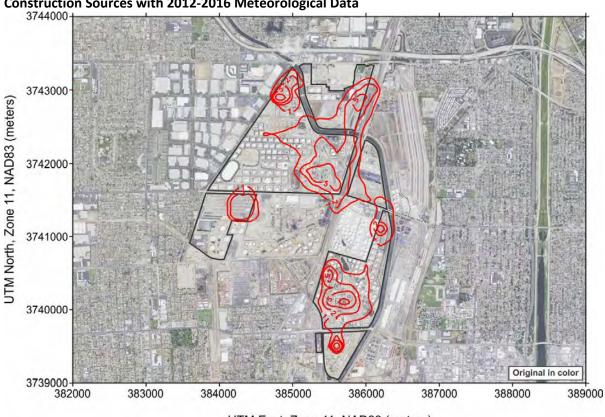


Figure 10. Contours of Worker Cancer Risk, per million exposed, FEIR Addendum Sources Plus Construction Sources with 2012-2016 Meteorological Data

UTM East, Zone 11, NAD83 (meters)

5. GREENHOUSE GASES (GLOBAL CLIMATE CHANGE)

This section of the Air Quality Analysis provided in the May 2017 LARIC project FEIR is unaffected by this Addendum and remains unchanged.

6. REFERENCES

This section of the Air Quality Analysis provided in the May 2017 LARIC project FEIR is unaffected by this Addendum and remains unchanged.

[This page intentionally left blank.]

ATTACHMENT A: EMISSIONS SUMMARIES

The following tables were updated as part of this AQA Addendum. No other tables were changed from the May 2017 FEIR.

Table	Title
A-1	Summary of Emissions Changes
A-15	Fugitive Component Emissions (Increases of VOC)
A-16	Fugitive Component Emissions (Increases of Toxics)
A-17	Carson Storage Tank Emissions
A-19	Characteristic Stream Speciations
A-28	Storage Tank 35 Emission Summary

[This page intentionally left blank.]

Tesoro Los Angeles Refinery Integration and Compliance Project Attachment A: Summary of Emissions

Table A-1: Summary of Emissions Changes

	Emissions (lbs/	day)					Source
CARSON	NOx	SOx	CO	PM10	VOC	CO2e**	Table
51 Vac Heater	32.72	1.80	233.85	45.49	32.85	360,634.76	A-6
Naphtha HDS ULNB Conversion	1.87	0.64	10.23	5.56	1.73	23,616.98	A-3
FCCU Regenerator (Increased Utilization)*	-	-	-	-		-	
FCCU Pre-Heater (Increased Utilization)*	-	-	-	-	-	-	
Cogeneration Units 1-4 (Increased Utilization)	20.60	2.50	4.50	9.85	4.15	121,688.67	A-22
HC R-1 Heater (Increased Utilization)	18.00	4.61	1.04	5.38	1.77	43,165.34	A-6
HC R-2 Heater (Increased Utilization)	14.40	9.81	1.38	7.18	2.36	57,548.98	A-6
LHU Heater (Increased Utilization)	6.00	1.50	0.36	1.87	0.62	14,355.47	A-6
Subtotals:	93.59	20.86	251.37	75.34	43.48	621,010.19	

## # # # # # # # # # # # # # # # # # #		18.00	4.61	1.04	5.38	1.//	43,165.34	A-6
Daily operations rate of the PCCU Regression and Pen-haster will not nonneese although previous maximum delay rates, as such, delay emissions noticed based on annual energies.								
Daily operations rules of the FCCU Regenerater and Pre-Instant will be increase above previous maximum daily rates, as such, daily emissions increases are listed as zero. **Concentration of the Concentration of the Con	_HU Heater (Increased Utilization)							A-6
Wilson Content Conte								-
MILMINGTON	Daily operations rates of the FCCU Regenerator and Pre-heater will not increase	ase above previous maxi	imum daily rates; a	s such, daily emiss	ions increase	es are listed as zero	э.	
CH-300 Seator Dury Sump 64 67 (14.88) 49.75 10.70 10.10 199.88.20 A.3	* CO2e emissions calculated based on annual averages.							
CH-300 Seator Dury Sump 64 67 (14.88) 49.75 10.70 10.10 199.88.20 A.3								
CH-300 Seator Dury Sump 64 67 (14.88) 49.75 10.70 10.10 199.88.20 A.3	VILMINGTON							
CH-901 Heater Duty Surrog (not with H-300)		4 67	(14 98)	49 75	10.79	10 10	169 568 20	A-3
14:00 Hose Dury Burne		_						
Sulturic Act Region Plane Discoss Air Heater 6.99 0.28 16.37 3.51 3.27 59.07.02 A.2								Δ-3
Substrict Acid Regen Plant Decorpts, Furnace 2.46 0.59 34.39 7.37 6.88 118.034.73 A.2								
Subduck Ack Regen Pietr Converted Healest 1,76								
Subbtolate 31.12								
Subiotals:							14,051.75	
## HINNINGTON - CRUDE INCREASE EFFECTS #101 Heater (Increased Ullization)	·						-	A-2
1-101 Hester (Increased Ullization)	Subtota	ils: (155.17)	103.76	99.46	27.56	20.64	558,886.10	
1-101 Hester (Increased Ullization)								
1-30 Haster (Increased Ullization)	WILMINGTON - CRUDE INCREASE EFFECTS							
1-30 Heater (Increased Ullization)	H-101 Heater (Increased Utilization)	19.00	7.58	4.36	0.83	0.83	20,620.29	A-7
12-102 (Increased Utilization)								
1-510 [Increased Utilization]								
Solens 7 A 8 (Increased Utilization) 12.00 3.07 0.37 1.89 0.63 14,764.81 A-7								
Soletes 9.8 10 (Increased Ullization)								
Code Handling (Increased Utilization)								
RPR Delines H-1601/1602 (Increased Utilization)			3.07		1.89		14,755.24	
RPP Inicinator F-704 (Increased Sulfur Load)								A-27
SRP Incinerator F-704 (Increased Suffur Load)		0.11	0.04	0.01	0.05	0.02	320.87	A-7
SRP Incinerator F-754 (Increased Sulfur Load)	SRP Incinerator F-704 (Increased Sulfur Load)	0.24	12.66	0.05		0.01		A-7
Subtotals: 66.19 43.60 9.89 8.02 4.57 80,989.70								
Daily operations rates of the Wilmington Operations Coke Handling Operations will not increase above previous maximum daily rates; as such, daily emissions increases are listed as zero. WILMINGTON FCCU SHUTDOWN (HISTORIC ACTUAL EMISSIONS) COULCO emissions included with O Boiler) [343.31] [387.50] [98.59] [274.03] [1.494.717.29] A.12 College (College College Coll								
VILLINITOTO FCCU SHUTDOWN (HISTORIC ACTUAL EMISSIONS) G343.31 (387.50 - (98.59 (274.03) (1.494.717.26) A-12								
CCU (CO emissions included with CO Boiler) (343.31) (387.50) - (98.59) (274.03) (1,494,717.26) A-12 CD Boiler (NOX and SOX emissions included with FCCU) - (909.62) (227.11) (16.43) (438,932.76) A-12 CD Boiler (NOX and SOX emissions included with FCCU) - (16.53) (1.26) (4.06) (0.87) (0.81) (17.144.70) A-12 CD Boiler (NOX and SOX emissions included with FCCU) - (10.53) (1.26) (4.06) (0.87) (0.81) (17.144.70) A-12 CD Boiler (NOX and SOX emissions included with FCCU) - (2.015.34) (3.06)	Daily operations rates of the Willington Operations Coke Handling Operation	.5 WIII HOL IHCIEASE ADOVE	e previous maximu	iii daliy rates, as su	icn, daily emi	issions increases a	re listeu as zero.	
CCU (CO emissions included with CO Boiler) (343.31) (387.50) - (98.59) (274.03) (1,494,717.26) A-12 CD Boiler (NOX and SOX emissions included with FCCU) - (909.62) (227.11) (16.43) (438,932.76) A-12 CD Boiler (NOX and SOX emissions included with FCCU) - (16.53) (1.26) (4.06) (0.87) (0.81) (17.144.70) A-12 CD Boiler (NOX and SOX emissions included with FCCU) - (10.53) (1.26) (4.06) (0.87) (0.81) (17.144.70) A-12 CD Boiler (NOX and SOX emissions included with FCCU) - (2.015.34) (3.06)	WILMINGTON ECCLI CHUTDOWN (HICTORIC ACTUAL EMICCIONE	• • • • • • • • • • • • • • • • • • • •						
20 Bolier (NOX and SOX emissions included with FCCU) - (909.62) (22.71) (16.43) (338,323.76) A.12			(007.50)	T	(00.50)	(074.00)	(4, 40,4, 74,7,00)	1 10
12 Heater								
13/14 Heater (209.75) (27.59) (45.30) (49.01) (9.93) (366,866.89) A-12								
15 Heater		(16.53)	(1.28)	(4.06)	(0.87)			
Startup Heater (3.00) (0.01) (0.81) (0.17) (0.16) (2.615.34) A-12 (1.760)	H3/H4 Heater	(209.75)	(27.59)	(45.30)	(49.01)	(9.93)	(366,866.89)	A-12
Startup Heater (3.00) (0.01) (0.81) (0.17) (0.16) (2.615.34) A-12 (17.60) - A-13 (17.60) - A	15 Heater	-	-	-	-	-	-	A-12
Subtotals Carson	Startup Heater	(3.00)	(0.01)	(0.81)	(0.17)	(0.16)	(2,615.34)	A-12
Subtotals: (572.59) (416.38) (959.78) (171.35) (318.96) (2,319,667.94)	Fugitive Components		` - '			(17.60)	- 1	A-12
Component Comp	Subtota	ıls: (572.59)	(416.38)	(959.78)	(171.35)	(318.96)	(2.319.667.94)	
11 Vac (Carson)		(, , ,	(/	, ,,,	(/	(/ / /	
11 Vac (Carson)	FUGITIVE COMPONENT EMISSIONS							
Nikylation (Carson)		-	-		-	11 74		
Could a fanks (Fug Ems) (Carson)							-	A-15
CU Mods (Carson)			-		-	18.88		
Interconnect Piping (Carson)	Prudo Tonko (Fug Emo) (Coroon)			-			-	A-15
HU Mods (Carson)			-	-	-	43.05	-	A-15 A-15
PG Railcar Load/Unload (Carson)	HCU Mods (Carson)	-	-	- - -	-	43.05 6.77	- - -	A-15 A-15 A-15
A-15	HCU Mods (Carson) nterconnect Piping (Carson)	-	- - -	- - -		43.05 6.77 27.22		A-15 A-15 A-15 A-15
Aphthalsem (Carsen)	HCU Mods (Carson) nterconnect Piping (Carson) HU Mods (Carson)	-	- - -	- - -		43.05 6.77 27.22 14.34		A-15 A-15 A-15 A-15 A-15
Aphthalsem (Carsen)	HCU Mods (Carson) nterconnect Piping (Carson) HU Mods (Carson)		- - -	- - - -	- - -	43.05 6.77 27.22 14.34		A-15 A-15 A-15 A-15
Propage C3 Splitter (Carson)	HCU Mods (Carson) nterconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson)	- - - - -	- - - -	- - - -	- - - -	43.05 6.77 27.22 14.34 26.85		A-15 A-15 A-15 A-15 A-15
HDS Mods (Carson)	HCU Mods (Carson) Interconnect Piping (Carson) IHU Mods (Carson) PG Railcar Load/Unload (Carson) Alid Barrel Distillate Treater (Carson)	- - - - -	- - - -	- - - -	- - - -	43.05 6.77 27.22 14.34 26.85 2.15		A-15 A-15 A-15 A-15 A-15 A-15 A-15
Vet Jet Treater (Carson)	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Idid Barrel Distillate Treater (Carson) Iaphtha Isom (Carson)			- - - - - -	- - - - -	43.05 6.77 27.22 14.34 26.85 2.15		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
STU (Wilmington)	ICU Mods (Carson) Iterconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Idid Barrel Distillate Treater (Carson) Iaphtha-Isom (Carson) Tropane C3 Splitter (Carson)				- - - - - - -	43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
RRU 3 (Wilmington)	ICU Mods (Carson) Iterconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Idd Barrel Distillate Treater (Carson) Iaphtha Isom (Carson) Propane C3 Splitter (Carson) IHDS Mods (Carson)		- - - - - - -	- - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Crude Tanks (Fug Ems) (Wilmington)	ICU Mods (Carson) Iterconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Idid Barrel Distillate Treater (Carson) Iaphtha-Isom (Carson) Propane C3 Splitter (Carson) IHDS Mods (Carson) Vet Jet Treater (Carson)			- - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
CU (Wilmington)	ICU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Ida Barrel Distillate Treater (Carson) Iaphtha-Isom (Carson) Iropane C3 Splitter (Carson) IHDS Mods (Carson) Vet Jet Treater (Carson) Vet Jet Treater (Carson) PSTU (Wilmington)	-				43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
### ATU 1 (Wilmington)	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Idid Barrel Distillate Treater (Carson) Iaphtha-Isom (Carson) Propane C3 Splitter (Carson) IHDS Mods (Carson) Vet Jet Treater (Carson) PSTU (Wilmington) IRU 3 (Wilmington)					43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
A-15	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Jid Barrel Distillate Treater (Carson) Jid Jid Treater (Carson) Jid Jid Treater (Carson) Jid Jid Treater (Carson) Jid			- - - - - - - - - - - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
A-15	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Jid Barrel Distillate Treater (Carson) Jid Jid Treater (Carson) Jid Jid Treater (Carson) Jid Jid Treater (Carson) Jid			- - - - - - - - - - - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
### A-15 HCU Mods (Carson) Interconnect Piping (Carson) IHU Mods (Carson) IPG Raiicar Load/Unload (Carson) Idid Barrel Distillate Treater (Carson) Idiphtha Isom (Carson) Idid Barrel Distillate Treater (Carson) Idid July (Carson) Idid July (Carson) Idid July (Idimington)					43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15	
A-15 A-15 A-15	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Idid Barrel Distillate Treater (Carson) Idiaphtha-Isom (Carson) Propane C3 Splitter (Carson) IHDS Mods (Carson) Vet Jet Treater (Carson) STU (Wilmington) CRU 3 (Wilmington) CRU 3 (Wilmington) IdU 1 (Wilmington)					43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Subtotals: - - - - - - - - -	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Jid Barrel Distillate Treater (Carson) Japhtha-Isom (Carson) Propane C3 Splitter (Carson) JHDS Mods (Carson) JHDS Mods (Carson) PSTU (Wilmington)					43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50 3.80		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Subtotals: 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28	HCU Mods (Carson) Interconnect Piping (Carson) IHU Mods (Carson) IPG Railcar Load/Unload (Carson) Mid Barrel Distillate Treater (Carson) Maphtha Isom (Carson) Propane C3 Splitter (Carson) IHDS Mods (Carson) IHDS Mods (Carson) Ret Jet Treater (Carson) PSTU (Wilmington) PSTU (Wilmington) Prude Tanks (Fug Ems) (Wilmington) HTU 1 (Wilmington) HTU 1 (Wilmington) HTU 2 (Wilmington) HTU 4 (Wilmington) HTU 4 (Wilmington)			- - - - - - - - - - - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50 3.80 6.32		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Carson Tank Emissions - New	## ACU Mods (Carson)			- - - - - - - - - - - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50 3.80 6.32		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Carson Tank Emissions - New 112.51 - A-17	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Idid Barrel Distillate Treater (Carson) Iaphtha-Isem (Carson) Iaphtha-Isem (Carson) Interconnect Piping (Milmington) INTU 1 (Wilmington) INTU 2 (Wilmington) INTU 2 (Wilmington) INTU 4 (Wilmington) INTU 5 (Wilmington) INTU 6 (Wilmington) INTU 8 (Wilmington) INTU 9 (Wilmington) INTU 1 (Wilmington) INTU 1 (Wilmington) INTU 1 (Wilmington) INTU 2 (Wilmington) INTU 4 (Wilmington) INTU 4 (Wilmington) Interconnect Piping (Wilmington) Interconnect Piping (Wilmington) Interconnect Piping (Wilmington) Interconnect Piping (Wilmington)			- - - - - - - - - - - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50 3.80 6.32 37.20		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Carson Tank Emissions - New 112.51 - A-17	ICU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Idid Barrel Distillate Treater (Carson) Idid Barrel Distillate (Carson) Idid Barrel Distillate (Carson) Idid State Treater (Carson) Idid Wilmington) Idid U (Wilmington) Idid 1 (Wilmington) Idid 2 (Wilmington) Idid 4 (Wilmington) Idid 4 (Wilmington) Idid 5 (Wilmington) Idid 6 (Wilmington) Idid 6 (Wilmington) Idid 7 (Wilmington) Idid 8 (W			- - - - - - - - - - - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50 3.80 6.32 37.20		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Carson Tank Emissions - Modified (Tank 35)	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Jid Barrel Distillate Treater (Carson) Jid Barrel Distillate (Carson) Jid			- - - - - - - - - - - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50 3.80 6.32 37.20		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Carson Tank Emissions - Modified (Tank 35)	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Jid Barrel Distillate Treater (Carson) Jid Barrel Distillate (Carson) Jid			- - - - - - - - - - - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50 3.80 6.32 37.20		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Carson Tank Emissions - Increased Utilization	## ACU Mods (Carson)		-	- - - - - - - - - - - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50 3.80 6.32 37.20		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Vilimington Tank Emissions - New/Modified - - - - 141.64 - A-17 Vilmington Tank Emissions - Increased Utilization - - - - - 4.12 - A-17 Subtotals: - - - - 330.50 - -	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Aid Barrel Distillate Treater (Carson) Alaphtha-Isem (Carson) Al		-			43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50 3.80 6.32 3.7.20		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Vilmington Tank Emissions - Increased Utilization - - - - - 4.12 - A-17 Subtotals: - - - - 330.50 - -	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Ralicar Load/Unload (Carson) Jid Barrel Distillate Treater (Carson) Jidaphtha Isom (Carson) Propane C3 Splitter (Carson) JHDS Mods (Carson) JHDS Mods (Carson) PSTU (Wilmington) PS			- - - - - - - - - - - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50 3.80 6.32 37.20 		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Subtotals: 330.50	## HOU Mods (Carson) ## HOU HOU Mode HO		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50 3.80 6.32 37.20		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Mid Barrel Distillate Treater (Carson) Naphtha-Isom (Carson) Propane C3 Splitter (Carson) Net Jet Treater (Carson) Net Jet Treater (Carson) STU (Wilmington) CRU 3 (Wilmington) CRU 3 (Wilmington) HTU 1 (Wilmington) HTU 1 (Wilmington) HTU 2 (Wilmington) HTU 4 (Wilmington) Sulfuric Acid Plant (Fug Ems) (Wilmington)		- - - - - - - - - - - - - - - - - - -			43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 15.44 10.24 3.61 20.69 3.50 3.80 6.32 37.20 318.28 112.51 7.89 64.35 141.64		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Onsite Mobil Source Train Emissions: 11.65 0.01 2.01 0.25 0.66 754.66	HCU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Alid Barrel Distillate Treater (Carson) Alaphtha-Isom (Carson) Propane C3 Splitter (Carson) Port HDS Mods (Carson) Propane C3 Splitter (Carson) PRI U (Wilmington) P		- - - - - - - - - - - - - - - - - - -			43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 10.24 3.61 20.69 3.50 3.80 6.32 37.20 318.28 112.51 7.89 64.35 141.64 4.12		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
Onsite Mobil Source Train Emissions: 11.65 0.01 2.01 0.25 0.66 754.66	ICU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Idid Barrel Distillate Treater (Carson) Idaphtha-Isom (Idaphtha-Isom)		- - - - - - - - - - - - - - - - - - -			43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 10.24 3.61 20.69 3.50 3.80 6.32 37.20 318.28 112.51 7.89 64.35 141.64 4.12		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15
	ICU Mods (Carson) Interconnect Piping (Carson) HU Mods (Carson) PG Railcar Load/Unload (Carson) Idid Barrel Distillate Treater (Carson) Idaphtha-Isom (Idaphtha-Isom)		- - - - - - - - - - - - - - - - - - -			43.05 6.77 27.22 14.34 26.85 2.15 9.46 0.83 15.21 50.45 10.24 3.61 20.69 3.50 3.80 6.32 37.20 318.28 112.51 7.89 64.35 141.64 4.12		A-15 A-15 A-15 A-15 A-15 A-15 A-15 A-15

	•						
Ε	Onsite Mobil Source Train Emissions:	11.65	0.01	2.01	0.25	0.66	754.66
	Onsite Mobil Truck Emissions:	2.25E+00	1.53E-03	5.85E-01	1.09E-02	1.73E-01	4.21E+02
Ξ							
Г	Total Emissions (Excl. Mobil Source Truck and Train Emissions):	(567.98)	(248.15)	(599.06)	(60.43)	398.51	(1.058.872.94)

Tesoro Los Angeles Refinery Integration and Compliance Project Attachment A: Summary of Emissions

Table A-1: Summary of Emissions Changes

ARSON 1 Vac Heater aphtha HDS ULNB Conversion CCU Regenerator (Increased Utilization)* CCU Pre-Heater (Increased Utilization)* ogeneration Units 1-4 C R-1 Heater (Increased Utilization) C R-2 Heater (Increased Utilization)	Emissions (ton NOx 18.04 0.18 14.58 1.39	SOx 0.25 0.11 20.99	42.75 1.86 18.24	PM10 8.55 1.07	VOC 6.12 0.32	CO2e 65,815.84 4,310.10	tonnes/yr CO2e 59,706.82	Sour Tab A-4
Vac Heater aphtha HDS ULNB Conversion CCU Regenerator (Increased Utilization)* CCU Pre-Heater (Increased Utilization)* ogeneration Units 1-4 C R-1 Heater (Increased Utilization) C R-2 Heater (Increased Utilization)	18.04 0.18 14.58	0.25 0.11 20.99	42.75 1.86	8.55 1.07	6.12	65,815.84	59,706.82	A-4
phtha HDS ULNB Conversion CU Regenerator (Increased Utilization)* CU Pre-Heater (Increased Utilization)* generation Units 1-4 R-1 Heater (Increased Utilization) R-2 Heater (Increased Utilization)	0.18 14.58	0.11 20.99	1.86	1.07				
CU Regenerator (Increased Utilization)* CU Pre-Heater (Increased Utilization)* generation Units 1-4 CR-1 Heater (Increased Utilization) CR-2 Heater (Increased Utilization)	14.58	20.99					3,910.04	A-4
ogeneration Units 1-4 C R-1 Heater (Increased Utilization) C R-2 Heater (Increased Utilization)	1.39		10.24	7.44	0.68	110,163.35	99,937.99	A-5
C R-1 Heater (Increased Utilization) C R-2 Heater (Increased Utilization)		0.34	0.13	0.69	0.23	5,564.56	5,048.06	A-5
C R-2 Heater (Increased Utilization)	3.76	0.46	0.82	1.80	0.76	22,208.18	20,146.82	A-2
	3.29	0.84	0.19	0.98	0.32	7,877.67	7,146.47	A-6
	2.63	1.79	0.25	1.31	0.43	10,502.69	9,527.83	A-
HU Heater (Increased Utilization)	1.10	0.27	0.07	0.34	0.11	2,619.87	2,376.70	A-
Sub	btotals: 44.96	25.06	64.32	22.17	8.97	229,062.28	207,800.72	
W MINIOTON								
/ILMINGTON C H-300 Heater Duty Bump	(0.10)	(1.24)	10.02	2.15	2.00	30,946.20	28,073.77	A-4
C H-300 Heater Duty Bump (incl with H-300)	(o. 10) (see H-300)	(see H-300)	(see H-300)	(see H-300)	(see H-300)	(see H-300)	(see H-300)	
-100 Heater Duty Bump (Inc. With 11-300)	6.12	35.38	3.63	0.75	0.80	36,686.95	33,281.67	A-4
ulfuric Acid Regen Plant Process Air Heater	1.28	0.05	2.99	0.64	0.60	10,257.78	9,305.65	A-:
ulfuric Acid Regen Plant Decomp. Furnace	0.45		6.28	1.34	1.26	21,541.34	19,541.87	A-2
ulfuric Acid Regen Plant Converter Heater	0.32	0.01	0.75	0.16	0.15	2,564.45	2,326.41	A-2
ulfuric Acid Regen Plant Process Vent	- 0.02	5.68	-	1.10	-	-		A-2
	btotals: 8.06		23.66	6.14	4.81	101,996.71	92,529.38	
ILMINGTON - CRUDE INCREASE EFFECTS								
-101 Heater (Increased Utilization)	3.47	1.38	0.80	0.15	0.15	3,763.20	3,413.90	A-7
-30 Heater (Increased Utilization)	1.44		0.07	0.36	0.29	2,205.50	2,000.79	A-7
-21/22 (Increased Utilization)	2.32	0.24	0.50	0.11	0.11	2,202.93	1,998.45	A-7
-510 (Increased Utilization)	0.09		0.11	0.03	0.01	214.76	194.82	A-7
-501A, B, 502, 503/504 (Increased Utilization)	0.23	0.08	0.17	0.11	0.03	860.31	780.46	A-
bilers 7 & 8 (Increased Utilization)	2.19	0.56	0.07	0.35	0.12	2,692.75	2,442.81	Α-
pilers 9 & 10 (Increased Utilization)	2.19	0.56	0.07	0.35	0.12	2,692.83	2,442.88	A-1
oke Handling (Increased Utilization)				0.07				A-2
RP Boilers H-1601/1602 (Increased Utilization)	0.02	0.01	0.00	0.01	0.00	58.56	53.12	A-
RP Incinerator F-704 (Increased Sulfur Load)	0.04		0.01	0.00	0.00	36.30	32.93	A-
RP Incinerator F-754 (Increased Sulfur Load)	0.10		0.01	0.01	0.00	36.87	33.45	A-7
Sur	btotals: 12.08	7.96	1.81	1.54	0.83	14,764.01	13,393.62	
ILMINGTON FCCU SHUTDOWN (HISTORIC ACTUAL EMISSI	ONS)							
CCU (CO emissions included with CO Boiler)	(62.65)	(70.72)	-	(17.99)	(50.01)	(272,785.90)	(247,465.91)	A-1
O Boiler (NOx and SOx emissions included with FCCU)	(02:00)	- (10.12)	(166.01)	(4.14)	(3.00)	(79,994.09)	(72,569.03)	A-1
2 Heater	(3.02)	(0.23)	(0.74)	(0.16)	(0.15)	(3,128.91)	(2,838.48)	A-1
3/H4 Heater	(38.28)		(8.27)	(8.94)	(1.81)	(66,953.21)	(60,738.61)	A-1
5 Heater	- (-	-	-	-	- (,,	-	A-1
tartup Heater	(0.55)	(0.00)	(0.15)	(0.03)	(0.03)	(477.30)	(433.00)	A-1
ugitive Components	-	-	-	-	(3.21)	-	-	A-1
Sut	ototals: (104.50)	(75.99)	(175.16)	(31.27)	(58.21)	(423,339.40)	(384,045.04)	
UGITIVE COMPONENT EMISSIONS								
1 Vac (Carson)	_	- 1	_	-	2.14	-		A-1
lkylation (Carson)		-	-	-	3.45	-		A-1
rude Tanks (Fug Ems) (Carson)		-	-	-	7.86			A-1
CU Mods (Carson)		-	-	-	1.24	-	- : 1	A-1
terconnect Piping (Carson)		-	-	-	4.97	-	-	A-1
HU Mods (Carson)		-	-		2.62	-	- : 1	A-1
PG Railcar Load/Unload (Carson)		-	-	-	4.90			A-1
id Barrel Distillate Treater (Carson)	-	-	-	-	0.39	-		A-1
aphtha Isom (Carson)		t			1.73		tt	A-1
ropane C3 Splitter (Carson)	-	-	-	_	0.15	-		A-1
HDS Mods (Carson)	-	-	-	-	2.78	-		A-1
STU (Wilmington)	-	-	-	_	2.82	-		A-1
et Jet Treater (Carson)	-	-	-	-	9.21	-		A-1
RU 3 (Wilmington)	-	-	-	_	1.87	-		A-1
rude Tanks (Fug Ems) (Wilmington)	-	-	-	-	0.66	-		A-1
CU (Wilmington)	-	_	_	-	3.78	_	-	A-1
FU 1 (Wilmington)	-	-	-	-	0.64	-		A-1
TU 2 (Wilmington)	-	-	-	-	0.69	-	-	A-1
ΓU 4 (Wilmington)	-	-	-	-	1.15	-	-	A-1
terconnect Piping (Wilmington)	-	-	-	-	6.79	-	-	A-1
Ifuric Acid Plant (Fug Ems) (Wilmington)	-	-	-	-	-	-	-	A-1
Suk	btotals: -	-	-	-	58.09	-	-	
FOR A OF TANK EMISSIONS						·		
FORAGE TANK EMISSIONS				1	20.50			Λ 4
arson Tank Emissions - New	-	-	-	-	20.53	-	 	A-1
and a Transfer for a Market (T. 1. A.S.)	-	-	-	-	1.44	-	-	A-2
	-	-	-	-	11.74	-	-	A-1
arson Tank Emissions - Modified (Tank 35) arson Tank Emissions - Increased Utilization	-	-	-	-	25.85	-	├	A-1
arson Tank Emissions - Increased Utilization ilimington Tank Emissions - New/Modified				- 1	0.75	-	-	A-1
	-	-	-	1			, , , , , , , , , , , , , , , , , , ,	
arson Tank Emissions - Increased Utilization ilimington Tank Emissions - New/Modified		-	-	-	60.32	-	-	
arson Tank Emissions - Increased Utilization ilimington Tank Emissions - New/Modified ilmington Tank Emissions - Increased Utilization	-	-	-		60.32			
arson Tank Emissions - Increased Utilization ilimington Tank Emissions - New/Modified	- - ssions: 2.13	0.00		0.05 0.00		- 137.72 88.83	124.94 80.58	

Tesoro Los Angeles Refinery Integration and Compliance Project Attachment A: Summary of Emissions

Table A-15: Fugitive Component Emissions (Increases of VOC)

			ļ											ľ								
Screening Value (ppmv):	200		Carson											ī	oject Emissi	Project Emissions - Carson (lbs/yr	s/yr)					
			LPG Railca	-PG Railcar Load/Unload	HCU Mods	Mods	Interconne	onnect Piping	Mid Barrel Distillate	Distillate	THU Mods	sp.	NHDS Mods	spo	Napht	Naphtha Isom	Propane (Propane C3 Splitter	Alkylation	ation	Wet Jet Treater	Freater
		VOC EF	Comp.	200		200		AOC	Comb.	200	Comp.	200	Comp.	VOC	Comp				Comp.	NOC	Comp.	VOC
		(lps/comb/	Count	Emissions	Comp. Count	Emissions	Count	Emissions	Count	Emissions	Count	Emissions	Count	Emissions	Count	40C Emissions	Comp. Count	VOC Emissions Comp. Count VOC Emissions	Count	Emissions	Count	Emissions
Component Type	CAS#	year)	Increase	(lbs/year)	Increase	(Ibs/year)	Increase	(Ibs/year)	Increase ((lbs/year) In	Increase (II	(lbs/year) In	Increase (II	(lbs/year)	Increase	(lbs/year)	Increase	(Ibs/year)	Increase	(Ibs/year)	Increase	(lbs/year)
	BSV		176				143		23		123		200		162	1			174			
Vehice	ΛĐ	4.55	159	722.77							23	104.55	45	204.56	!	•	19	26.38	58	263.65		
SANDA	Ⅎ	4.55	158	718.23			375	1,704.65	8	36.37	195	886.42	135	613.68 -	69	240.92			205	931.88		
	Ŧ	4.55			128	581.85	125	568.22							!	•					1,005	4,568.47
	Sealles														!	•						
	Dbl Mech	00 07																				
Pumps	Seal or Equiv	40.83	8	140.48							,				1							
	Single Mech Seal	46.83			8	140.48									1			•			4	187.30
Compressor	r GV	60'6																				
Pressure Relief Valves	s All		8				39				4		10		9	1	2		5		56	
Flanges	s GV and IL	66'9	761	5,319.53			124	866.78	89	475.33	409	2,858.99	430	3,005.78	589	2,020.16	25	174.75	529	3,907.51	25	174.75
Connectors	Connectors GV and LL	2.86	1,000	2,861.38			810	2,317.72	23	65.81	439	1,256.15	483	1,382.05	366	1,047.27	14	40.06	533	1,525.12		
Other	r GV and ⊔	60'6	4	36.36			34	309.05	23	209.06	13	118.16	38	345.40	16	145.43			28	254.51		
Process Drain w/P-Trap or Seal Pot	x All	60'6			2	18.18					1	60'6			1			•	1	60'6	7	63.63
Flanges	s H	66.9			173	1,209.30	245	1,712.60						-	1	1			-	-	1,286	8,989.38
Connectors	s H	2.86			170	486.44	357	1,021.51						-	1	1					1,348	3,857.14
Other	ī	60.6			4	36.36	18	163.61						-					-		63	572.64
		Totals:		9,798.75		2,472.61		8,664.14		786.57		5,233.36		5,551.46		3,453.79		301.18		6,891.76		18,413.32

				Carson (cont)	ont)				
				13	51 Vac	Interconnect at FCCU	ct at FCCU	Crude Ta	Crude Tanks (Fug
			VOC EF	Comp.	200		20/	Comb.	200
			(lps/comb/	Count	Emissions	Comp. Count	Emissions	Count	Emissions
	Component Type	CAS#	year)	Increase	(lbs/year)	Increase	(Ibs/year)	Increase	(Ibs/year)
		ASB		85					
	Vertices	ΛĐ	4.55						
	SANDA	Ⅎ	4.55	24	109.10				
		Ħ	4.55	165	750.05	72	327.29	722	3,282.03
		Sealles		-					
		Dbl Mech							
D.	Pumps	Seal or	46.83			٠			
-(
37		Single Mech Seal	46.83	3	140.48			9	280.95
	Compressor	Λ9	60'6						
	Pressure Relief Valves	IIA				2		20	
	Flanges	GV and ILL	66'9	36	251.65			96	671.06
	Connectors	GV and ILL	2.86	51	145.93				
	Other	GV and □	60'6						
	Process Drain w/P-Trap or Seal Pot	IIA	60'6	2	18.18	•		3	27.27
	Flanges	ᅱ	66'9	248	1,733.57	100	699.02	1,090	7,619.30
	Connectors	ᅱ	2.86	378	1,081.60	69	180.27	998	2,477.96
	Other	H	60'6	9	54.54	2	63.63	149	1,354.35
•			Totals:		4.285.08		1.270.21		15,712,91

Tesoro Los Angeles Refinery Integration and Compliance Project Attachment A: Summary of Emissions

Table A-15: Fugitive Component Emissions (Increases of VOC)

			Wilmington																		
			FCCU S/D	PSTU	2	NOH	D:	HED	1	HTU 2	2	4 UTU 4	†	Interc	Interconnect	Crude Tank	Crude Tanks (Fug Ems)	Ó	CRU 3	Sulfuric Acid Plan	cid Plant
		VOC EF			NOC	Comp.	NOC	Comp.	NOC	Comp.	NOC	Comp.	VOC	Comp.				Comp.	200	Sulfuric	VOC
		(lbs/comb/		Comp. Count	Emissions		Emissions	Count	Emissions	Count	Emissions	Count	Emissions	Count	VOC Emissions		Comp. Count VOC Emissions	Count	Emissions	Acid Plant	Emissions
Component Type	CAS#	year)	FCCU S/D	Increase	(Ibs/year)	Increase	(Ibs/year)	Increase ((Ibs/year)	Increase ((lbs/year)	Increase ((lbs/year)	Increase	(lbs/year)	Increase	(Ibs/year)	Increase	(Ibs/year)	(Fug Ems)	(lbs/year)
	BSV		See FCCU (W) Calcs	275		215		44		20		18		217		00'09		251.00		ΝA	Ą
No.	ΛĐ	4.55	4.55 See FCCU (W) Calcs	56	118.19	9	27.27	8	36.37	35	159.10							(8.00)	(36.37)	ΝA	Ą
SANDA	∃	4.55	4.55 See FCCU (W) Calcs	09	272.74	2	22.73	32	145.46	24	109.10			450	2,045.58	48.00	218.20	1.00	4.55	ΝA	Ą
	H	4.55	See FCCU (W) Calcs			166	754.59					110	500.03	167	759.14					ΝA	Ą
	Sealles		See FCCU (W) Calcs																	ΝA	Ą
G	Dbl Mech Seal or	46.83																			
sdun	Equiv		See FCCU (W) Calcs	9	280.95	1	46.83	3	140.48					4	187.30			7.00	327.78	NA	A
	Single Mech Seal	46.83	See FCCU (W) Calcs			1	46.83							4	187.30	00:9	280.95	٠		ΝA	¥
Compressor	ΛĐ	60'6	9.09 See FCCU (W) Calcs																	ΝA	Ą
Pressure Relief Valves	IIV		See FCCU (W) Calcs	8		6		2		2		9		36				4.00		ΝA	NA
Flanges	Flanges GV and IL	66.9	See FCCU (W) Calcs	582	4,068.29	381	2,663.26	75	524.26	100	699.02	2	13.98	564	3,942.46	117.00	817.85	404.00	2,824.03	ΝA	NA
Connectors GV and IL	GV and IL	2.86	2.86 See FCCU (W) Calcs	125	357.67	124	354.81	129	369.12	140	400.59			949	2,715.45			108.00	309.03	ΝA	¥
Other	Other GV and IL	60'6	9.09 See FCCU (W) Calcs	44	399.94	19	172.70	7	63.63	2	18.18	2	18.18	123	1,118.02			24.00	218.15	ΝA	W
Process Drain w/P-Trap or Seal Pot	IIV	60'6	See FCCU (W) Calcs	15	136.34	2	18.18					1	60.6	2	18.18			10.00	90.90	ΝA	ž
Flanges	TH	66.9	6.99 See FCCU (W) Calcs			290	2,027.15	-				163	1,139.40	223	1,558.81					ΝA	NA
Connectors	H	2.86	2.86 See FCCU (W) Calcs			496	1,419.25					158	452.10	324	927.09					NA	W
Other	H	60.6	9.09 See FCCU (W) Calcs									19	172.70	13	118.16					NA	Ν
		Totals:			5,634.13		7,553.60		1,279.32		1,385.99		2,305.48		13,577.50		1,317.00		3,738.07		

Notes:

1) Coker Bottom Heads project will not affect beginve component emissions.
2) ATSP Plant project Upditive component are not expected to contain VOC in the process streams.
3) Sulfure Acid Regeneration Plant project Tuglitive Components are not expected to contain VOC in the process streams.
3) Sulfure Acid Regeneration Plant project Tuglitive Components are not expected to contain VOC in the process streams.
4) Calculations based on SCAQMD Guidelines for Fuglitive Emissions Calculations, June 2003 (reference to CAPCOA California Implementation Guidelines for Fuglitive Hydrocarbon Leaks at Petroleum Facilities, February 1999), evaluated at 500 ppmv.

Tesoro Los Angeles Refinery Integration and Compliance Project Attachment A. Summary of Emissions

Table A-16: Fugitive Component Emissions (Increases of Toxics)

		ď	Project Emissions - Carson (Ibs/yr)	on (lbs/yr)				Project Emissions - Carson (Ibs/yr)	arson (Ibs/yr)								
			I PG Railcar		Mid Barrel Distillate		SCHN					Interconnect Piping - Pigging	Interconnect Piping - OSBL	Interconnect	Interconnect	Met Jet	Crude Tanks
Chemical	o	CAS#	Load/Unload	HCU Mods	Treater	LHU Mods	Mods	Naphtha Isom	Propane C3 Splitter	Alkylation	51 Vac	Station	-	ш.		Treater	(Fug Ems)
1,3-E	1,3-Butadiene	106-99-0	7.84			0.01	0.02	0.40	0.00	0.22		8.57	0.36	0.32			
Acet	Acetaldehyde	0-20-92			ļ. L											-	
	Ammonia 76	7664-41-7			Ŀ	0.00	00'0	70.0						. -			
	Benzene	71-43-2	0.46		10.24	5.41	5.53			10.0	0.03	39.87	1.68	1.50	10.0	-	74.16
ō		67-66-3			Į.									ļ. L			
Cresols (mixtures of) {cresylic		1319-77-3	,	0 12	20 0	,			,	,	0.30	0.38	0.03	200	60 0	1 84	
dietha		111-42-2	١														
Ffbx		100-41-4	١	1 84	4 98						0.62	57.91	2 44	2.18	0.18	4.05	02.47
Ethyla edhyla		107-21-1									1000			i			
Hydrode		74-90-8															
Hydroge	7	7783-06-4	2 12			102 60	106.08	0.70	0 11	0 44		000	000	000			0.71
going	_	1,03-00-4	3.12			102.00	100.30	9/10	ò	7.7		0.00	0.00	0.00			7.0
		67-56-1										0.03	0.00	0.00			
Methyl tert-butyl ether	_	1634-04-4			,			1		•							
Nap	Naphthalene	91-20-3		90.42	0.02	•	,		•	•	2.46	8.39	0.35	0.32	0.73	127.05	8.64
	n-Hexane 1	110-54-3	0.42		24.19	8.27	9.33	55.90	•	0.10		63.57	2.68	2.39		-	300.27
PAHs, total, with individ.	th individ.	1150							-								
components also reported		0 000															
		108-95-2	,	0.12	0.02				,		0.35		0.01	0.01	0.10	1.29	
4		115-07-1	7,920.76			0.73	1.42	23.96	0.27	5.64	-	3,891.85	164.10	146.36			
Tetrachloroethylene		127-18-4			٠			1									
	Toluene	108-88-3	1	0.65	15.40	255.59	261.19	0.95	1	0.53	0.66		14.64	13.06	0.20	3.87	186.20
Xylene	Xylenes (mixed) 13	1330-20-7		12.74	17.16	15.68			•		2.72		9.80	8.74	0.81	22.10	251.41
1,2,4-Trimethylbenzene		95-63-6		15.44	2.00			1			31.11	88.81	3.74	3.34	9.22	101.27	•
2,2,4-Trimethylpentane	4,	540-84-1			0.14					09:0		272.22	11.48	10.24			
2,4-Dimethylphenol		105-67-9			L									ļ. L			
	Acetone	67-64-1			L									ļ. L			
Carbor	Carbonyl sulfide 4	463-58-1			L				0.01			0.02	00:0	00:0			
	Cumene	98-82-8		0.12	0.15							3.61	0.15	0.14			6.87
S/O	Cyclohexane 1	110-82-7	0.10		37.27	85.33	87.19			0.53		48.59	2.05	1.83			
	Ethylene	74-85-1	2.24		L	0.18	0.34	5.81	0.25	1.51		0.10	00:0	00:0			
	Isoprene	78-79-5								1.92		0.53	0.02	0.02			
Phen Phen		85-01-8		90.0	L						4.18		0.38	0.26	1.24		
Benz[a]anthracene		26-55-3	,							-		:	:		:		0.29
	Chrysene 2	218-01-9		-						-	:			-	-		89'0
Benzo[b]fluoranthene		205-99-2		-						-	:			-	-		69'0
Benzo	Benzo(a)pyrene	50-32-8	,												:		0.12
Dibenzo[a,h]anthracene		53-70-3			-			1	,	-				-	-	-	0.04
Sul	Sulfuric Acid 7664-93-9	84-93-9		-	-	-	-		-	-	-			-	-		
	Arsine 7784-42-1	784-42-1	,	-	-	-	-	1	00'0	-						-	

Tesoro Los Angeles Refinery Integration and Compliance Project Attachment A: Summary of Emissions

		Project Emissions - Wilmington (Ibs/yr)	nington (Ibs/)	(ı)										
Chamical	# 0 4 0	USTIDDE	IIISd	IJH	1111	HTII 2	HTII 4	Interconnect Piping - Pigging Station	Interconnect Piping - OSBL	Interconnect Piping -	Interconnect Piping - Propane	Crude Tanks	CBII3	Sulfuric Acid Plant (Fug Fms)
1.3-Butadiene		See FCCU (W) Calcs	00.0	,		90'0		2.63	1.10	1.21	7.91	(2000 620)	0.19) VA
1,3-Butadiene														NA NA
Acetaldehyde														NA
Ammonia	7664-41-7	See FCCU (W) Calcs		93.11		19.67	0.02	35.51	5.10	5.63	36.80	6.22		NA
Benzene	71-43-2	See FCCU (W) Calcs												NA
Chloroform	67-66-3	See FCCU (W) Calcs		0.21	0.13		0.16	0.31	0.07	0.07	0.22			NA
Cresols (mixtures of) {cresylic acid}	1319-77-3	See FCCU (W) Calcs						•			,			AN AN
diethanolamine	111-42-2	See FCCU (W) Calcs		98.10	0.28	1.76	0.33	51.57	7.40	8.18	53.45	3.62		NA
Ethylbenzene	100-41-4	See FCCU (W) Calcs												NA
Ethylene Glycol		See FCCU (W) Calcs												NA
Hydrogen cyanide	74-90-8		1.80			0.03		0.00	0.00	0.00	0.00		8.24	NA
Hydrogen sulfide	7783-06-4	See FCCU (W) Calcs						0.03	00:00	0.00	0.03			NA
Methanol														AN
Methyl tert-butyl ether	1634-04-4	See FCCU (W) Calcs		157.33	8.83	0.03	1.32	7.47	1.07	1.19	7.75	0.72		NA
Naphthalene	91-20-3	See FCCU (W) Calcs		58.27		121.54		56.62	8.13	8.98	58.68	20.94	37.38	NA
n-Hexane														NA
PAHs, total, with individ. components also reported	1150	See FCCU (W) Calcs		0.21	0.09		0.19	0.21	0.03	0.03	0.22		٠	NA
Phenol	108-95-2	See FCCU (W) Calcs	4.78					3,465.98	46	549.88	3,59		0.35	NA
Propylene	115-07-1	See FCCU (W) Calcs												NA
Tetrachloroethylene	127-18-4	See FCCU (W) Calcs		716.80	0.27	16.64	0.36	309.29		49.07	320.56	11.17		NA
Toluene	108-88-3	See FCCU (W) Calcs		287.90	1.54	37.12	1.46			32.84		15.54		NA
Xylenes (mixed)	1330-20-7	See FCCU (W) Calcs		113.20	7.04	2.67	16.74			12.55				VΑ
1,2,4-Trimethylbenzene				0.29	-	7.76		242.43	34.81	38.46	;		-	NA
2,2,4-Trimethylpentane								•						NA
2,4-Dimethylphenol	`													NA
Acetone	67-64-1							0.02	0.00	0.00				NA
Carbonyl sulfide	4			3.61		0.20		3.21		0.51		0.58		NA
Cumene	98-82-8			2.74	-	34.79		43.27	6.21	6.87	44.85			NA
Cyclohexane	110-82-7	See FCCU (W) Calcs	1.29		-	-		60.0		0.01	0.09		0.04	NA
Ethylene	74-85-1	See FCCU (W) Calcs			-	1.07		0.47		0.07	0.49			NA
Isoprene	78-79-5	See FCCU (W) Calcs		0.12			2.25	1.98	0.78	0.78				NA
Phenanthrene			-	-		-		-	-	-		0.02		
Benz[a]anthracene	56-55-3			-	-	-	-	-		-		0.05	-	
Chrysene	218-01-9			-	-	-		-		-		0.05	-	
Benzo[b]fluoranthene	.,		-		-	-		-		-		0.01	-	
Benzo(a)pyrene	50-32-8		-	-						-		0.00	-	-
Dibenzo[a,h]anthracene 53-70-3	53-70-3	-	:	-						-				-

Notes:
1) Coker Bottom Heads project will not affect fugitive component emissions.
2) ATS plant project fuglitive components are not expected to contain VOC in the process streams.
3) Sulfuric Acid Regeneration Plant project fuglitive components are not expected to contain VOC in the process streams.

Tesoro Los Angeles Refinery Integration and Compliance Project Appendix A: Summary of Emissions

Table A-17: Carson Storage Tank Emissions

CRUDE TANKS

Number of New Tanks:	9												
Tank 500,000 BBL - New (Ibs/year Each Tank)	tch Tank)												
										Dibenzo(a			
			Benzo(a)a	a Benzo(a)p	Benzo(b)fluora				Cyclohexa	,h)anthrac	Ethylbenz		
	00 00	Benzene	Benzene nthracene	yrene	nthene	Chrysene	Cresols	Cumene	ne	eue	ene	Ethylene	n-Hexane
Post Project Emissions (lbs/year)	6,844.20	28.58	0.08	0.03	0.17	0.16		1.91		0.01	13.42		136.23

OTHER TANKS (INCREASED UTILIZATION)

						0.60											0.02						306.66	Post Project Emissions (lbs/year): Emissions Increase (lbs/year):
	•				-	0.00	-								-		00.00				·		0.30	Baseline Emissions (lbs/day)
	-					0.21		-	-				-	-	-		0.01		-				109.82	Baseline Emissions (lbs/year)
						0.25									-		0.01						130.32	2013
						0.17	-	-	-				-	-									89.32	2012
	(mixed)	enzene	penzene	Toluene	Propylene	Phenanthrene	Je P	Methanol	Isoprene	Sulfide	n-Hexane	Ethylene	ene	ene	ne	Cumene	Cresols	Chrysene	nthene	yrene	nthracene	Benzene	VOC	
	Xylenes	Trimethylk	Trimethyl				Naphthale	_		Hydrogen			Ethylbenz	,h)anthrac Eth	Cyclohexa				Benzo(b)fluora	Benzo(a)p	Benzo(a)a			
		2,2,4	1,2,4											Dibenzo(a										

 Post Project Emissions (busylear)
 306.66
 .
 0.02
 .

 Tank will not be physically modified or require permitting with the SCAQMO; however, tank will likely experience an increase in utilization as a result of the project.

Propylene Methanol Hydrogen Sulfide n-Hexane Ethylbenz ene 1.83 Sumene Benzo(b)fluora nthene Benzo(a)p | yrene Benzo(a)a nthracene Tank 31 (Ibs/year) - Domed External Floating Roof Tank

1,2,4 Trimethyl benzene

Tank 62 (lbs/year) - Fixed Roof Tank on VRS

									-	Dibenzo(a											1,2,4	2,2,4	
			Benzo(a)a B	Benzo(a)p B	Benzo(b)fluora				Cyclohexa,	,h)anthrac	Ethylbenz		_	Hydrogen		ž	aphthale				Trimethyl	Trimethylb X	Xylenes
	200	Benzene	nthracene y	yrene n	nthene	Chrysene	Cresols	Cumene	ne	e ene	ene E	Ethylene n-	-Hexane	Sulfide	Isoprene Me	Methanol ne	Δ.	henanthrene	Propylene	Toluene	penzene	u) euzene	mixed)
2012	2 66.22	1.87							90.0		0.20		1.85							4.35	0.04		1.10
2013	142.69	4.40					-	0.01	0.13		0.47		4.38		-			-	-	10.16	0.09	0.01	2.19
Baseline Emissions (lbs/year)	104.46	3.14						0.01	0.10		0.34		3.12		-				-	7.26	0.07	0.01	1.65
Baseline Emissions (lbs/day)	0.29	0.01		-		,		00'0	0.00		0.00		0.01					-	-	0.02	0.00	0.00	0.00
Post Project Emissions (lbs/year):	6,521.09	157.50		-				0.28	4.80		16.25		158.18				0.01		-	356.60	2.98	0.26	76.93
Emissions Increase (lbs/year):	6,416.63	154.37		-		,		0.28	4.70		15.92		155.06				0.01	-	-	349.34	2.91	0.25	75.28

Emissions increase (tbs/year) 646.63 154.37 - 0.28 4.80 A70 Trank will not be physically modified or require permitting with the SCAQMD; however, tank will likely experience an increase in utilization as a result of the project "VRS control efficiency conservatively estimated at 99%.

Tank 63 (lbs/year) - Fixed Roof Tank on VRS

									_	DIDELIZO(a										4	1,1,1	_	
			Benzo(a)a	Benzo(a)p	Benzo(b)fluora				Cyclohexa,	,h)anthrac	Ethylbenz		_	Hydrogen		Ž	Vaphthale			É	Trimethyl Trim	Trimethylb Xyk	enes
	800	Benzene	nthracene	yrene	nthene	Chrysene	Cresols	Cumene	ne ,	ene	ene	Ethylene n-	-Hexane S	Sulfide	Isoprene M	Methanol ne		Phenanthrene F	Propylene T	Toluene ber	penzene enzene		mixed)
2012	12 71.80	2.06							90.0		0.23		2.03							4.83	0.04		1.24
2013	151.35	4.80						10.0	0.14		65.0		4.75							11.22	0.10	0.01	2.45
Baseline Emissions (lbs/year)	r) 111.58	3.43	-					0.01	0.10		0.38	<u> </u>	3.39		ŀ	ŀ				8.03	0.07	0.01	1.85
Baseline Emissions (lbs/day)	y) 0.31	0.01						0.00	0.00		00'0		0.01							0.02	0.00	0.00	0.01
Post Project Emissions (lbs/year)	(-): 6,944.84	154.27	-					0.28	4.79		16.23	<u> </u>	157.94		ŀ	ŀ	0.01			356.06	2.97	0.26	76.81
Emissions Increase (lbs/year):	(-): 6,833.26	150.84						0.28	4.69		15.85		154.55				0.01			348.04	2.90	0.25	74.97
*Tenk will not be abveicelly modified or require permitting with the SCAOMD: however, tenk will likely experience an	yr radilira parm	thing with the	SCAOMD	however to	ave yledil liw da	erience an incre	ace in utilize	increase in utilization as a result of the project	uit of the pr	togic.													ĺ

*Tank will not be physically modified or require permitting **VRS control efficiency conservatively estimated at 99%

Tesoro Los Angeles Refinery Integration and Compliance Project Appendix A: Summary of Emissions

Table A-17: Carson Storage Tank Emissions

)ibenzo(a	į									1,		
	(b)fluora				Š	Cyclohexa ,h)anthrac	ac Ethylbenz	zı		Hydrogen		_	aphthale				Trimethyl Trimethylb	^
Je.	Chrysene	Chrysene	C	resols	Cumene ne	ene	ene	Ethylene	e n-Hexane	Sulfide	Isoprene	Methanol	ne F	Phenanthrene	Propylene To	oluene	penzene enzene	(mixed)
					0.03		- 0.01			-			-			-	- 123.21	.21
					90.0		- 0.02			-		-	0.01	-	-		0.01 166.00	.00 0.02
-					0.05	-	0.02			-		-	0.01	-	-	-	0.01 144.61	.61 0.01
					0.00			- 0000					0.00				0.00	0.40 0.00

2,2,4 Trimethylb Xylenes enzene (mixed) 1,2,4 Trimethyl T benzene Propylene Methanol n-Hexane Ethylene Dibenzo(a ,h)anthrac Ethylbenz ene ene Benzo(a)p | yrene Benzo(a)a nthracene Tank 502 (Ibs/year) - Fixed Roof Tank

1,2,4
Trimethyl Dibenzo(a ,h)anthrac Ethylbenz ene Benzo(b)fluora fank 959 (lbs/year) - Fixed Roof Tank on VRS

TOTAL PROJECT EMISSIONS INCREASE

									QIQ	euzo(a											1,2,4	2,2,4	
		Ber	Benzo(a) a Be	Benzo(a)p B	Benzo(b)fluora			O	Syclohexa h)a	anthrac Et	nylbenz		Î	drogen		_	Vaphthale				Trimethyl Ti	rimethylb X	ylenes
<u>γ</u>	VOC Benzen	9	nthracene yren	m	nthene C	Chrysene	Cresols	Cumene	eue eue	ene	击	ylene n-H	Hexane Su	al lis	Soprene	ethanol	ne P	Phenanthrene	Propylene	Toluene	penzene en:) euez	mixed)
nissions (lbs/year):	15,319.69 12	12.28					1.30	90'0	69.0		2.16		9.14		0.37		0.05	0.43	2.33	29.85	0.40	144.63	9.78
Emissions (lbs/year):	79,873.48 491	1.33	0.48	0.18	1.02	96.0	1.77	12.13	10.61	90.0	116.81		,138.89	74.64	0.75		14.37	98.0	4.90	#######	7.12	146.09	597.33
missions Increase (lbs/year):	64,553.79 479	479.05	0.48	0.18	1.02	96.0	0.47	12.07	9.93	90.0	114.65	- 1	,129.76	74.64	0.38		14.32	0.44	2.58	######	6.72	1.46	587.55
Emissions Increase (lbs/day):	176.86	1.31	0.00	0.00	0.00	00.00	0.00	0.03	0.03	0.00	0.31		3.10	0.20	0.00		0.04	00.00	0.01	2.87	0.02	0.00	1.61

^{**} EPA TANKS 4.0.9d was used to estimate emissions from storage tanks; all inputs and calculations were performed in accordance with the User's Guide to TANKS. **

Tesoro Los Angeles Refinery Integration and Compliance Project Attachment A: Summary of Emissions

Table A-19: Characteristic Stream Speciations

11 RS108	ha Jet Cut Bottoms	is- speciations- ds 13.xls		3 0.63520		3 0.01820				_	3 1.30140			0.00200		9 4.73870		3 0.63360							4	3 07500				0.00200		1 95790						
RS101	Sour Naphtha Gasoline	speciations-	wt%	0.21778	0.00487	0.63233	•	•			1.58978				0.01656	2.62429		0.14333	1	,	•	•	0.08747	1	'	0.00233			•			0.70307	1.08067					
RS099	Sweet Pentane- Isopentane	speciations-	wt%			0.00000										0.00800		-					0.02892			0.00130				- 0000	0.00400	0.0000	-					
Hybrid APPC656RS030 RS006	Max of Propylene & Sweet Butanes & Refinery Propane (Stream (C2-C4)	Hybrid	wt%		0.08000						0.00467					0.00100			0.02281		-	0.03186				0.00433			-	- 00 00	00.00							,
Hybrid RS030RS099RS 123	Max of Refinery Propane Stream (C2-C4) & Sweet Pentane-Isopentane & Iso-Octene	Hybrid	%1w		0.00007	0.00900										0.00800			0.02281			0.03186	0.02892			0.00130			-	- 60000	0.00430	00800	-			-		
RS030	Refinery Propane Stream (C2-C4)	Winbliss Speciations- 13.xls	wt%		0.00007								'		-	-		-	0.02281	-		0.03186								- 00400	0.00+30							
RS022	Sour Refinery Gas	Winbliss Speciations- 13.xls & MSDS	wt%		0.03791								'	-		-			0.00898			0.05816				0 50000		-		- 0000	0.01340					-		
RS008	Plant Hydrogen	Winbliss Speciations- 13.xls & MSDS	wt%		0.00497								'		-	-			0.00117			0.22044				1 0000				- 0000	0.00343		,					
Hybrid RS006RS030	Max of Sweet Butanes &	Hybrid	wt%		0.08000						0.00467				-	0.00100										0.00433				- 00000	0.00000							•
RS006	Sweet Butanes	speciations-	wt%		0.08000						0.00467		'	-		0.00100										0.00433		-		- 0000	0.00000					-		
Hybrid RS004RS119	Max of Refinery Fuel Gas (C1-C5) & Naphtha/H2 Mixed Phase Refinery Stream	Hybrid	wt%		0.01155				- 000	0.00050	0.10340					1.63059			0.16832			0.02264				0.75000				- 0000	0.09304	4 88385	15.00000					
Naphtha Ison RS004	Refinery Fuel Gas (C1-C5)	Winbliss Speciations- 13.xls & MSDS	wt%		0.01155				. 000	0.00050			'		-	-			0.16832			0.02264				0.75000				- 0000	4000000	0.02750	-					
APPC878	B-B Stock	Winbliss Speciations- 13.xls	wt%		0.17801							- 0000	0.00040			-		-	0.00206			0.00005								- 0	0.02300							
Propane C3 Splitter	Propane C3 Splitter	Engineering Estimate	wt%		0.00010							- 0000			-	-		1	0.08300		1	0.03800								- 0000	0.00900							
¥	N A	NA	wt%									1	'	-	-	-		-	,														,	,	,			
CCT (updated)	CCT (updated)	Wort case analysis of crudes - Updated 2019	wt%					-			0.47200	1	+		0.04370	-		0.30100	-			0.0045	-		' '	1 91100			-			1 18500	1.60000	0.00185	0.00369	0.00399	0.00074	0.00025
ССТ	ОСТ	Wort case analysis of crudes (Sept 2014)	wt%			,					0.47200				0.04370	-		0.27500		,					' 1100	0.05500						0.84800	1.18000	0.00185	0.00369	0.00399	0.00074	0.00025
APPC656	Propylene	MSDS	wt%					-				1	+		-	-		-	-				1			. .			-	- 00 00	24.450	+	,					
MSDS Number	Stream Name	Data Source	CAS No.	95-63-6	106-99-0	540-84-1	105-67-9	75-07-0	67-64-1	7664-41-7	71-43-2	67-66-3	1-00-00+	1319-77-3	98-82-8	110-82-7	111-42-2	100-41-4	74-85-1	107-21-1	74-90-8	7783-06-4	78-79-5	67-56-1	1634-04-4	110-54-3	44	0611	85-01-8	108-95-2	127-18-4	108-88-3	1330-20-7	56-55-3	218-01-9	205-99-2	50-32-8	53-70-3
MSD	Stre	ă	Chemical	1,2,4-Trimethylbenzene	1,3-Butadiene	2,2,4-Trimethylpentane	2,4-Dimethylphenol	Acetaldehyde	Acetone	Ammonia	Benzene	Chloroform	Cresols (mixtures of) (cresolic	acid) (miximes or) (cresying	Cumene	Cyclohexane	diethanolamine	Ethylbenzene	Ethylene	Ethylene Glycol			Isoprene	Methanol	Methyl tert-butyl ether	Naphthalene n-Hexane	PAHs, total, with individ.	components also reported	Phenanthrene	Phenol	Topological	Tolliene	Xvlenes (mixed)	Benzfalanthracene	Chrysene	Benzo[b]fluoranthene	Benzo[a]pyrene	Dibenzofa hlanthracene

Tesoro Los Angeles Refinery Integration and Compliance Project Attachment A: Summary of Emissions

Table A-19: Characteristic Stream Speciations

120 RS123 RS140 RS140APPC6 RS197 RS203 RS206 RS206RS90 RS206RS90 RS208RS90 RS208RS90
Sour NaphthairP2 Sweet Distillate Max of Unisabled Tessified FireDect Order Street Ossillate Street Ossillate Proppiere 8, Grudb Oll Bitms). Light Cybe Oll Washinz Washinz Charles Gassine Proppiere 8, Grudb Oll Bitms). Light Cybe Oll Washinz Charles Char
Windless speciations- speciations- 13.48 Toxic Studies Toxic Studies Toxic Studies Toxic Studies Toxic Studies Toxic Studies
%/M %/M %/M %/M %/M %/M
- 1.84459 1.84459 0.12911 0.62433 0.41600
5.65395 5.65395 0.00039 -
0.10340 - 0.82809 0.82809
- 0.00040
0.00500 0.00500 0.00050 0.00500 0.00500
- 0.07491 0.07491
1.63059 - 1.00918 0.51380
- 1.20273 1.20273 0.13140 0.07433 0.00200
- 0.00206
0.00005
600000
- 0.17430 0.17430 0.06800 3.65700 0.28000
0.14586 - 1.32045 1.32045 1.07333 -
- 0.20100 -
0.00230 0.31740
80.83443
85 - 7.21341 7.21341 0.38463 0.02633 -
- 4.82736 4.82736 0.63467

Tesoro Los Angeles Refinery Integration and Compliance Project Appendix A: Summary of Emissions

Table A-28: Storage Tank 35 Emissions Summary

		Baselin	ine (Ibs/	e (Ibs/year)¹			Post Proj	Post Project (lbs/year) ²	ear)²		Increase ³
		2012	2013	Average	Gasoline	Diesel	Jet	Gas Oil	Wastewater	Maximum	(lbs/year)
700	CAS	93.78	80.84	87.31	2,966.50	893.93	864.38	964.42	2,091.23	2,966.50	2,879.19
Benzene	71432			-	11.95	0.01				11.95	11.95
1,2,4 Trimethylbenzene	92936	0.54	0.45	0.50	12.91	6.54	4.78			12.91	12.42
2,2,4 Trimethylpentane	25551137			-	60.94					60.94	60.94
1,3-Butadiene	106990			-	20'0					0.07	0.07
Cresols (Mixtures of)	1319773			-	0.04	0.06	0.04	0.05		90.0	90.0
Cyclohexane	110827			-	13.49					13.49	13.49
Ethylbenzene	100414	0.77	09:0	69'0	08'6	0.14	4.57			9.80	9.12
Isoprene	78795			-	0.48					0.48	0.48
n-Hexane	110543			-	25.52					25.52	25.52
Methanol	67561			-	0.01					0.01	0.01
Phenanthrene	85018			-		0.87		96.0		96.0	96'0
Phenol	108952			•	0.04	0.07	0.04			0.07	0.02
Naphthalene	91203	0.68	0.58	0.63	1.23	0.51	12.91			12.91	12.28
Propylene (Propene)	115071			-	0.03					0.03	0.03
Toluene	108883			-	99'99	0.17				66.55	66.55
Xylenes (Mixed Isomers)	1330207	0.71	0.56	0.64	50.22	09.0	4.96			50.22	49.59
Ammonia	7664417			-					0.02	0.02	0.05
Cumene	98828	0.62	0.50	0.56	0.55		4.87			4.87	4.31

¹⁾ Baseline year data as reported in the SCAQMD 2012 and 2013 Annual Emissions Reports.

²⁾ Post project emissions based on TANKS 4.09b emissions estimates for 1 million barrels per month.

³⁾ Increase is calculated based on the "maximum" of the post project estimated emissions minus the average of the reported 2012/2013 emissions.

[This page intentionally left blank.]

ATTACHMENT B: STORAGE TANK 35 AND CCT EMISSIONS CALCULATIONS

EPA TANKS 4.0.9d reports for Storage Tank 35 and Carson Crude Terminal Tanks have been included with this Addendum. The remaining items from Attachment B of the Air Quality Analysis provided in the May 2017 LARIC project FEIR are unaffected by this Addendum.

[This page intentionally left blank.]

							_
Δ	n	n	Δ	n	a	ix	1
$\overline{}$	v	v	◡	ш	u	_	\mathbf{L}

Storage Tank 35 Emission Calculations

[This page intentionally left blank.]

TANKS 4.0 Report

Tank Indentification and Physical Characteristics **Emissions Report - Detail Format TANKS 4.0.9d**

ion

035 (2004 Diesel @ 1MM bbl/mo)	Carson	California	Tesoro	Domed External Floating Roof Tank		
User Identification:	City:	State:	Company:	Type of Tank:	Description:	

135.00	4,200,000.00	120.00
Diameter (ft):	Volume (gallons):	Turnovers:

135.00 4,200,000.00 120.00	
	Light Rust White/White Good
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers:	Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition

	Double Deck	Detail
Roof Characteristics	Type:	Fitting Category

Tank Construction and Rim-Seal System

Riveted	Mechanical Shoe	Rim-mounted
Construction:	Primary Seal:	Secondary Seal

Dook Eiking/Chain
Deck Fittilly status
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed
Automatic Gauge Float Well/Bolted Cover, Gasketed
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.
Roof Drain (3-in. Diameter)/90% Closed
Roof Leg (3-in. Diameter)/Fixed
Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.
Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.

--8---

Quantity

Meterological Data used in Emissions Calculations: Los Angeles C.O., California (Avg Atmospheric Pressure = 14.67 psia)

11/2/2017

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

035 (2004 Diesel @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

		6	o dingi Lylic	1	Liquid				2000/		2000/		
		Te T	Temperature (deg F)	leg F)	Temp	Vapo	Vapor Pressure (psia)	psia)	Mol.	Mass	Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
TK 957 - RS207 Distillate with Sulfur	Jan	63.80	59.36	68.25	62.39	0.0160	N/A	N/A	130.0000			160.00	Option 1: VP60 = .016 VP70 = .016
1,2,4-Trimethylbenzene						0.0238	A/A	ΑN	120.1900	0.0073	0.0133	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1.2965	A/A	N/A	78.1100	0.0000	0.0008	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cresols (mixed isomers)						0.0013	A/A	Ν	108.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175
Ethylbenzene						0.1237	A/A	ΑN	106.1700	0.0001	0.0014	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Naphthalene						0.0051	A/A	Ν	128.1700	90000	0.0002	128.17	Option 3: A=47362, B=7.927
Phenanthrene						0.0000	A/A	Ν	178.2300	0.0010	0.0000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447
Phenol						0.0091	A/A	Ν	94.1100	0.0001	0.0001	94.11	Option 3: A=49644, B=8.587
Toluene						0.3712	A/A	N/A	92.1300	0.0002	0.0044	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						0.0157	A/A	Ν	130.6485	0.9901	0.9751	160.50	
Xylenes (mixed isomers)						0.0978	A/A	N/A	106.1700	0.0006	0.0048	106.17	Option 2: A=7.005, B=1466, C=215
TK 957 - RS207 Distillate with Sulfur	Feb	64.91	60.15	69.67	62.99	0.0160	A/A	Ν	130.0000			160.00	Option 1: VP60 = .016 VP70 = .016
1,2,4-Trimethylbenzene						0.0248	A/A	Ν	120.1900	0.0073	0.0139	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1.3361	A/A	N/A	78.1100	0.0000	0.0008	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cresols (mixed isomers)						0.0014	A/A	Ν	108.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175
Ethylbenzene						0.1285	A/A	Ν	106.1700	0.0001	0.0014	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Naphthalene						0.0053	A/A	N/A	128.1700	0.0006	0.0002	128.17	Option 3: A=47362, B=7.927
Phenanthrene						0.0000	A/A	Ν	178.2300	0.0010	0.0000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447
Phenol						0.0095	A/A	Ν	94.1100	0.0001	0.0001	94.11	Option 3: A=49644, B=8.587
Toluene						0.3840	A/A	Ν	92.1300	0.0002	0.0046	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						0.0157	A/A	Ν	130.6736	0.9901	0.9740	160.50	
Xylenes (mixed isomers)						0.1017	A/A	Ν	106.1700	900000	0.0050	106.17	Option 2: A=7.005, B=1466, C=215
TK 957 - RS207 Distillate with Sulfur	Mar	65.68	69.09	70.68	62.99	0.0160	A/A	Ν	130.0000			160.00	Option 1: VP60 = .016 VP70 = .016
1,2,4-Trimethylbenzene						0.0256	Α/N	Ν	120.1900	0.0073	0.0143	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1.3645	Α/N	ΑN	78.1100	0.0000	0.0008	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cresols (mixed isomers)						0.0015	A/A	Ν	108.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175
Ethylbenzene						0.1319	A/A	Ν	106.1700	0.0001	0.0015	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Naphthalene						0.0055	A/A	Ν	128.1700	9000.0	0.0002	128.17	Option 3: A=47362, B=7.927
Phenanthrene						0.0000	A/A	Ν	178.2300	0.0010	0.0000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447
Phenol						0.0098	A/A	Ν	94.1100	0.0001	0.0001	94.11	Option 3: A=49644, B=8.587
Toluene						0.3932	A/A	Ν	92.1300	0.0002	0.0047	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						0.0157	A/A	Ν	130.6918	0.9901	0.9733	160.50	
Xylenes (mixed isomers)						0.1044	A/A	ΑN	106.1700	900000	0.0051	106.17	Option 2: A=7.005, B=1466, C=215
TK 957 - RS207 Distillate with Sulfur	Apr	67.37	61.82	72.91	62.99	0.0160	A/A	Ν	130.0000			160.00	Option 1: VP60 = .016 VP70 = .016
1,2,4-Trimethylbenzene						0.0273	N/A	N/A	120.1900	0.0073	0.0152	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1.4276	A/A	Ν	78.1100	0.0000	0.0009	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cresols (mixed isomers)						0.0016	A/A	N/A	108.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175
Ethylbenzene						0.1396	A/A	Ν	106.1700	0.0001	0.0016	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Naphthalene						0.0058	A/A	N/A	128.1700	900000	0.0003	128.17	Option 3: A=47362, B=7.927
Phenanthrene						0.0000	A/A	N/A	178.2300	0.0010	0.0000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447
Phenol						0.0104	A/A	Ν	94.1100	0.0001	0.0001	94.11	Option 3: A=49644, B=8.587
Toluene						0.4136	A/A	Ν	92.1300	0.0002	0.0049	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						0.0157	A/N	Ν	130.7327	0.9901	0.9717	160.50	
Xylenes (mixed isomers)						0.1106	A/A	ΑN	106.1700	0.0006	0.0054	106.17	Option 2: A=7.005, B=1466, C=215

Option 1: VP60 = .016 VP70 = .016 Option 2: A=7.04383, B=1573.267, C=208.56 Option 2: A=7.04383, B=1211.033, C=220.79 Option 2: A=6.905, B=1211.033, C=220.79 Option 2: A=6.905, B=124.255, C=213.21 Option 3: A=6.905, B=7.927 Option 1: VP60 = .00000447 VP70 = .0000447 Option 3: A=4.9644, B=8.587 Option 2: A=6.954, B=1344, 8, C=219.48 Option 2: A=7.005, B=1466, C=215	Option 1; VP70 = .016 VP80 = .016 Option 2: A=7.04383, B=1573.267, C=208.56 Option 2: A=7.04383, B=1573.267, C=208.56 Option 2: A=7.151, B=1601, C=175 Option 3: A=6.975, B=1424.255, C=213.21 Option 3: A=47362, B=7.297 Option 1: VP70 = .00000447 VP80 = .00000447 Option 2: A=6.954, B=1344.8, C=219.48 Option 2: A=6.954, B=1466, C=215	Option 1: VP70 = .016 VP80 = .016 Option 2: A=7.04383, B=1573.267, C=208.56 Option 2: A=7.141, B=1601, C=175 Option 2: A=6.905, B=121,1033, C=20.79 Option 2: A=6.975, B=1424.255, C=213.21 Option 3: A=4.7362, B=7.927 Option 1: VP70 = .00000447 VP80 = .0000447 Option 3: A=4.944, B=8.587 Option 2: A=6.948, B=1344, 8, C=219.48 Option 2: A=7.005, B=1466, C=215	Option 1: VP70 = .016 VP80 = .016 Option 2: A=7.04383, B=1573.287, C=208.56 Option 2: A=7.04383, B=1573.287, C=208.56 Option 2: A=6.905, B=1211.033, C=220.79 Option 2: A=6.975, B=1424.255, C=213.21 Option 3: A=47362, B=7.927 Option 1: VP70 = .00000447 VP80 = .00000447 Option 3: A=49644, B=1.887 Option 2: A=6.954, B=1344.8, C=219.48 Option 2: A=7.005, B=1466, C=215 Option 2: A=7.005, B=1466, C=215 Option 2: A=7.005, B=1406, C=215	Option 2: A=7.04383, B=1573.267, C=208.56 Option 2: A=7.04383, B=1573.267, C=202.79 Option 2: A=6.905, B=1471.033, C=220.79 Option 2: A=7.151, B=1601, C=175 Option 3: A=47362, B=7.927 Option 3: A=49644, B=8.587 Option 3: A=49644, B=8.587 Option 2: A=6.964, B=18.87 Option 2: A=6.964, B=1673.267, C=208.56 Option 1: VP0 0= .016 VP70 = .016 Option 1: VP60 = .016 VP70 = .016 Option 2: A=6.965, B=1571.267, C=208.56 Option 2: A=6.965, B=1571.033, C=220.79 Option 2: A=6.965, B=1424.255, C=213.21
160.00 120.19 78.11 108.14 1128.17 178.23 92.11 160.50	160.00 120.19 78.11 108.14 106.17 128.17 178.23 94.11 92.13	160.00 120.19 78.11 108.14 1128.17 178.23 94.11 92.13 160.50	160.00 120.49 108.14 106.17 128.17 178.23 94.11 92.13 160.50 160.00	78.11 108.14 106.17 178.23 178.23 92.13 160.50 120.19 178.11 178.11 160.10 120.19 178.11
0.0160 0.0009 0.0000 0.0003 0.0000 0.0001 0.0051 0.0056	0.0172 0.0010 0.0000 0.0017 0.0003 0.0001 0.0001 0.0064	0.0187 0.0010 0.0000 0.0003 0.0000 0.0000 0.0658 0.9658	0.0187 0.0010 0.0000 0.0003 0.0003 0.0001 0.0005 0.0058 0.0058	0.00179 0.0010 0.0010 0.0018 0.0003 0.0005 0.0056 0.0062 0.0062 0.0063 0.0063 0.0069
0.0073 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002	0.0073 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.9901	0.0073 0.0000 0.0001 0.0001 0.0001 0.0002 0.9901	0.0073 0.0000 0.0001 0.0001 0.0010 0.0001 0.0002 0.9901 0.0006	0.00073 0.00000 0.00001 0.00001 0.00001 0.00002 0.00003 0.00003 0.00003 0.00001 0.00001 0.00001 0.00001 0.00001
130,0000 120,1900 78,1100 108,1400 1128,1700 178,2300 94,1100 92,1300 130,7650	130.0000 120.1900 78.1100 108.1400 106.1700 128.1700 178.2300 94.1100 92.1300 130.8131	130,0000 120,1900 78,1100 106,1700 1128,1700 1178,2300 92,1100 92,1300 130,8765	130,0000 120,1900 78,1100 108,1400 106,1700 128,1700 94,1100 92,1300 130,8800 106,1700	120.1900 78.1100 106.1700 1128.1700 178.2300 92.1300 130.8462 106.1700 120.1900 78.1100 106.1700
4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2	N N N N N N N N N N N N N N N N N N N	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 6 4 2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2	X X X X X X X X X X X X X X X X X X X
0.0160 0.0287 1.4769 0.0017 0.0061 0.0000 0.0109 0.4297 0.0156	0.0160 0.0307 1.5491 0.0019 0.0065 0.0000 0.0117 0.4533	0.0160 0.0334 1.6426 0.0022 0.0071 0.0000 0.0128 0.4842 0.0156	0.0160 0.0336 1.6477 0.0022 0.1671 0.0071 0.0128 0.0128 0.0155 0.0155	0.0321 1.5981 0.0020 0.1608 0.0000 0.0123 0.4695 0.0156 0.0295 1.5065 1.5065
65.99	65.99	65.99	65.99	65.99
73.97	76.03	78.87	78.64	74.33
63.30	64.85	66.46	66.93	64.44
6.864	44.07	72.67	72.78	9938
May	E C	II.	Aug Sep	Ogt
TK 957 - RS207 Distillate with Sulfur 1.2,4-Trimethylbenzene Benzene Cresols (mixed isomers) Ethylbenzene Naphthalene Phenanthrene Phenol Toluene Unidentified Components Xylenes (mixed isomers)	TK 957 - RS207 Distillate with Suffur 1.2,4-Trimethylbenzene Benzene Cresols (mixed isomers) Ethylbenzene Naprithalene Phenaltrene Phenol Tolluene Unidentified Components Xvierses (mixed isomers)	TK 957 - RS207 Distilate with Sulfur 1.2,4-Trimethylbenzene Benzene Cresols (mixed isomers) Ethylbenzene Naphthalene Phenanthrene Phenol Toluene Unidentified Components Xyleres (mixed isomers)	TK 957 - RS207 Distillate with Sulfur 1.2.4-frimethylbenzene Benzene Gresols (mixed isomers) Ethylbenzene Naphthalene Phenanthrene Phenol Toluene Unidentified Components Xylenes (mixed isomers) TK 957 - RS207 Distillate with Sulfur	1.2.4-Trimethylbenzene Benzene Cresols (mixed isomers) Ethylbenzene Naphthalene Phenal Toluene Unidentified Components Xylenes (mixed isomers) TK 957 - RS207 Distillate with Sulfur 1.2.4-Trimethylbenzene Benzene Cresols (mixed isomers) Ethylbenzene Ethylbenzene

TANKS 4.0 Report

11/2/2017

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

035 (2004 Diesel @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

Month:	January	February	March	April	Max	June	VIUL	August	September	October	November	December
Rim Seal Losses (lb): Seal Factor A (lb-moleff-yr): Seal Factor B (lb-moleff-yr): Average Wind Speed (mph): Seal-related Wind Speed Exponent: Value of Vapor Pessure Function: Vance Description of Pails Association:	0.438 1.1000 0.3000 0.0000 1.5000 0.0003	0.4388 1.1000 0.3000 0.0000 1.5000	0.4388 1.1000 0.3000 0.0000 1.5000	0.4388 1.1000 0.3000 0.0000 1.5000	0.4388 1.1000 0.3000 0.0000 1.5000	0.4388 1.1000 0.3000 0.0000 1.5000	0.4388 1.1000 0.3000 0.0000 1.5000	0.4388 1.1000 0.3000 0.0000 1.5000	0.4388 1.1000 0.3000 0.0000 1.5000	0.4388 1.1000 0.3000 0.0000 1.5000	0.4388 1.1000 0.3000 0.0000 1.5000	0.4388 1.1000 0.3000 1.5000 0.0003
who it is a consultation and a consultation of the consultation of	0.0160 135.0000 130.0000 1.0000	0.0160 135.0000 130.0000 1.0000	0.0160 135.0000 130.0000 1.0000	0.0160 135.0000 130.0000 1.0000	0.0160 135.0000 130.0000 1.0000	0.0160 135.0000 130.0000 1.0000	0.0160 135.0000 130.0000 1.0000	0.0160 135.0000 130.0000 1.0000	0.0160 135.0000 130.0000 1.0000	0.0160 135.0000 130.0000 1.0000	0.0160 135.0000 130.0000 1.0000	0.0160 135.0000 130.0000 1.0000
Withdrawal Losses (lb): Net Throughput (gal/mo.): Shell Cingage Factor (bb/1000 sqft): Average Organic Liquid Density (lb/gal): Tank Djameter (ft):	73.9731 42,000,000.000042,0 0.0015 7.0600 135.0000	73.9731 00,000.000042,0 0.0015 7.0600 135.0000	73.9731 00,000.000042,0 0.0015 7.0600 135.0000	73.9731 00,000.00042, 0.0015 7.0600 135.0000	73.9731 000,000.000042, 0.0015 7.0600 135.0000	73.9731 000,000.00042, 0.0015 7.0600 135.0000	73.9731 000,000.00042,0 0.0015 7.0600 135.0000	73.9731 00,000.00042,0 0.0015 7.0600 135.0000	73.9731 000,000.000042,0 0.0015 7.0600 135.0000	73.9731 .00,000.000042,0 0.0015 7.0600 135.0000	73.9731 00,000.000042,0 0.0015 7.0600 135.0000	73.9731 00,000.0000 0.0015 7.0600 135.0000
Roof Fitting Losses (Ib): Value of Vapor Pressure Function: Vapor Molecular Weight (Inflb-mole): Product Factor: Tot, Roof Fitting Loss Fact (Ib-mole/yr): Average Wind Speed (mph):	0.0821 0.0003 130.0000 1.0000 27.7800 0.0000	0.0821 0.0003 130.0000 1.0000 27.7800 0.0000	0.0821 0.0003 130.0000 1.0000 27.7800 0.0000	0.0821 0.0003 130.0000 1.0000 27.7800 0.0000	0.0821 0.0003 130.0000 1.0000 27.7800 0.0000	0.0821 0.0003 130.0000 1.0000 27.7800 0.0000	0.0821 0.0003 130.0000 1.0000 27.7800 0.0000	0.0821 0.0003 130.0000 1.0000 27.7800 0.0000	0.0821 0.0003 130.0000 1.0000 27.7800 0.0000	0.0821 0.0003 130.0000 1.0000 27.7800 0.0000	0.0821 0.0003 130.0000 1.0000 27.7800 0.0000	0.0821 0.0003 130.0000 1.0000 27.7800 0.0000
Total Losses (lb):	74.4940	74.4940	74.4940	74.4940	74.4940	74.4940	74.4940 74.	74.4940	74.4940	74.4940	74.4940	74.4940
Roof Fitting/Status Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed Automatic Gauge-Float Well Blotted Cover, Gasketed Gauge-Hatch/Sample Well (8-in. Diam.)/Melghted Mech. Actuation, Gask. Roof Drain (3-in. Diameter)/Piv6 Closed Roof Leg (3-in. Diameter)/Piv6 Solted Guide-Pole/Sample Well/Gask Siding Covr, w. Float,Sieeve,Wiper Vacuum Breaker (10-in. Diam.)/Welghted Mech. Actuation, Gask. Rim Yent (6-in. Diameter)/Weighted Mech. Actuation, Gask.	ed Mech. Actuation, Gas r, w. Float, Sleeve, Wip ctuation, Gask.	ask. iper		Que	Ouantity 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KFa(lb-mole/yr) 1.60 2.80 0.47 1.80 0.00 11.00 6.20 0.71	NET billing uses reported by the properties of t	0.00 0.02 0.14 0.00 0.02 0.14 0.00 0.00 0.00 0.00	6 6 6 7 6 8 6 7	0.00 0.00 0.97 1.10 0.89 0.94	Losses(lb) 0.1702 0.0993 0.0167 0.0638 0.0000 0.3900 0.2198	

TANKS 4.0.9d
Emissions Report - Detail Format
Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

035 (2004 Diesel @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

			Losses(lbs)		
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
TK 957 - RS207 Distillate with Sulfur	5.27	897.68	0.98	00:00	893.93
1,2,4-Trimethylbenzene	0.08	6.44	0.02	0.00	6.54
Benzene	00:0	0.01	0.00	00:00	0.01
Cresols (mixed isomers)	00:0	0.00	0.00	0.00	0.00
Ethylbenzene	0.01	0.13	0.00	00:00	0.14
Naphthalene	00:00	0.51	0.00	00:00	0.51
Phenanthrene	00:00	0.87	0.00	0.00	0.87
Phenol	00:0	0.07	0.00	0.00	0.07
Toluene	0.03	0.14	0.00	00:00	0.17
Unidentified Components	5.11	878.89	96:0	00:00	884.95
Xylenes (mixed isomers)	0.03	0.56	0.01	0.00	0.60

Tank Indentification and Physical Characteristics **Emissions Report - Detail Format TANKS 4.0.9d**

Identification
icat
ntif
lde

Tesoro Domed External Floating Roof Tank 035 (2004 Gas Oil @ 1MM bbl/mo) California User Identification: City: State: Company: Type of Tank: Description:

135.00 4,200,000.00 120.00 Tank Dimensions
Diameter (ft):
Volume (gallons):
Turnovers:

Light Rust White/White Internal Shell Condition: Shell Color/Shade: Shell Condition Paint Characteristics

Double Deck Detail Roof Characteristics Fitting Category Type:

Mechanical Shoe Rim-mounted Riveted Tank Construction and Rim-Seal System Secondary Seal Construction: Primary Seal:

Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed Automatic Gauge Float Well/Bolted Cover, Gasketed Deck Fitting/Status

Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask. Roof Drain (3-in. Diameter)/90% Closed Roof Leg (3-in. Diameter)/Fixed

Siotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask. Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.

30

Quantity

Meterological Data used in Emissions Calculations: Los Angeles C.O., California (Avg Atmospheric Pressure = 14.67 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

035 (2004 Gas Oil @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

		2	Pulson I valid	4	ridnia Birik				,000/	7	,000/			
		Temp	Dany Liquid Su Temperature (de	ouri. deg F)	Temp	Vapor F	Vapor Pressure (psia)	ia)	Mol.	Mass	Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Мах.	(deg F)	Avg.	Min.	Мах.	Weight.	Fract.	Fract.	Weight	Calculations	
TK 959 - RS307 Gas Oils (C20-C50)	Jan	63.80	59.36	68.25	62.99	0.0100	A/N	N/A	90.0000			400.00	Option 1: VP60 = .01 VP70 = .01	
Cresols (mixed isomers)						0.0013	A/N	`	108.1400	0.0001	0.000.0	108.14	Option 2: A=7.151, B=1601, C=175	
Phenanthrene						0.0000	N/A	`	178.2300	0.0010	0.000.0	178.23	Option 1: VP60 = .00000447 VP70 = .00000447	
Unidentified Components						0.0100	N/A	`	90.0020	0.9990	1.0000	400.55		
TK 959 - RS307 Gas Oils (C20-C50)	Feb	64.91	60.15	29.69	62.39	0.0100	N/A	`	0000.061			400.00	Option 1: VP60 = .01 VP70 = .01	
Cresols (mixed isomers)						0.0014	N/A	N/A	08.1400	0.0001	0.000.0	108.14	Option 2: A=7.151, B=1601, C=175	
Phenanthrene						0.0000	N/A	N/A	78.2300	0.0010	0.000.0	178.23	Option 1: VP60 = .00000447 VP70 = .00000447	
Unidentified Components						0.0100	N/A	N/A	90.0022	0.9990	1.0000	400.55		
TK 959 - RS307 Gas Oils (C20-C50)	Mar	65.68	69.09	70.68	62.99	0.0100	A/N	N/A	90.000			400.00	Option 1: VP60 = .01 VP70 = .01	
Cresols (mixed isomers)						0.0015	A/A	N/A	08.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175	
Phenanthrene						0.0000	N/A	N/A	78.2300	0.0010	0.000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447	
Unidentified Components						0.0100	A/N	`	190.0023	0.9990	1.0000	400.55		
TK 959 - RS307 Gas Oils (C20-C50)	Apr	67.37	61.82	72.91	62.99	0.0100	A/A	N/A	0000.061			400.00	Option 1: VP60 = .01 VP70 = .01	
Cresols (mixed isomers)						0.0016	N/A	N/A	108.1400	0.0001	0.000	108.14	Option 2: A=7.151, B=1601, C=175	
Phenanthrene						0.0000	N/A	N/A	178.2300	0.0010	0.000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447	
Unidentified Components						0.0100	A/A	N/A	90.0025	0.9990	1.0000	400.55		
TK 959 - RS307 Gas Oils (C20-C50)	May	68.64	63.30	73.97	62.99	0.0100	N/A	N/A	00000.06			400.00	Option 1: VP60 = .01 VP70 = .01	
Cresols (mixed isomers)						0.0017	N/A	`	108.1400	0.0001	0.000	108.14	Option 2: A=7.151, B=1601, C=175	
Phenanthrene						0.0000	A/A	`	178.2300	0.0010	0.0000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447	
Unidentified Components						0.0100	N/A	N/A	90.0027	0.9990	1.0000	400.55		
TK 959 - RS307 Gas Oils (C20-C50)	Jun	70.44	64.85	76.03	62.99	0.0100	A/N	N/A	00000.06			400.00	Option 1: VP70 = .01 VP80 = .01	
Cresols (mixed isomers)						0.0019	A/N	N/A	08.1400	0.0001	0.000.0	108.14	Option 2: A=7.151, B=1601, C=175	
Phenanthrene						0.0000	N/A	`	178.2300	0.0010	0.000.0	178.23	Option 1: VP70 = .00000447 VP80 = .00000447	
Unidentified Components						0.0100	N/A	N/A	90.0029	0.9990	1.0000	400.55		
TK 959 - RS307 Gas Oils (C20-C50)	Ιης	72.67	66.46	78.87	62.99	0.0100	A/N	N/A	00000.06			400.00	Option 1: VP70 = .01 VP80 = .01	
Cresols (mixed isomers)						0.0022	N/A	`	08.1400	0.0001	0.000.0	108.14	Option 2: A=7.151, B=1601, C=175	
Phenanthrene						0.0000	N/A	`	178.2300	0.0010	0.000.0	178.23	Option 1: VP70 = .00000447 VP80 = .00000447	
Unidentified Components						0.0100	N/A	N/A	90.0033	0.9990	1.0000	400.55		
TK 959 - RS307 Gas Oils (C20-C50)	Aug	72.78	66.93	78.64	62.39	0.0100	N/A	`	0000.06			400.00	Option 1: VP70 = .01 VP80 = .01	
Cresols (mixed isomers)						0.0022	A/N	`	108.1400	0.0001	0.000.0	108.14	Option 2: A=7.151, B=1601, C=175	
Phenanthrene						0.0000	N/A	`	178.2300	0.0010	0.000.0	178.23	Option 1: VP70 = .00000447 VP80 = .00000447	
Unidentified Components						0.0100	N/A	N/A	90.0033	0.9990	1.0000	400.55		
TK 959 - RS307 Gas Oils (C20-C50)	Sep	71.62	96.39	76.88	62.99	0.0100	N/A	N/A	90.000			400.00	Option 1: VP70 = .01 VP80 = .01	
Cresols (mixed isomers)						0.0020	N/A	N/A	08.1400	0.0001	0.000.0	108.14	Option 2: A=7.151, B=1601, C=175	
Phenanthrene						0.0000	N/A	N/A	78.2300	0.0010	0.000.0	178.23	Option 1: VP70 = .00000447 VP80 = .00000447	
Unidentified Components						0.0100	A/N	N/A	90.0031	0.9990	1.0000	400.55		
TK 959 - RS307 Gas Oils (C20-C50)	Oct	69.38	64.44	74.33	62.99	0.0100	A/A	N/A	90.000			400.00	Option 1: VP60 = .01 VP70 = .01	
Cresols (mixed isomers)						0.0018	N/A	N/A	08.1400	0.0001	0.000.0	108.14	Option 2: A=7.151, B=1601, C=175	
Phenanthrene						0.0000	A/A	N/A	78.2300	0.0010	0.0000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447	
Unidentified Components						0.0100	N/A	N/A	90.0028	0.9990	1.0000	400.55		
TK 959 - RS307 Gas Oils (C20-C50)	Nov	62.38	61.40	70.59	62.99	0.0100	N/A	N/A	90.000			400.00	Option 1: VP60 = .01 VP70 = .01	
Cresols (mixed isomers)						0.0015	A/A	N/A	08.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175	
Phenanthrene						0.0000	A/N	N/A	78.2300	0.0010	0.000.0	178.23	Option 1: VP60 = .00000447 VP70 = .00000447	
Unidentified Components						0.0100	A/A	N/A	90.0023	0.9990	1.0000	400.55		

Option 1: VP60 = .01 VP70 = .01	Option 2: A=7.151, B=1601, C=175	Option 1: VP60 = .00000447 VP70 = .00000447	
400.00	108.14	178.23	400.55
	0.0000	0.0000	1.0000
	0.0001	0.0010	0.9990
190.0000	108.1400	178.2300	190.0020
Α/N	A/A	A/A	A/A
A/A	A/A	A/A	A/A
0.0100	0.0013	0.0000	0.0100
62.99			
68.12			
59.31			
63.72			
Dec			
TK 959 - RS307 Gas Oils (C20-C50)	Cresols (mixed isomers)	Phenanthrene	Unidentified Components

TANKS 4.0 Report

Emissions Report - Detail Format Detail Calculations (AP-42) **TANKS 4.0.9d**

035 (2004 Gas Oil @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Rim Seal Losses (Ib):	0.4007	0.4007	0.4007	0.4007	0.4007	0.4007	0.4007	0.4007	0.4007	0.4007	0.4007	0.4007
Seal Factor A (lb-mole/ft-yr):	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000
Average Wind Speed (mph):	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Seal-related Wind Speed Exponent:	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000
Value of Vapor Pressure Function:	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
Tank Diameter (ft):	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000
Vapor Molecular Weight (lb/lb-mole):	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Withdrawal Losses (Ib):	70 8031	70 8031	70 8031	70 8031	70 8031	708031		70 8031	70 8031	70 8031		70 8031
Net Throughout (gal/mo.):	42 000 000 00042		242	000 000 000 000	7.9.9331	000 000 00042 (000 000 000	- 24	000 000 000 000	000 000 000 000	000 000 000	0000 000 000
Shell Clingage Factor (bbl/1000 soft):	0.0015	ŕ	0.0015	0.0015	0.0015	0.0015		1	0.0015	0.0015	2	0.0015
Average Organic Liquid Density (Ib/gal):	7 6250	7 6250	7.6250	7 6250	7 6250	7.6250	7 6250		7 6250		7 6250	7 6250
Tank Diameter (#):	135 0000	135 0000	135 0000	135 0000	135 0000	135,0000	135 0000	135 0000	135 0000	135 0000	135 0000	135 0000
din Danielo (ii):	0000		200	2000	200							
Roof Fitting Losses (lb):	0.0750	0.0750	0.0750	0.0750	0.0750	0.0750	0.0750	0.0750	0.0750	0.0750	0.0750	0.0750
Value of Vapor Pressure Function:	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Vapor Molecular Weight (Ib/Ib-mole):	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000	190.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800
Average Wind Speed (mph):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total Losses (lb):	80.3687	80.3687	80.3687	80.3687	80.3687	80.3687	80.3687	80.3687	80.3687	80.3687	80.3687	80.3687
							Roof Fitting Loss Factors	Factors				
Roof Fitting/Status				Qua	Quantity	KFa(Ib-mole/yr)	KFb(lb-mole/(yr mph^n)	. mph^n))		٤	(qı)səsso	
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	keted				8	1.60		00:00		00.0	0.1554	
Automatic Gauge Float Well/Bolted Cover, Gasketed	keted				_	2.80		0.00	0	00.0	0.0907	
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	ted Mech. Actuation, Gas	sk.			-	0.47		0.02	0	76.0	0.0152	
Roof Drain (3-in. Diameter)/90% Closed					τ-	1.80		0.14		.10	0.0583	
Roof Leg (3-in. Diameter)/Fixed					30	0.00		0.00	0	00.0	0.0000	
Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper	Sovr, w. Float, Sleeve, Wip	per			-	11.00		06.6	0	.89	0.3562	
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask	ı. Actuation, Gask.				- -	6.20		1.20		0.94	0.2008	
Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask	ation, Gask.				-	0.71		0.10		00.	0.0230	

Emissions Report - Detail Format Individual Tank Emission Totals TANKS 4.0.9d

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

035 (2004 Gas Oil @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

			Losses(lbs)		
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
TK 959 - RS307 Gas Oils (C20-C50)	4.81	958.72	06:0	0.00	964.42
Cresols (mixed isomers)	0.00	0.05	00:00	00:0	0.02
Phenanthrene	00:0	0.96	00:00	0.00	0.96
Unidentified Components	4.81	957.71	06:0	0.00	963.42

11/2/2017

Tank Indentification and Physical Characteristics **Emissions Report - Detail Format TANKS 4.0.9d**

<u>~</u>			
=	'		
7			
=			
Ξ			
0			
-			
5			
=			
₹			
3			
=			
Ξ			
15			
ž			
=			
=			
,			
=			
_			
_			

035 (2004 Gasoline @ 1MM bbl/mo) California User Identification: City: State: Company: Type of Tank: Description:

Identification

Tesoro Domed External Floating Roof Tank

Tank Dimensions
Diameter (ft):
Volume (gallons):
Turnovers:

135.00 4,200,000.00 120.00

Light Rust White/White Internal Shell Condition: Shell Color/Shade: Shell Condition Paint Characteristics

Double Deck Detail Roof Characteristics Fitting Category Type:

Mechanical Shoe Rim-mounted Riveted Tank Construction and Rim-Seal System Secondary Seal Construction: Primary Seal:

Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed Automatic Gauge Float Well/Bolted Cover, Gasketed Deck Fitting/Status

Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask. Roof Drain (3-in. Diameter)/90% Closed Roof Leg (3-in. Diameter)/Fixed

30

Quantity

Siotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask. Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Los Angeles C.O., California (Avg Atmospheric Pressure = 14.67 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

035 (2004 Gasoline @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

		Daily	Daily Liquid Surf. Temperature (deg F)	E.	Liquid Bulk Temp	Vapor	Vapor Pressure (psia)	(eisc	Vapor	Liquid	Vapor	Į.	Basis for Vanor Pressure
Mixture/Component Mor	Month Av	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline Max True Vapor Pressure 8 psia Jan	63	63.80	59.36	68.25	62.99	8.0000	N/A	N/A	0000.99			92.00	Option 1: VP60 = 8 VP70 = 8
1,2,4-Trimethylbenzene						0.0238	N/A	N/A	120.1900	0.0181	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1,3-Butadiene						32.6950	N/A	N/A	54.0900	0.0000	0.0000	54.09	Option 1: VP60 = 29.76 VP70 = 37.48
2,2,4-Trimethylpentane						0.6640	N/A	V/A	114.2300	0.0609	0.0070	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.2965	V/A	V/A	78.1100	0.0093	0.0021	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cresols (mixed isomers)						0.0013	ΑN	V/A	108.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175
Cyclohexane						1.3416	N/A	V/A	84.1600	0.0104	0.0024	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.1237	ΑN	N/A	106.1700	0.0129	0.0003	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						2.1105	N/A	A/N	86.1700	0.0156	0.0057	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isoprene						8.4339	N/A	N/A	68.1100	0.0001	0.0002	68.11	Option 1: VP60 = 7.677 VP70 = 9.668
Isopropyl benzene						0.0589	N/A	N/A	120.2000	0.0007	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Methyl alcohol						1.6239	ΑN	N/A	32.0400	0.0000	0.0000	32.04	Option 2: A=7.897, B=1474.08, C=229.13
Naphthalene						0.0051	۷/۷	N/A	128.1700	0.0017	0.0000	128.17	Option 3: A=47362, B=7.927
Phenol						0.0091	ΑN	N/A	94.1100	0.0001	0.0000	94.11	Option 3: A=49644, B=8.587
Propylene						156.9932	ΑN	N/A	42.0800	0.0000	0.0000	42.08	Option 3: A=19693, B=7.4463
Toluene						0.3712	N/A	N/A	92.1300	0.0764	0.0049	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						10.4808	ΑN	N/A	65.5208	0.7266	0.9760	80.68	
Xylenes (mixed isomers)						0.0978	N/A	N/A	106.1700	0.0671	0.0011	106.17	Option 2: A=7.005, B=1466, C=215
Gasoline Max True Vapor Pressure 8 psia Feb		64.91	60.15	29.69	62.99	8.0000	۷/۷	N/A	0000.99			92.00	Option 1: VP60 = 8 VP70 = 8
1,2,4-Trimethylbenzene						0.0248	N/A	N/A	120.1900	0.0181	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1,3-Butadiene						33.5485	N/A	A/N	54.0900	0.0000	0.0000	54.09	Option 1: VP60 = 29.76 VP70 = 37.48
2,2,4-Trimethylpentane						0.6851	A/N	A/N	114.2300	0.0609	0.0073	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.3361	N/A	N/A	78.1100	0.0093	0.0022	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cresols (mixed isomers)						0.0014	N/A	N/A	108.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175
Cyclohexane						1.3816	V/A	V/A	84.1600	0.0104	0.0025	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.1285	ΑN	V/A	106.1700	0.0129	0.0003	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						2.1709	Υ/N	Υ/N	86.1700	0.0156	0.0059	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isoprene						8.6541	ΚŅ	V/A	68.1100	0.0001	0.0002	68.11	Option 1: VP60 = 7.677 VP70 = 9.668
Isopropyl benzene						0.0613	Υ/N	Υ/N	120.2000	0.0007	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Methyl alcohol						1.6803	ΑN	N/A	32.0400	0.0000	0.0000	32.04	Option 2: A=7.897, B=1474.08, C=229.13
Naphthalene						0.0053	N/A	V/A	128.1700	0.0017	0.0000	128.17	Option 3: A=47362, B=7.927
Phenol						0.0095	ΥN	V/A	94.1100	0.0001	0.0000	94.11	Option 3: A=49644, B=8.587
Propylene						159.7108	ΑŅ	N/A	42.0800	0.0000	0.0000	42.08	Option 3: A=19693, B=7.4463
Toluene						0.3840	ΑN	N/A	92.1300	0.0764	0.0051	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						10.4752	Α/Z	N/A	65.5052	0.7266	0.9753	80.08	
Xylenes (mixed isomers)						0.1017	ΚŅ	V/A	106.1700	0.0671	0.0012	106.17	Option 2: A=7.005, B=1466, C=215
Gasoline Max True Vapor Pressure 8 psia Mar		65.68	69.09	20.68	66.39	8.0000	ΑN	N/A	0000.99			92.00	Option 1: VP60 = 8 VP70 = 8
1,2,4-Trimethylbenzene						0.0256	ΑN	N/A	120.1900	0.0181	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1,3-Butadiene						34.1485	N/A	N/A	54.0900	0.0000	0.0000	54.09	Option 1: VP60 = 29.76 VP70 = 37.48
2,2,4-Trimethylpentane						0.7002	N/A	N/A	114.2300	0.0609	0.0074	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.3645	N/A	N/A	78.1100	0.0093	0.0022	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cresols (mixed isomers)						0.0015	V/A	V/A	108.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175
Cyclohexane						1.4103	N/A	N/A	84.1600	0.0104	0.0026	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.1319	ΚŅ	N/A	106.1700	0.0129	0.0003	106.17	Option 2: A=6.975, B=1424.255, C=213.21

	NA NA 520.00 0.0181 0.0001 120.19 NA NA 54.090 0.0000 0.0000 54.09 NA NA 78.110 0.0000 0.0000 14.23 NA NA 78.110 0.0093 0.0023 78.11 NA NA 108.140 0.0001 0.0003 14.12 NA NA 88.170 0.0104 0.0027 84.16 NA NA 88.170 0.0104 0.0027 84.16 NA NA 88.170 0.0109 0.0003 106.17 NA NA 88.170 0.0109 0.0003 106.17 NA NA 120.200 0.0007 0.0000 120.20 NA NA 42.080 0.0001 0.0000 42.08 NA NA 92.1300 0.0074 0.0000 42.08 NA NA 92.1300 0.0074 0.0000 42.08	N/A N/A 65.488 0.7266 0.9735 89.08 N/A N/A 106.1700 0.0671 0.0013 106.17 N/A N/A 120.1900 0.0181 0.0001 120.19 N/A N/A 142.2300 0.0009 0.0000 54.09 N/A N/A 144.2300 0.0003 0.0024 78.11 N/A N/A 108.1400 0.0003 0.0024 78.11 N/A N/A 108.1400 0.0001 0.0002 108.14 N/A N/A 106.1700 0.0104 0.0008 84.16 N/A N/A 86.1700 0.0168 0.0005 86.17 N/A N/A N/A 86.1700 0.0016 0.0005 86.17	NA NVA 120,2000 0,0007 0,0000 120,20 NVA NA 32,0400 0,0000 0,0000 32,04 NVA NA 128,1700 0,001 0,0000 128,17 NVA NVA 42,0800 0,0000 0,0000 94,11 NVA NVA 62,1300 0,0764 0,0057 92,13 NVA NVA 106,1700 0,0071 0,0017 NVA NVA 106,1700 0,0071 0,0017 NVA NVA 120,1900 0,0181 0,0001 120,19 NVA NVA 120,1900 0,0181 0,0000 54,09	N/A N/A N/A 14230 0.0669 0.0085 114.23 Option 2: A=6.8118, B=1257.84, C=220.74 N/A N/A 78:1100 0.0093 0.0025 78:11 Option 2: A=6.8118, B=1257.84, C=220.79 N/A N/A 48:1600 0.0004 0.0005 78:11 Option 2: A=6.915, B=1211.033, C=220.79 N/A N/A 44:600 0.0104 0.0029 84:16 Option 2: A=6.815, B=1201.033, C=222.65 N/A N/A 106:170 0.0129 0.0003 106:17 Option 2: A=6.975, B=1424.265, C=213.21 N/A N/A 86:170 0.0156 0.0068 86:17 Option 2: A=6.975, B=1424.265, C=213.21 N/A N/A 120:200 0.0001 120:00 120:00 120:00 N/A N/A 120:200 0.0000 120:00 120:00 16:00 N/A N/A 128:170 0.0001 0.0000 32:04 Option 2: A=7.897, B=1440.08, C=229.13 N/A N/A 128:170 0.0001 128:17 Option 3: A=43864, B=7.327
2.2142 8.808 8.00631 1.7209 0.0055 0.0056 161.6427 10.4711 0.3932 10.4044	,	10.4621 0.1106 65.99 8.0000 0.0287 36.4268 0.7602 1.4769 0.00017 1.5236 0.3849 2.3849	0.0702 1.8830 0.0061 0.0109 169.1384 0.4550 0.1155 65.99 8.0000 0.0307 3.78165	0.7899 1.5491 0.001 1.5964 0.1547 2.4942 9.7564 0.0764 0.0065 0.0065
72.91		73.97	76.03	
9 82	<u> </u>	89 .30	64.85	
67.37	; ;	68.64	70.44	
Hexane (-n) Isoprene Isopropyl benzene Methyl alcohol Naphthalere Phenol Propylene Toluere Unidentified Components Xylenes (mixed isomers) Gssoline Max Tue Vanor Pressure 8 psia Apr		Unidentified Components Xyenes (mixed isomers) Gasoline Max Tirue Vapor Pressure 8 psia May 1,2,4-Trimethylbenzene 1,3-Burdailene 2,2,4-Trimethylpentane Benzene Cresols (mixed isomers) Cyclohexane Ethylbenzene Hexane (n)	Isopropyl benzene Methyl alcohol Maphthalene Phendi Propylene Toluene Unidentified Components Xylenes (mixed isomers) Gasoline Max True Vapor Pressure 8 psia Jun 1,2,4-Trimethylbenzene 1,3-Budadiene	2.2.4-Trimethylpentane Benzene Benzene Cresols (mixed isomers) Cyclohexane Ethylbenzene Hexane (-n) Isopropyl benzene Isopropyl benzene Methyl alcohol Naphthalene

Option 3: A=19693, B=7,4463 Option 2: A=6,954, B=1344, 8, C=219,48 Option 2: A=7,005, B=1466, C=215 Option 1: VPO= 8 VR980 = 8 Option 1: VPO= 37,48 VR980 = 45,21 Option 2: A=6,8118, B=1257,84, C=200,74 Option 2: A=6,8118, B=1257,84, C=220,79 Option 2: A=6,805, B=121,033, C=220,79 Option 2: A=7,41,81,133, C=220,79	Option 2: A=6.841, B=1201.63, C=222.65 Option 2: A=6.975, B=1424.255, C=213.21 Option 2: A=6.975, B=1424.255, C=24.41 Option 1: VP70 = 8.68 VP80 = 11.699 Option 2: A=6.963, B=1460.793, C=20.73 Option 3: A=47.897, B=147.97 Option 3: A=47.897, B=147.87 Option 3: A=49644, B=8.587 Option 3: A=16963, B=7.4463 Option 2: A=6.954, B=1344.8, C=219.48	Option 2: A=7.003, D=1.003, C=2.13 Option 2: A=7.04.383, B=1573.267, C=208.56 Option 2: A=7.48 VP80 = 45.21 Option 2: A=6.8118, B=1257.84, C=220.74 Option 2: A=6.905, B=1210.33, C=220.79 Option 2: A=6.901, C=156 Option 2: A=7.141, B=1601, C=175 Option 2: A=6.841, B=1201, S3.C=22.65	Option 2: A=6.975, B=1424.255, C=213.21 Option 2: A=6.876, B=1171.17, C=224.41 Option 1: VP70 = 9.68 VP80 = 11.699 Option 2: A=6.963, B=1460.783, C=207.78 Option 3: A=7.897, B=1440.80, C=229.13 Option 3: A=49644, B=8.587 Option 3: A=19693, B=7.4463 Option 3: A=19693, B=7.4463 Option 2: A=6.964, B=8.587 Option 2: A=6.964, B=8.587 Option 2: A=7.005, B=1466, C=215 Option 1: VP70 = 8 VP80 = 8 Option 1: VP70 = 8 VP80 = 8	Option 2: A=6.905, B=1211, 033, C=220.79 Option 2: A=7.151, B=1601, C=175 Option 2: A=6.815, B=1201, 53, C=222.65 Option 2: A=6.875, B=1424.255, C=213.21 Option 2: A=6.875, B=1424.255, C=214.11 Option 2: A=6.875, B=1460.793, C=207.78 Option 2: A=7.897, B=1460.793, C=20.13 Option 3: A=4.9694, B=8.557 Option 3: A=4.9694, B=8.557 Option 3: A=6.954, B=1344, 8, C=219.48 Option 2: A=7.005, B=1466, C=215 Option 2: A=7.005, B=1466, C=215 Option 1: VPG0 = 8 VP70 = 8 Option 1: VPG0 = 8 VP70 = 8
92.13 92.13 89.08 106.17 92.00 120.19 54.09 114.23	84.16 106.17 86.17 68.11 120.20 32.04 128.17 94.11 94.11 92.13 89.08	92.00 120.19 54.09 114.23 78.11 108.14	106.17 86.17 68.11 120.20 32.04 128.17 94.11 42.08 92.13 89.08 120.19 54.09	78.11 108.14 84.16 106.17 86.17 68.11 120.20 32.04 128.17 94.11 42.08 92.13 89.08 106.17
0.0000 0.0060 0.9712 0.0014 0.0000 0.0000 0.0000	0.0031 0.0032 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0004 0.0072 0.0000 0.0000 0.0000 0.0000 0.0065 0.9693 0.0016	0.0026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0764 0.7266 0.0671 0.0181 0.0000 0.0609	0.0104 0.0129 0.0126 0.0007 0.0007 0.0001 0.0001 0.0000 0.0764 0.0764	0.0000 0.0000 0.0003 0.0001 0.0001	0.0129 0.0156 0.0001 0.0007 0.0001 0.0001 0.07266 0.0671 0.0181 0.0000 0.0000	0.0093 0.0001 0.0104 0.0126 0.0156 0.0001 0.0000 0.0001 0.0000 0.0764 0.0764 0.0764 0.0764
42.0800 92.1300 65.4202 106.1700 66.0000 54.0900 114.2300 78.1100	84.1600 106.1700 86.1700 68.1100 120.2000 94.1100 92.1300 66.3826 66.3826	66.0000 120.1900 54.0900 78.1100 108.1400 84.1600	106.1700 86.1700 120.2000 32.0400 94.1100 94.1100 92.3805 106.1700 66.3805 106.1700 66.3805 1120.1900 54.0900	78.1100 106.1400 86.1700 86.1700 120.2000 32.0400 128.1700 42.0800 92.1300 66.0000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
<pre></pre>	<pre></pre>	(4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 2 2 2 2
173.8355 0.4533 10.4447 0.1227 8.0000 0.0334 39.5403 1.6426	1,6905 0.1665 2,6354 10,2093 0.0810 2,1252 0.0071 0.0128 179,7914 0,4842 0,4313	0.0336 0.0336 39.6324 0.8518 1.6477 0.0022 1.6957	2.6431 10.2335 10.0335 10.0013 2.1327 0.0071 0.0128 10.4859 10.4305 0.1327 8.0000 0.0321 38.7305 0.8252	1.5981 0.0020 1.6457 0.1608 2.5683 2.5683 2.966 0.0780 2.0598 0.0123 176.9747 0.4695 0.0127 0.1276 8.0000
65.99		65.99	65.99	65.99
78.87		78.64	76.88	74.33
96.46		66.93	96.36	64.44
72.67		72.78	71.62	98
Propylene Toluene Unidentified Components Xylenes (mixed isomers) Gasoline Max True Vapor Pressure 8 psia Jul 77 12.4-Trimethylbenzene 1.3-Butadiene 2.2.4-Trimethylpentane Benzene Creacie (mixed isomers)	Cyclobe (ymnostronomy) Cyclobe (ymnostronomy) Ethylbenzene Ethylbenzene Ethylbenzene Isopropyl benzene Methyl alcohol Naphhalene Phenol Propylene Toluene Undentified Components	Pressure 8 psia. Aug	rene -in) benzene cohol se ed Components mixed isomers) met Vapor Pressure 8 psia Sep rettybenzene liene liene	Benzene Gresols (mixed isomers) Cyclohexane Ethylbenzene Hexane (-n) Isoprene Isopropyl benzene Methyl alcohol Methyl alcohol Propylene Phenol Propylene Toluene Unidentified Components Xylense (mixed isomers) Gasoline Max True Vapor Pressure 8 psia Oct 1,2,4-Trimethylbenzene

Option 1: VP60 = 29.76 VP70 = 37.48 Option 2: A=6.8118, B=1257.84, C=220.74 Option 2: A=6.905, B=1211.033, C=220.79 Option 2: A=7.151, B=1001, C=175	Option 2: A=6.841, B=1201.53, C=222.65 Option 2: A=6.975, B=1424.255, C=213.21 Option 2: A=6.875, B=117.17, C=224.41 Option 4: A=7.477 (D=7.47)	Option 1: VP.70 - 5.07 V P.70 - 3.000 Option 2: A=6.963, B=146.793, C=207.78 Option 2: A=7.897, B=1474.08, C=229.13 Option 3: A=49644, B=8.887 Option 3: A=19683, B=7.4463	Option 2: A=6.964, B=1344.8, C=219.48 Option 2: A=7.005, B=1486, C=215 Option 1: VP60 = 8 VP70 = 8 Option 1: VP60 = 29.76 VP70 = 37.48 Option 1: VP60 = 29.76 VP70 = 37.48 Option 2: A=68.8118, B=1278.34, C=220.74	Option 2: A=7.151, B=1601, C=175 Option 2: A=6.841, B=1201.53, C=22.65 Option 2: A=6.841, B=1201.53, C=22.65 Option 2: A=6.875, B=1171.17, C=224.41 Option 1: VP60 = 7.677 VP70 = 9.68 Option 2: A=6.963, B=1460.793, C=207.78 Option 2: A=7.887, B=1440.08, C=29.13 Option 2: A=47.82, B=7.827 Option 3: A=47.82, B=7.827	Option 3: A=49644, B=8.887 Option 3: A=49644, B=8.887 Option 2: A=6.964, B=7.4463 Option 2: A=7.005, B=7.4463 Option 1: VP60 = 8 VP70 = 8 Option 2: A=6.964, B=1344, C=20.74 Option 2: A=6.964, B=1257.84 C=220.74 Option 2: A=6.905, B=1257.84 C=220.74 Option 2: A=6.905, B=1201.033, C=220.79 Option 2: A=6.905, B=1201.63, C=222.65 Option 2: A=6.841, B=1201.53, C=222.65 Option 2: A=6.841, B=1201.53, C=22.65 Option 2: A=6.897, B=1444.85, C=21.32 Option 2: A=6.963, B=1440.793, C=20.78 Option 2: A=6.963, B=1440.793, C=20.78 Option 3: A=19683, B=7.4463 Option 3: A=19683, B=7.4463 Option 2: A=6.964, B=1344.8, C=219.48
54.09 114.23 78.11 108.14	84.16 106.17 86.17	96.11 120.20 32.04 128.17 94.11	92.13 89.08 106.17 92.00 120.19 54.09 114.23	108.14 84.16 106.17 86.17 68.11 120.20 32.04 128.17	94.11 94.13 92.08 92.00 106.17 92.00 120.19 64.09 114.23 114.23 114.23 120.20 1
0.0000 0.0082 0.0025 0.0000	0.0028	00000	0.0058 0.9720 0.0014 0.0001 0.0000 0.0075	0.0000 0.0026 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000	0.0000 0.0053 0.0745 0.0012 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0609 0.0093	0.0104	0.0007 0.0000 0.0017 0.0001	0.0764 0.7266 0.0671 0.0181 0.0000 0.0000	0.0001 0.0104 0.0129 0.0156 0.0007 0.0000 0.0000	0,0001 0,0064 0,0764 0,0764 0,0076 0,0003 0,0001 0,0126 0,0001 0,0007 0,0000 0
54.0900 114.2300 78.1100 108.1400	84.1600 106.1700 86.1700	96.1100 120.2000 32.0400 128.1700 94.1100 42.0800	92.1300 65.4373 106.1700 66.0000 720.1900 54.0900 74.1300	70.1100 84.1600 106.1700 86.1700 68.1100 32.0400 94.1100	94.1100 94.1100 92.0800 92.0800 65.4894 106.1700 66.0000 114.2300 78.1100 1106.1700 84.1600 1106.1700 84.1600 120.2000 32.0400 120.2000 92.1300 92.1300
4 4 4 4 2 2 2 2	4 4 4 5 2 2 2 2	(X X X X X X X X X X X X X X X X X X X		<pre>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>
4 4 4 4 5 2 2 2 2	4 4 4 5 2 2 2 2	1 4 4 4 4 4 2 2 2 2 2 2	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
37.0030 0.7761 1.5065 0.0018	1.5535 0.1494 2.4298	9.5450 0.0721 1.9260 0.0063 0.0113	0.4394 10.4508 0.1184 8.0000 0.0259 34.3880 0.7063	0.0015 1.4218 0.1333 2.2316 8.8706 0.0638 1.7374 0.0069	0.0099 0.0099 10.4695 0.1055 0.0237 32.6289 0.6624 0.0237 1.3386 0.0133 1.3386 0.0134 0.0587 1.6196 0.0057 0.0050 0.0051
			65.99		66.9
			70.59		68.12
			61.40		
			65.99		63.72
1,3-Butadiene 2,2,4-Trimethylpentane Berzene Cresols (mixed isomers)	Cyclohexane Ethylbenzene Hexane (-n)	Sobratie Isoprogy berzene Metryy alcohol Naphthalene Pronviene	d Components nixed isomers) ax Truer Vapor Pressure 8 psia Nov ethylbenzene ene ethylpentane	Cresols (mixed isomers) Cyclohexane Ethylbenzene Hexane (-n) Isoprene Isopropyl benzene Nethyl alcohol Nethylalene	iffed Components (mixed isomers) (mixed isomers) Max True Vapor Pressure 8 psia Dec innethylbenzene adiene innethylpentane (mixed isomers) xxane innethylpentane acine (n) e e innethylpentane innethylpentane innethylpentane innethylpentane e innethylpentane e innethylpentane innethylpen

TANKS 4.0 Report

Emissions Report - Detail Format Detail Calculations (AP-42) **TANKS 4.0.9d**

035 (2004 Gasoline @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

Month:	vacine	February	March	Anril	VeW	gail	Airi	August	Sentember	October	November	December
	f ppupp	(marga -	0000	1000	6000		650	5555	0000	5000	0000	
Kim Seal Losses (Ib):	158.8222	158.8222	158.8222	158.8222	158.8222	158.8222	158.8222	158.8222	158.8222	158.8222	158.8222	158.8222
Seal Factor A (lb-mole/ft-yr):	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000
Seal Factor B (lb-mole/ft-vr (mph)^n);	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000
Average Wind Speed (mph):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.0000
Seal-related Wind Speed Expopent	1 5000	1 5000	1 5000	1 5000	1 5000	1 5000	1 5000	1 5000	1 5000	1 5000	1 5000	1 5000
Value of Vapor Pressure Function:	0.1945	1945	1945	1945	1.0000	0.0000	10000	1945	10000	10000	71045	0.0000
Value of Vapor Liessure Landung.		2	2	2	5	5	5	2	5	5	2	2
Outline Township Average Liquid	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
Surrace Lemperature (psia):	8.0000	0.0000	a.uuuc	9.0000	0.0000	8.0000	0.0000	0.0000	Ø.0000	0.0000	0.0000	0.000
Tank Diameter (ft):	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000
Vapor Molecular Weight (Ib/Ib-mole):	000009	0000.99	0000.99	0000.99	0000.99	0000.99	0000.99	0000.99	0000.99	0000.99	0000.99	0000.99
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
AM/Attachment of the American	0000	0120	000	0210	0 0 1	0 0 1	0100	0110	0210	0100	000	0110
vviitidrawal Losses (ID).	30.0730		20.00.00	20.00.00	20.07.20	20.00.00	20.07.20	20.07.20	20.07.20	20.07.20	20.00,000	20.00
Net I nroughput (gal/mo.):	42,000,000.000042,000	<u> </u>	000,000,000042,0	000,000,000,000	000,000.000042,	J00,000.000042,	000,000.000042,	JOU, UUU. UUUU42, 0.0047	000,000.000042	000,000.000042,	JUU, UUU. UUU U4 Z, C	000,000,000
Shell Clingage Factor (bbl/1000 sqft):	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015
Average Organic Liquid Density (lb/gal):	2.6000	2.6000	2.6000	2.6000	2.6000	2.6000	2.6000	2.6000	2.6000	2.6000	2.6000	2.6000
Tank Diameter (ft):	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000
Roof Fitting Losses (lb):	29.7110	29.7110	29.7110	29.7110	29.7110	29.7110	29.7110	29.7110	29.7110	29.7110	29.7110	29.7110
Value of Vapor Pressure Function:	0.1945	0.1945	0.1945	0.1945	0.1945	0.1945	0.1945	0.1945	0.1945	0.1945	0.1945	0.1945
Vapor Molecular Weight (lb/lb-mole):	0000.99	0000.99	0000.99	0000.99	0000.99	0000.99	0000.99	0000.99	0000.99	0000'99	0000.99	0000.99
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800
Average Wind Speed (mph):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total Losses (lb):	247.2087	247.2087	247.2087	247.2087	247.2087	247.2087	247.2087	247.2087	247.2087	247.2087	247.2087	247.2087
							Roof Fitting Loss Factors	Factors				
Roof Fitting/Status				Qua	Quantity	<fa(ib-mole td="" yr)<=""><td>KFb(lb-mole/(yr mph^n))</td><td>mph^n))</td><td></td><td>E</td><td>(q))sesso</td><td></td></fa(ib-mole>	KFb(lb-mole/(yr mph^n))	mph^n))		E	(q))sesso	
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	keted				က	1.60		0.00	0	00.	61.6038	
Automatic Gauge Float Well/Bolted Cover, Gasketed	keted				_	2.80		0.00	0	00:	35.9355	
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	ted Mech. Actuation, Ga	sk.			-	0.47		0.02	0	.97	6.0320	
Roof Drain (3-in. Diameter)/90% Closed					_	1.80		0.14	_	10	23.1014	
Roof Leg (3-in. Diameter)/Fixed					30	00:0		0.00	0	00:	0.000	
Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper	Covr, w. Float, Sleeve, Wil	per			_	11.00		06.6	0	68.	141.1753	
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	n. Actuation, Gask.				-	6.20		1.20	0	0.94	79.5715	
Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.	aation, Gask.				-	0.71		0.10	_	00:	9.1122	

Emissions Report - Detail Format Individual Tank Emission Totals TANKS 4.0.9d

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November,

December

035 (2004 Gasoline @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

			Losses(lbs)		
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
Gasoline Max True Vapor Pressure 8 psia	1,905.87	704.11	356.53	00.00	2,966.50
1,2,4-Trimethylbenzene	0.17	12.71	0.03	00:0	12.91
1,3-Butadiene	0.06	00:00	0.01	00:00	0.07
2,2,4-Trimethylpentane	15.20	42.90	2.84	00:00	60.94
Benzene	4.53	6.57	0.85	00:0	11.95
Cresols (mixed isomers)	0.00	0.04	00:00	00:0	0.04
Cyclohexane	5.20	7.32	0.97	00:00	13.49
Ethylbenzene	0.62	9.07	0.12	0.00	9.80
Hexane (-n)	12.23	11.00	2.29	00:00	25.52
Isoprene	0.34	0.08	0.00	0.00	0.48
Isopropyl benzene	0.02	0.53	0.00	0.00	0.55
Methyl alcohol	0.00	0.00	0.00	00:0	0.01
Naphthalene	00:00	1.23	00:00	00:00	1.23
Phenol	0.00	0.04	00:00	00:0	0.04
Propylene	0.03	0.00	0.01	00:00	0.03
Toluene	10.76	53.78	2.01	00:00	66.55
Unidentified Components	1,854.18	511.63	346.86	00:00	2,712.67
Xylenes (mixed isomers)	2.54	47.21	0.47	00:0	50.22

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	035 (2004 Jet @ 1MM bbl/mo)
Oity:	Carson
State:	California
Company.	Tesoro

Carson	California	Tesoro	Domed External Floating Roof Tank			135.00	4,200,000.00
.: C <u>r</u> 2:	State:	Company:	Type of Tank:	Description:	Tank Dimensions	Diameter (ft):	Volume (gallons):

4,200,000.00	Light Rust
120.00	White/White
Volume (gallons): Turnovers:	Paint Characteristics Internal Shell Condition: Shell Colorshade:

Good	Double Deck Detail
Shell Condition	Roof Characteristics Type: Fitting Category

Seal System	Riveted	Mechanical Shoe	Rim-mounted
Tank Construction and Rim-Seal System	Construction:	Primary Seal:	Secondary Seal

Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed Automatic Gauge Float Well/Bolted Cover, Gasketed Automatic Gauge Float Well/Bolted Cover, Gasketed Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask. Roof Drain (3-in. Diameter)/99% Closed Roof Leg (3-in. Diameter)/Fixed Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper Vacuum Breaker (10-in. Diameter)/Weighted Mech. Actuation, Gask. Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.	Deck Fitting/Status
Automatic Gauge Float Well/Bolted Cover, Gasketed Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask. Roof Drain (3-in. Diameter)/99% Closed Roof Leg (3-in. Diameter)/Fixed Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper Vacuum Breaker (10-in. Diameter)/Weighted Mech. Actuation, Gask. Rin Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.	Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask. Roof Drain (3-in. Diameter)/90% Closed Roof Leg (3-in. Diameter)/Fixed Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper Vacuum Breaker (10-in. Diameter)/Weighted Mech. Actuation, Gask. Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.	Automatic Gauge Float Well/Bolted Cover, Gasketed
Roof Drain (3-in. Diameter)/90% Closed Roof Log (3-in. Diameter)/Fixed Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper Vacuum Breaker (10-in. Diam.ell/Weighted Mech. Actuation, Gask. Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.	Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.
Roof Leg (3-in. Diameter)/Fixed Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float,Sleeve,Wiper Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask. Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.	Roof Drain (3-in. Diameter)/90% Closed
Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask. Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.	Roof Leg (3-in. Diameter)/Fixed
Vacuum Breaker (10-in. Diam.)Weighted Mech. Actuation, Gask. Rim Vent (6-in. Diameter)Weighted Mech. Actuation, Gask.	Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper
Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.	Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.
	Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.

--8---

Quantity

Meterological Data used in Emissions Calculations: Los Angeles C.O., California (Avg Atmospheric Pressure = 14.67 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

035 (2004 Jet @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

		<u>"</u>	Daily Liquid Surf.	Į.	Liquid Bulk				Vapor	Liquid	Vapor		
Mixture/Component	Month	Avg.	Temperature (deg F) g. Min. M	eg F) Max.	Temp (deg F)	Vapor Avg.	Vapor Pressure (psia) g. Min. Mi	psia) Max.	Mol. Weight.	Mass Fract.	Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
TK 034 - APPC463 let Filel A	ra ca	83.80	50 36	68.25	65 99	0.0160	ĄŽ	δ/N	130 0000			130 00	Ontion 1 · VP60 = 016 VP70 = 016
1.2 4-Trimethylbenzene	5	o o				0.038	Α/N	Δ/N	120 1900	0.0055	0.0082	120 19	Option 2: A=7 04383 B=1573 267 C=208 56
Cresols (mixed isomers)						0.0013	Ą	Ϋ́Z	108.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175
Ethylbenzene						0.1237	A/A	N/A	106.1700	0.0050	0.0387	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Isopropyl benzene						0.0589	A/A	N/A	120.2000	0.0055	0.0202	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0051	N/A	Α/N	128.1700	0.0150	0.0048	128.17	Option 3: A=47362, B=7.927
Phenol						0.0091	A/A	N/A	94.1100	0.0001	0.0000	94.11	Option 3: A=49644, B=8.587
Unidentified Components						0.0146	A/A	Α/N	132.7645	0.9634	0.8945	130.47	
Xylenes (mixed isomers)						0.0978	N/A	N/A	106.1700	0.0055	0.0336	106.17	Option 2: A=7.005, B=1466, C=215
TK 034 - APPC463 Jet Fuel A	Feb	64.91	60.15	29.69	62.99	0.0160	A/A	Α/N	130.0000			130.00	Option 1: VP60 = .016 VP70 = .016
1,2,4-Trimethylbenzene						0.0248	N/A	Α/N	120.1900	0.0055	0.0085	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Cresols (mixed isomers)						0.0014	A/A	Α/N	108.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175
Ethylbenzene						0.1285	N/A	N/A	106.1700	0.0050	0.0402	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Isopropyl benzene						0.0613	N/A	A/N	120.2000	0.0055	0.0211	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0053	N/A	N/A	128.1700	0.0150	0.0050	128.17	Option 3: A=47362, B=7.927
Phenol						0.0095	N/A	N/A	94.1100	0.0001	0.0000	94.11	Option 3: A=49644, B=8.587
Unidentified Components						0.0145	N/A	A/N	132.8888	0.9634	0.8903	130.47	
Xylenes (mixed isomers)						0.1017	A/A	N/A	106.1700	0.0055	0.0349	106.17	Option 2: A=7.005, B=1466, C=215
TK 034 - APPC463 Jet Fuel A	Mar	65.68	69.09	70.68	62.39	0.0160	A/A	A/A	130.0000			130.00	Option 1: VP60 = .016 VP70 = .016
1,2,4-Trimethylbenzene						0.0256	N/A	Α/N	120.1900	0.0055	0.0088	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Cresols (mixed isomers)						0.0015	N/A	N/A	108.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175
Ethylbenzene						0.1319	A/A	Α/N	106.1700	0.0050	0.0412	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Isopropyl benzene						0.0631	N/A	N/A	120.2000	0.0055	0.0217	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0055	N/A	N/A	128.1700	0.0150	0.0051	128.17	Option 3: A=47362, B=7.927
Phenol						0.0098	N/A	N/A	94.1100	0.0001	0.000	94.11	Option 3: A=49644, B=8.587
Unidentified Components						0.0145	A/A	N/A	132.9796	0.9634	0.8872	130.47	
Xylenes (mixed isomers)						0.1044	N/A	N/A	106.1700	0.0055	0.0359	106.17	Option 2: A=7.005, B=1466, C=215
TK 034 - APPC463 Jet Fuel A	Apr	67.37	61.82	72.91	62.39	0.0160	A/A	N/A	130.0000			130.00	Option 1: VP60 = .016 VP70 = .016
1,2,4-Trimethylbenzene						0.0273	N/A	N/A	120.1900	0.0055	0.0094	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Cresols (mixed isomers)						0.0016	N/A	N/A	108.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175
Ethylbenzene						0.1396	N/A	N/A	106.1700	0.0050	0.0436	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Isopropyl benzene						0.0670	N/A	N/A	120.2000	0.0055	0.0230	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0058	N/A	N/A	128.1700	0.0150	0.0055	128.17	Option 3: A=47362, B=7.927
Phenol						0.0104	N/A	N/A	94.1100	0.0001	0.0000	94.11	Option 3: A=49644, B=8.587
Unidentified Components						0.0143	N/A	N/A	133.1861	0.9634	0.8804	130.47	
Xylenes (mixed isomers)						0.1106	A/A	A/A	106.1700	0.0055	0.0380	106.17	Option 2: A=7.005, B=1466, C=215
TK 034 - APPC463 Jet Fuel A	May	68.64	63.30	73.97	62.39	0.0160	A/A	A/A	130.0000			130.00	Option 1: VP60 = .016 VP70 = .016
1,2,4-Trimethylbenzene						0.0287	N/A	Α/N	120.1900	0.0055	6600.0	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Cresols (mixed isomers)						0.0017	A/A	A/A	108.1400	0.0001	0.0000	108.14	Option 2: A=7.151, B=1601, C=175
Ethylbenzene						0.1457	N/A	Α/N	106.1700	0.0050	0.0455	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Isopropyl benzene						0.0702	N/A	Α/N	120.2000	0.0055	0.0241	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0061	A/A	N/A	128.1700	0.0150	0.0057	128.17	Option 3: A=47362, B=7.927
Phenol						0.0109	A/A	N/A	94.1100	0.0001	0.000	94.11	Option 3: A=49644, B=8.587
Unidentified Components						0.0142	N/A	Κ/N	133.3518	0.9634	0.8750	130.47	

Option 2: A=7.005, B=14466, C=215 Option 1: VP70 = .016 VP80 = .016 Option 1: VP70 = .016 VP80 = .016 Option 2: A=7.0438, B=1573.287, C=208.56 Option 2: A=7.151, B=1601, C=175 Option 2: A=6.963, B=1440.285, C=213.21 Option 3: A=47362, B=7.927 Option 3: A=49644, B=8.87 Option 3: A=49644, B=8.87 Option 1: VP70 = .016 VP80 = .016 Option 2: A=7.04383, B=1673.287, C=208.56 Option 2: A=7.04383, B=1673.287, C=208.56	Option 2: A=6.975, B=1424,255, C=213.21 Option 2: A=6.963, B=1460.793, C=207.78 Option 3: A=49644, B=8.587 Option 3: A=49644, B=8.587 Option 2: A=7.005, B=1466, C=215 Option 2: A=7.04383, B=1573.267, C=208.56 Option 2: A=7.151, B=1601, C=175 Option 2: A=7.151, B=1601, C=175 Option 2: A=7.151, B=1601, C=175 Option 3: A=6.975, B=1492.255, C=213.21 Option 3: A=6.953, B=1460.793, C=207.78 Option 3: A=4.9634, B=8.587	Option 2: A=7.006, B=1466, C=216 Option 1: VP70 = .016 VP80 = .016 Option 2: A=7.04383, B=1573.267, C=208.56 Option 2: A=7.151, B=1601, C=175 Option 2: A=6.975, B=1424.256, C=213.21 Option 2: A=6.975, B=1460.793, C=207.78 Option 3: A=7.362, B=7.927 Option 3: A=7.364, B=8.587 Option 2: A=7.005, B=1466, C=216 Option 2: A=7.005, B=1466, C=216 Option 2: A=7.151, B=1601, C=175 Option 2: A=7.151, B=1424.255, C=213.21	Option 3: A=47362, B=7367 Option 3: A=47362, B=7367 Option 2: A=7.005, B=1466, C=215 Option 2: A=7.04383, B=1573.267, C=208.56 Option 2: A=7.151, B=1601, C=175 Option 2: A=6.975, B=1424.255, C=213.21 Option 2: A=6.975, B=1440.793, C=207.78 Option 2: A=6.963, B=1460, C=215 Option 3: A=47362, B=7.927 Option 2: A=7.04383, B=1573.267, C=208.56 Option 1: VP60 = .016 VP70 = .016 Option 2: A=7.04383, B=1673.267, C=208.56 Option 2: A=7.04383, B=1601, C=175 Option 2: A=6.955, B=1444.255, C=213.21
106.17 130.00 120.19 108.14 106.17 128.17 94.11 130.47 106.17 120.19	106.17 120.28 120.28 141.11 130.47 106.17 106.17 120.28 120.28 120.28	130.47 106.17 120.19 108.14 108.14 128.17 130.47 130.00 120.19 108.14 108.17	128.17 94.11 130.47 130.00 120.19 120.20 120.20 128.17 130.00 120.19 120.19 120.20
0.0397 0.0106 0.0000 0.0083 0.0257 0.0061 0.0000 0.8671 0.0422 0.0115	0.0520 0.0278 0.0066 0.0000 0.8566 0.0454 0.0115 0.0000 0.0522 0.0280	0.8560 0.0456 0.0503 0.0503 0.0064 0.000439 0.00439 0.00439 0.00467 0.0000	0.0059 0.0000 0.0407 0.0000 0.0219 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0055 0.0055 0.0050 0.0055 0.0150 0.0055 0.0055 0.0055	0.0056 0.0055 0.0056 0.0053 0.0055 0.0056 0.0056 0.0056	0.0055 0.0055 0.0055 0.0050 0.0055 0.0055 0.0050 0.0050 0.0055	0.0150 0.0050 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0050 0.0050
106.1700 130.0000 120.1900 106.1700 120.2000 120.2000 94.1100 133.6020 106.1700 120.1900 120.1900	106.1700 120.2000 123.1700 94.1100 133.9393 106.1700 120.1900 120.1900 120.2000 120.2000 121.100 121.100	133.9583 106.1700 130.0000 120.1900 108.1400 106.1700 128.1700 94.1100 94.1100 133.7769 133.7769 136.1700 130.0000 120.1900 120.1900	28.1700 94.1100 133.4533 103.34533 105.0000 120.1900 120.2000 120.2000 94.1100 133.0167 106.1700 130.0000 120.1900 108.1400 108.1400 108.1400 108.1700
4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\$\delta \delta \	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
0.1155 0.0160 0.0307 0.019 0.1547 0.0748 0.0065 0.0117 0.1227 0.0160 0.0334	0.1665 0.0810 0.0071 0.0128 0.0139 0.0130 0.0336 0.0022 0.1671 0.0813	0.0138 0.1327 0.0160 0.0321 0.0020 0.0028 0.0128 0.0123 0.0140 0.0160 0.00295 0.0160	0.0053 0.0113 0.0114 0.0160 0.0259 0.0055 0.0053 0.0055 0.0059 0.0055 0.
65.99	65.99	65.99	65.99
78.87	78.64	76.88	70.59
66.46	66.93	64.44	61.40
70.44	72.78	71.62	65.99
ח וח	Aug	Se D O Ct	S O
Xylenes (mixed isomers) TK 034 - APPC463 Jet Fuel A 1.2.4-Trimethylbenzene Cresols (mixed isomers) Erlylbenzene Isopropyl benzene Isopropyl benzene Phenol Unidentified Components Xylenes (mixed isomers) TK 034 - APPC463 Jet Fuel A 1.2.4-Trimethylbenzene Cresols (mixed isomers)	Ethylbenzene Isopropyl benzene Naphthalene Phenol Unidentified Components Xylenes (mixed isomers) TK 034 - APP C463 Jet Fuel A 1,2,4-Trimethylbenzene Cresols (mixed isomers) Ethylbenzene Isopropyl benzene Naphthalene	Unidentified Components Xylenes (mixed isoners) Xylenes (mixed isoners) 1.2.4-Trinrethylbentzene Cresols (mixed isoners) Ettylbentzene Isopropyl benzene Phenol Unidentified Components Xylenes (mixed isoners) 1.2.4-Trinrethylbentzene Cresols (mixed isoners) Internatival (mixed isoners) Internatival (mixed isoners) Internatival (mixed isoners) Ettylbentzene Cresols (mixed isoners) Ettylbentzene	Napripalente Phenol Unidentified Components Viyenes (mixed isomers) TK 034 - APPCA63 Jet Fuel A 1,2,4-Trimethylbenzene (cresols (mixed isomers) Ethylbenzene Isopropyl benzene Napritialene Napritialene Napritialene Unidentified Components Xiyenes (mixed isomers) TK 034 - APPCA63 Jet Fuel A 1,2,4-Trimethylbenzene Cresols (mixed isomers) Ethylbenzene Isopropyl benzene Isopropyl benzene Isopropyl benzene Isopropyl benzene

Option 3: A=47362, B=7.927	Option 3: A=49644, B=8.587		Option 2: A=7.005, B=1466, C=215
128.17	94.11	130.47	106.17
0.0048	0.0000	0.8948	0.0335
0.0150	0.0001	0.9634	0.0055
128.1700	94.1100	132.7551	106.1700
N/A	N/A	N/A	Α'N
N/A	A/A	N/A	A/A
0.0051	0.0000	0.0146	0.0976
Naphthalene	Phenol	Unidentified Components	Xylenes (mixed isomers)

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

035 (2004 Jet @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Rim Seal Losses (Ib):	0.4388	0.4388	0.4388	0.4388	0.4388	0.4388	0.4388	0.4388	0.4388	0.4388	0.4388	0.4388
Seal Factor A (Ib-mole/ft-yr):	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000
Average Wind Speed (mph):	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000
Seal-related Wind Speed Exponent:	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000
Value of Vapor Pressure Function:	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
Vapor Pressure at Daily Average Liquid	0000	0	0		0	0	0	0	0	0		0
Surface Temperature (psia):	0.0160	0.0160	0.0160	0.0160	0.0160	0.0160	0.0160	0.0160	0.0160	0.0160	0.0160	0.0160
Vanor Molecular Weight (Ib/Ib-mole):	130.0000	130,000	130.000	130.000	130,000	130,000	130.000	130,000	130.000	130,000	130,000	130,000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Withdrawal Losses (Ib):	71.5108	71.5108	71.5108	71.5108	71.5108	71.5108	71.5108	71.5108	71.5108	71.5108	71.5108	71.5108
Net Throughput (gal/mo.):	42,000,000.000042,00	\circ	00,000.000042,0	000,000.000042,0	00,000.000042,0	00,000.000042,0	00,000.000042,0	000,000.000042,	000,000.000042,	000,000.000042,	000,000.000042,C	00,000,000
Shell Clingage Factor (bbl/1000 sqft):	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015
Average Organic Liquid Density (lb/gal):	6.8250	6.8250	6.8250	6.8250	6.8250	6.8250	6.8250	6.8250	6.8250	6.8250	6.8250	6.8250
Tank Diameter (ft):	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000
Roof Fitting Losses (lb):	0.0821	0.0821	0.0821	0.0821	0.0821	0.0821	0.0821	0.0821	0.0821	0.0821	0.0821	0.0821
Value of Vapor Pressure Function:	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
Vapor Molecular Weight (lb/lb-mole):	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800
Average Wind Speed (mph):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total Losses (lb):	72.0317	72.0317	72.0317	72.0317	72.0317	72.0317	72.0317	72.0317	72.0317	72.0317	72.0317	72.0317
							Roof Fitting Loss Factors	Factors				
Roof Fitting/Status				Quantity		KFa(Ib-mole/yr)	KFb(lb-mole/(yr mph^n))	mph^n))		ш	(ql)sessoT	
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	eted				က	1.60		0.00	0	00.	0.1702	
Automatic Gauge Float Well/Bolted Cover, Gasketed	eted				_	2.80		0.00	0	00.	0.0993	
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	d Mech. Actuation, Ga	sk.			_	0.47		0.02	0	.97	0.0167	
Roof Drain (3-in. Diameter)/90% Closed					-	1.80		0.14	_	10	0.0638	
Roof Leg (3-in. Diameter)/Fixed					30	0.00		0.00	0	0.	0.0000	
Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wipe	vr, w. Float, Sleeve, Wil	per			_	11.00		06.6	0	68	0.3900	
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask	Actuation, Gask.					6.20		1.20	0 +	0.94	0.2198	
Nill Velit (0-III. Diameter)/Weighted Medi. Actual	IIIOII, Gash.				_			5	-	8	0.0202	

TANKS 4.0.9d
Emissions Report - Detail Format
Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

035 (2004 Jet @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

			Losses(lbs)		
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
TK 034 - APPC463 Jet Fuel A	5.27	858.13	0.98	0.00	864.38
1,2,4-Trimethylbenzene	0.05	4.72	0.01	0.00	4.78
Cresols (mixed isomers)	0.00	0.04	00:00	0.00	0.04
Ethylbenzene	0.24	4.29	0.04	0.00	4.57
Isopropyl benzene	0.13	4.72	0.02	0.00	4.87
Naphthalene	0.03	12.87	0.01	0.00	12.91
Phenol	0.00	0.04	00:00	0.00	0.04
Unidentified Components	4.62	826.72	0.86	00:00	832.20
Xylenes (mixed isomers)	0.21	4.72	0.04	0.00	4.96

Tank Indentification and Physical Characteristics **Emissions Report - Detail Format TANKS 4.0.9d**

	035 (Wastewater @ 1MM bbl/mo)
Identification	User Identification:

035 (Wastewater @ 1MM bbl/mo) California

Tesoro Domed External Floating Roof Tank City: State: Company: Type of Tank: Description:

135.00 4,200,000.00 120.00 Tank Dimensions
Diameter (ft):
Volume (gallons):
Turnovers:

Light Rust White/White Internal Shell Condition: Shell Color/Shade: Shell Condition Paint Characteristics

Double Deck Detail Roof Characteristics Fitting Category Type:

Mechanical Shoe Rim-mounted Riveted Tank Construction and Rim-Seal System Secondary Seal Construction: Primary Seal:

Deck Fitting/Status

Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask. Roof Drain (3-in. Diameter)/90% Closed Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed Automatic Gauge Float Well/Bolted Cover, Gasketed

Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper Vacuum Breaker (10-in. Diam.) Weighted Mech. Actuation, Gask. Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask. Roof Leg (3-in. Diameter)/Fixed

30

Quantity

Meterological Data used in Emissions Calculations: Los Angeles C.O., California (Avg Atmospheric Pressure = 14.67 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

035 (Wastewater @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

		Da	Daily Liquid Surf.	H.	Liquid Bulk				Vapor	Liquid	Vapor		
!		Tem	Temperature (deg F)	eg F)	Temp	Vapor F	Vapor Pressure (psia)	ia)	Mol.	Mass	Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
TK 035 (Untreated Wastewater)	Jan	63.80	29.36	68.25	62.99	3.0930	N/A	`	0000.001			18.00	Option 1: VP60 = 3.093 VP70 = 3.093
1,2,4-Trimethylbenzene						0.0238	N/A	N/A	20.1900	0.0000	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Acetone						3.2267	N/A	N/A	58.0800	0.0000	0.0000	58.08	Option 2: A=7.117, B=1210.595, C=229.664
Ammonia						274.8300	N/A	N/A	34.0800	0.0000	0.0000	34.08	Option 1: VP60 = 274.83 VP70 = 274.83
Benzene						1.2965	N/A	N/A	78.1100	0.0000	0.0000	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Chloroform						2.6919	N/A	N/A	19.3900	0.0000	0.0000	119.39	Option 2: A=6.493, B=929.44, C=196.03
Diethanolamine (DEA)						0.0112	N/A	N/A	05.1400	0.0000	0.0000	105.14	Option 1: VP60 = .011157319 VP70 = .011157319
Ethylbenzene						0.1237	N/A	`	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hydrogen Sulfide						252.2440	N/A	A/A	34.0800	0.0000	0.0000	34.08	Option 1: VP60 = 238.39 VP70 = 274.83
Isopropyl benzene						0.0589	N/A	`	120.2000	0.0000	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Methyl alcohol						1.6239	N/A	N/A	32.0400	0.0000	0.0000	32.04	Option 2: A=7.897, B=1474.08, C=229.13
Methyl-tert-butyl ether (MTBE)						3.5584	N/A	N/A	88.1500	0.0000	0.0000	88.15	Option 1: VP60 = 3.22 VP70 = 4.11
Naphthalene						0.0051	N/A	N/A	128.1700	0.0000	0.0000	128.17	Option 3: A=47362, B=7.927
Phenanthrene						0.0000	N/A	•	178.2300	0.0000	0.0000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447
Phenol						0.0091	N/A	N/A	94.1100	0.0000	0.0000	94.11	Option 3: A=49644, B=8.587
Tetrachloroethylene						0.2342	N/A		165.8300	0.0000	0.0000	165.83	Option 2: A=6.98, B=1386.92, C=217.53
Toluene						0.3712	N/A		92.1300	0.0000	0.0000	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						3.0928	N/A	`	100.0038	1.0000	1.0000	18.00	
Xylenes (mixed isomers)						0.0978	N/A	`	106.1700	0.0000	0.0000	106.17	Option 2: A=7.005, B=1466, C=215
TK 035 (Untreated Wastewater)	Feb	64.91	60.15	29.69	62.99	3.0930	N/A	`	0000.001			18.00	Option 1: VP60 = 3.093 VP70 = 3.093
1,2,4-Trimethylbenzene						0.0248	N/A	N/A	20.1900	0.0000	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Acetone						3.3181	N/A	N/A	58.0800	0.0000	0.0000	58.08	Option 2: A=7.117, B=1210.595, C=229.664
Ammonia						274.8300	N/A	N/A	34.0800	0.0000	0.0000	34.08	Option 1: VP60 = 274.83 VP70 = 274.83
Benzene						1.3361	N/A	A/N	78.1100	0.0000	0.0000	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Chloroform						2.7703	N/A	`	19.3900	0.0000	0.0000	119.39	Option 2: A=6.493, B=929.44, C=196.03
Diethanolamine (DEA)						0.0112	N/A	`	105.1400	0.0000	0.0000	105.14	Option 1: VP60 = .011157319 VP70 = .011157319
Ethylbenzene						0.1285	N/A	N/A	06.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hydrogen Sulfide						256.2724	N/A		34.0800	0.0000	0.0000	34.08	Option 1: VP60 = 238.39 VP70 = 274.83
Isopropyl benzene						0.0613	N/A	•	120.2000	0.0000	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Methyl alcohol						1.6803	N/A	A/N	32.0400	0.0000	0.0000	32.04	Option 2: A=7.897, B=1474.08, C=229.13
Methyl-tert-butyl ether (MTBE)						3.6568	A/A	A/N	88.1500	0.0000	0.0000	88.15	Option 1: VP60 = 3.22 VP70 = 4.11
Naphthalene						0.0053	N/A	`	28.1700	0.0000	0.0000	128.17	Option 3: A=47362, B=7.927
Phenanthrene						0.0000	N/A	`	178.2300	0.0000	0.0000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447
Phenol						0.0095	N/A	A/A	94.1100	0.0000	0.0000	94.11	Option 3: A=49644, B=8.587
Tetrachloroethylene						0.2426	N/A	N/A	65.8300	0.0000	0.0000	165.83	Option 2: A=6.98, B=1386.92, C=217.53
Toluene						0.3840	N/A	N/A	92.1300	0.0000	0.0000	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						3.0928	N/A	N/A	00.0038	1.0000	1.0000	18.00	
Xylenes (mixed isomers)						0.1017	N/A	N/A	06.1700	0.0000	0.0000	106.17	Option 2: A=7.005, B=1466, C=215
TK 035 (Untreated Wastewater)	Mar	65.68	69.09	70.68	62.99	3.0930	N/A	N/A	0000000			18.00	Option 1: VP60 = 3.093 VP70 = 3.093
1,2,4-Trimethylbenzene						0.0256	N/A	N/A	20.1900	0.0000	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Acetone						3.3836	N/A	N/A	58.0800	0.0000	0.0000	58.08	Option 2: A=7.117, B=1210.595, C=229.664
Ammonia						274.8300	N/A	N/A	34.0800	0.0000	0.0000	34.08	Option 1: VP60 = 274.83 VP70 = 274.83
Benzene						1.3645	N/A	A/A	78.1100	0.0000	0.0000	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Chloroform						2.8265	N/A	N/A	19.3900	0.0000	0.0000	119.39	Option 2: A=6.493, B=929.44, C=196.03

Column C							0.0112	Z/A	Z/X	05.1400	0.000	0.000		Option 1. vr ou = .01110/30 B vr vo = .01010/30 B
1750 N. M. 126400 00000 00000 120.00	Ethylbenzene						0.1319	N/A	N/A	06.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
1,225 1,22	drogen Sulfide						259.1048	Ν	A/A	34.0800	0.0000	0.0000	34.08	Option 1: VP60 = 238.39 VP70 = 274.83
177299 NA NA 22 400 00000 00000 20 00000 20 00000 00000 00000 00000 00000 00000 0000	propyl benzene						0.0631	N/A	N/A	20.2000	0.0000	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
May 6564 6330 73.57 May	hyl alcohol						1.7209	N/A	A/A	32.0400	0.0000	0.0000	32.04	Option 2: A=7.897, B=1474.08, C=229.13
May	hyl-tert-butyl ether (MTBE)						3.7259	N/A	N/A	88.1500	0.0000	0.000	88.15	Option 1: VP60 = 3.22 VP70 = 4.11
Mail	hthalene						0.0055	N/A	N/A	28.1700	0.0000	0.0000	128.17	Option 3: A=47362, B=7.927
Apr. 67-37 61-26 72-91 66-99 30000 NA NA NA 168-8000 00000 00000 166-13	nanthrene						0.0000	N/A	N/A	78.2300	0.0000	0.0000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447
0.2467 WA WA 1618-500 00000 00000 166.15	lon						0.0098	N/A	A/A	94.1100	0.0000	0.0000	94.11	Option 3: A=49644, B=8.587
3.03522 N/A N/A 10161709 10000 02000 10000 02011 000000 02011 00000 02011 00000 02011 00000 02011 00000 02011 00000 02011 00000 02011 00000 02011 000000 02011 000000 02011 000000 02011 00000 02011 00000 02011 000000 02011 00000 02011 000000 02011	achloroethylene						0.2487	N/A	N/A	65.8300	0.0000	0.0000	165.83	Option 2: A=6.98, B=1386.92, C=217.53
Apr. 6737 6182 72.91 65.99 14.4 MA 106 100000 100000 10507 18.00 100000 10517 18.0 18.0 100000 10517 18.0 18.0 100000 10517 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	ene						0.3932	N/A	A/A	92.1300	0.0000	0.0000	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Agr 67.37 61.22 72.51 65.59 30.004 NA NA 100.0000 00000 10000 10017 1001	entified Components						3.0928	N/A		00.0038	1.0000	1.0000	18.00	
Apr 67.37 61.26 72.91 65.99 N/A N/A 130.0000 0.0000 120.19 4.6 67.37 61.26 72.91 65.99 0.0000 0.0000 54.08 2.4 6.0 7.4 50.0 0.0000 0.0000 54.08 2.4 6.0 7.4 50.0 0.0000 0.0000 54.08 2.4 6.0 7.4 50.0 0.0000 0.0000 54.08 2.4 7.4 50.0 0.0000 0.0000 0.0000 34.08 2.4 7.4 7.4 0.0000 0.0000 0.0000 10.00 2.4 7.4 0.0000 0.0000 0.0000 10.00 10.00 2.4 7.4 0.0000 0.0000 0.0000 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 </td <td>nes (mixed isomers)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1044</td> <td>N/A</td> <td></td> <td>06.1700</td> <td>0.0000</td> <td>0.000</td> <td>106.17</td> <td>Option 2: A=7.005, B=1466, C=215</td>	nes (mixed isomers)						0.1044	N/A		06.1700	0.0000	0.000	106.17	Option 2: A=7.005, B=1466, C=215
1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	55 (Untreated Wastewater)	Apr	67.37		72.91	62.99	3.0930	N/A	•	0000000			18.00	Option 1: VP60 = 3.093 VP70 = 3.093
273-8809 NA NA 34-980 00000 00000 34-98 14	+-Trimethylbenzene						0.0273	A/A		20.1900	0.0000	0.0000	120.19	Option 2: A=7.04383, B=1573,267, C=208.56
14276 NA NA 78 1400 00000 00000 3410 1410 1410 1410 14	one						3,5288	A/A		58,0800	0.0000	0.0000	58.08	Option 2: A=7.117, B=1210.595, C=229,664
14276 NA NA 119-390 00000 00000 78-11 19-39	onia						274.8300	Α/N	Α/N	34.0800	0.0000	0.0000	34.08	Option 1: VP60 = 274.83 VP70 = 274.83
2.9511 NA NA 1163.300 00000 00000 1163.79 0.0572 NA NA 105.1400 00000 00000 1063.71 0.0572 NA NA 105.1400 00000 00000 1063.71 0.0572 NA NA 105.1400 00000 00000 1063.71 0.0573 NA NA 105.1400 00000 10000 1163.71 0.0574 NA NA 105.1400 00000 10000 1163.71 0.0575 NA NA 105.170 00000 10000 1163.71 0.0575 NA NA 105.170 00000 10000 1163.71 0.0575 NA NA 105.170 00000 10000 1165.71 0.0575 NA NA 105.170 00000 10000 1165.71 0.0575 NA NA 105.170 00000 1165.7	zene						1.4276	A/A	N/A	78.1100	0.0000	0.0000	78.11	Option 2: A=6.905. B=1211.033. C=220.79
May 68.64 63.30 73.97 66.59 30.690 10.000	roform						2.9511	A/N	•	19.3900	0.000	0.0000	119.39	Option 2: A=6.493. B=929.44. C=196.03
0.1396 N/A N/A 106.1700 0.0000 0.0000 106.17 1.11 N/A N/A 102.200 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	hanolamine (DFA)						0.0112	A/N		05.1400	00000	0000	105 14	Option 1: VP60 = 011157319 VP70 = 011157319
1817 NA NA 128 1700 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000	dbenzene						0.1396	Y X		06.1700	0.0000	0.0000	106.17	Option 2: A=6.975. B=1424.255. C=213.21
0.00570 N/A N/A 1720,2000 0.0000 0.0000 122,024 3.87556 N/A N/A 172,2000 0.0000 0.0000 122,17 0.0006 N/A N/A 1722,00 0.0000 0.0000 122,17 0.00104 N/A N/A 1722,00 0.0000 0.0000 122,17 0.00104 N/A N/A 1722,00 0.0000 0.0000 122,17 0.0105 N/A N/A 1722,00 0.0000 0.0000 122,17 0.0106 N/A N/A 1722,00 0.0000 0.0000 122,13 0.0106 N/A N/A 100,0000 0.0000 122,13 0.0107 N/A N/A 100,0000 0.0000 122,13 0.0108 N/A N/A 100,0000 0.0000 122,13 0.0109 N/A N/A 1100,0000 0.0000 122,13 0.0109 N/A N/A 122,170 0.0000 122,14 0.0107 N/A N/A 1100,0000 0.0000 0.0000 122,14 0.0107 N/A N/A 1100,0000 0.0000 122,14 0.0107 N/A N/A 122,1700 0.0000 122,17 0.0000 122,17 0.0000 N/A N/A 172,1700 0.0000 0.0000 122,17 0.0000 122,17 0.0000 N/A N/A 120,1700 0.0000 0.0000 122,17 0.0000 122,17 0.0000 N/A N/A 120,1700 0.0000 0.0000 122,17 0.0000 122,13 0.0000 N/A N/A 120,1700 0.0000 0.0000 122,17 0.0000 N/A N/A 120,1700 0.0000 0.0000 122,13 0.0000 122,13 0.0000 N/A N/A 120,1700 0.0000 0.0000 122,13 0.0000 N/A N/A 120,1700 0.0000 0.0000 122,13 0.0000 122,13 0.0000 N/A N/A 120,1700 0.0000 0.0000 122,13 0.0000 122,13 0.0000 N/A N/A 120,1700 0.0000 0.0000 123,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.0000 122,13 0.00000 122,13 0.0000 122,13 0.0000 12	Sulfide						265 2299	Δ/N		34 0800	0000	00000	34.08	Ontion 1: VP60 = 238 39 VP70 = 274 83
18177 NA NA 20400 00000 00000 3204 38755 NA NA NA 81500 00000 00000 17323 00008 NA NA 1824700 00000 00000 17323 00104 NA NA 1824700 00000 00000 17323 00104 NA NA 1658300 00000 00000 17323 00262 NA NA NA 1658300 00000 00000 166.83 00262 NA NA NA 100.0038 00105 NA NA 100.0038 00105 NA NA 100.0038 00105 NA NA 100.0030 00000 100.000 00112 NA NA 100.0000 00000 100.01 00112 NA NA 100.0000 00000 100.01 00112 NA NA 100.0000 00000 100.01 001012 NA NA 100.0000 00000 100.01 000	rogeri cumac						0.0670	V/N	•	20 2000	00000	00000	120.20	Option 2: A=6 963 B=1460 793 C=207 78
3.756 N/A N/A 181500 0.0000 0.0000 128.17 0.0058 N/A N/A 182.100 0.0000 0.0000 178.23 0.0104 N/A N/A 182.200 0.0000 0.0000 178.23 0.0104 N/A N/A 162.200 0.0000 0.0000 178.23 0.0105 N/A N/A 165.800 0.0000 0.0000 165.13 0.0105 N/A N/A 100.0038 1.0000 0.0000 165.13 0.0105 N/A N/A 100.0038 1.0000 1.0000 165.13 0.0105 N/A N/A 100.0000 0.0000 165.13 0.0105 N/A N/A 119.3900 0.0000 179.19 0.0105 N/A N/A 119.3900 0.0000 179.19 0.0107 N/A N/A 119.3900 0.0000 0.0000 165.14 0.0107 N/A N/A 178.2000 0.0000 0.0000 165.14 0.0107 N/A N/A 178.2000 0.0000 0.0000 178.20 0.0108 N/A N/A 178.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	alcohol						1 8117	(N		32 0400	0000	0000	32.04	Option 2: A=7 807 B=1474 08 C=220 13
0.0000 NA NA 178.200 0.0000 0.0000 178.23	inglancollor						1.01.0		X X X	32.0400	0.000	0.0000	32.04	Option 4: Video - 2 22 Video - 4 4 4
0.0000 NA NA 178.2500 0.0000 0.0000 125.17 0.0000 NA NA 178.2500 0.0000 0.0000 14.13 0.0000 0.0100 0.0000 0.04.13 0.04138 NA NA 166.8500 0.0000 0.0000 0.92.13 0.04138 NA NA 106.1700 0.0000 0.0000 192.13 0.04138 NA NA 106.1700 0.0000 0.0000 192.13 0.04138 NA NA 106.1700 0.0000 0.0000 192.13 0.0428 NA NA 106.1700 0.0000 0.0000 165.17 0.0282 NA NA 119.3800 0.0000 0.0000 165.17 0.0282 NA NA 119.3800 0.0000 0.0000 165.17 0.0422 NA NA 119.3800 0.0000 0.0000 165.17 0.0422 NA NA 119.3800 0.0000 0.0000 165.17 0.0422 NA NA 119.3800 0.0000 0.0000 165.17 0.0423 NA NA 165.1700 0.0000 0.0000 165.17 0.0435 NA NA 165.1700 0.0000 0.0000 165.17 0.0436 NA NA 178.2300 0.0000 0.0000 165.17 0.0446 NA NA 178.2300 0.0000 0.0000 165.17 0.0446 NA NA 178.2300 0.0000 0.0000 165.17 0.0447 NA NA 178.2300 0.0000 0.0000 165.17 0.0448 NA NA 166.1700 0.0000 0.0000 165.17 0.0449 NA NA 166.800 0.0000 0.0000 165.14 0.0459 NA NA 166.800 0.0000 0.0000 0.0000 165.14 0.0459 NA NA 166.800 0.0000 0.0000 0.0000 165.14 0.0459	nyl-tert-butyl etner (MTBE)						3.8755	¥/2	¥ ;	88.1500	0.0000	0.0000	88.15	Option 1: VP60 = 3.22 VP70 = 4.11
May 66 64 63.30 73.97 65.99 10.000 NA NA 178.200 0.0000 0.0000 176.23 May 66 64 63.30 73.97 65.99 10.0287 NA NA 100.0000 0.0000 0.0000 16.17 May 66 64 63.30 73.97 65.99 10.0287 NA NA 100.0000 0.0000 0.0000 16.17 May 66 64 63.30 73.97 65.99 10.0287 NA NA 100.0000 0.0000 0.0000 16.17 May 66 64 63.30 73.97 65.99 10.0287 NA NA 100.0000 0.0000 0.0000 16.17 May 66 64 63.30 73.97 65.99 10.0287 NA NA 100.0000 0.0000 0.0000 16.17 May 66 64 63.30 73.97 65.99 10.0287 NA NA 100.0000 0.0000 0.0000 16.14 May 66 64 63.30 73.97 65.99 10.0287 NA NA 100.0000 0.0000 0.0000 16.14 May 66 64 63.30 73.97 65.99 10.0287 NA NA 100.0000 0.0000 0.0000 16.14 May 66 64 63.30 73.97 65.99 10.0287 NA NA 100.0000 0.0000 0.0000 16.14 May 66 64 63.30 73.97 65.99 10.0287 NA NA 100.0000 0.0000 0.0000 16.14 May 70 10.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00							0.0038	¥ :		28.1700	0.0000	0.0000	120.17	Option 3: A=4/362, B=7.92/
0.0194 NA NA 94.170 0.0000 0.0000 0.94.11	nanthrene						0.0000	¥ :		78.2300	0.0000	0.0000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447
May 68.64 63.30 73.97 65.99	lon						0.0104	K S		94.1100	0.0000	0.0000	94.11	Option 3: A=49644, B=8.587
3.0936 NAA NAA 100.00038 1,00000 182,03 3.0937 NAA NAA 100.000038 1,00000 106,17 3.0930 NAA NAA 100.00000 1,00000 106,17 3.09420 NAA NAA 100.00000 0,00000 106,17 3.09420 NAA NAA 120,19000 0,00000 106,17 3.09420 NAA NAA 120,1900 0,00000 119,39 0.0172 NAA NAA 119,3900 0,00000 119,39 0.0172 NAA NAA 119,3900 0,00000 119,39 0.0172 NAA NAA 119,3900 0,00000 106,17 0.01820 NAA NAA 110,100,00000 0,00000 106,17 0.01820 NAA NAA 110,100 0,00000 106,17 0.01820 NAA NAA 120,2000 0,00000 106,17 0.01820 NAA NAA 120,200 0,0000 106,17 0.01820 NAA NAA 120,200 0,00000 106,17 0.01820 NAA NAA 120,1900 0,00000 120,19 0.0193 NAA NAA 120,1900 0,00000 106,17 0.0193 NAA NAA 120,1900 0,00000 106,17 0.0203 NAA NAA 106,1700 0,00000 100,0000 120,19 0.0203 NAA NAA 106,1700 0,00000 0,00000 120,19 0.0195 NAA NAA 106,1700 0,00000 0,00000 120,19 0.0195 NAA NAA 119,3900 0,0000 0,00000 120,19 0.0195 NAA NAA 119,3900 0,0000 0,0000 0,0000 120,19 0.0195 NAA NAA 119,3900 0,0000 0,0000 0,0000 120,19 0.0195 NAA NAA 119,3900 0,0000 0,0000 0,0000 0,0000 0,0000	achloroethylene						0.2623	V/A		65.8300	0.0000	0.0000	165.83	Option 2: A=6.98, B=1386.92, C=217.53
30228 NAA NA 106.1003 1,0000 1,0000 166.77 01106 NAA NA 106.1000 0,0000 1,0000 166.77 01205 NAA NA 106.1000 0,0000 0,0000 1,0019 01224.8300 NAA NA 56.0800 0,0000 1,0019 56.08 274.8300 NAA NA 76.1000 0,0000 1,0019 56.08 01012 NAA NA 106.100 0,0000 0,0000 1,0019 56.08 01012 NAA NA 106.100 0,0000 0,0000 1,0019 56.08 01012 NAA NA 106.100 0,0000 1,0000 1,0019 56.08 01012 NAA NA 106.100 0,0000 1,0000 1,0019 56.08 01070 NAA NA 106.100 0,0000 0,0000 1,0019 56.08 01070 NAA NA 106.100 0,0000 0,0000 1,0019 56.08 01012 NAA NA 106.100 0,0000 0,0000 1,0019 56.08 01012 NAA NA 106.100 0,0000 0,0000 1,0019 56.09 01012 NAA NA 106.100 0,0000 0,0000 1,0019 56.09 01012 NAA NA 106.100 0,0000 0,0000 1,0000 1,0000 1,0000 1,0000 1,0019 56.09 0,0000 0,0000 0,0000 1,0011 1,0000 1,0000 1,0011 1,0000 1,0000 1,0011 1,0000 1,0011 1,0000 1,0011 1,0000 1,0011 1,0000 1,0011 1,0000 1,0011 1,0000 1,0011 1,0000 1,0011 1,0	ene						0.4136	¥.		92.1300	0.0000	0.0000	92.13	Option 2: A=6.954, B=1344.8, C=219.48
May 68.64 63.30 73.97 65.99 0.0106 NA NA 106.1700 0.0000 0.0000 106.17 10.0000 0.0287 NA NA 106.1700 0.0000 0.0000 106.17 10.0000 0.0287 NA NA 120.1900 0.0000 0.0000 120.19 10.0000 1.0000 1.00.19 10.0000 1.0000 1.00.19 10.0000 1.0000 1.00.19 10.0000 1.0000 1.00.19 10.0000 1.0000 1.00.19 10.0000 1.0000 1.0000 1.0000 1.00.19 10.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0	lentified Components						3.0928	N/A		00.0038	1.0000	1.0000	18.00	
May 68 64 63.30 73.97 65.99 3.0030 NA NA 100,0000 0.0000 120.19 3.64.20 NA NA 100,0000 0.0000 0.0000 120.19 3.64.20 NA NA 10A 56.090 0.0000 0.0000 120.19 3.64.20 NA NA 140.000 0.0000 0.0000 120.19 3.0482 NA NA 140.300 0.0000 0.0000 178.11 2.69.9568 NA NA NA 165.1400 0.0000 0.0000 116.14 2.69.9568 NA NA NA 120.2000 0.0000 0.0000 116.14 2.69.9568 NA NA NA 120.2000 0.0000 0.0000 116.14 3.9866 NA NA NA 120.2000 0.0000 0.0000 178.17 0.0061 NA NA NA 128.1700 0.0000 0.0000 178.17 0.0001 NA NA 128.170 0.0000 0.0000 178.17 0.0001 NA NA 128.170 0.0000 0.0000 116.17 0.0001 NA NA 1	nes (mixed isomers)						0.1106	N/A	•	06.1700	0.0000	0.0000	106.17	Option 2: A=7.005, B=1466, C=215
0.0287 NNA NNA 120,1900 0.0000 120,19 3.6420 NNA NNA 120,1900 0.0000 0.0000 120,19 1.4769 NNA NNA 161,400 0.0000 0.0000 34,08 3.0482 NNA NNA 165,1400 0.0000 0.0000 119,39 3.0482 NNA NNA 105,1400 0.0000 0.0000 165,14 0.1457 NNA NNA 105,1400 0.0000 0.0000 165,14 2.68 8588 NNA NNA 120,2000 0.0000 0.0000 165,14 0.1457 NNA NNA 120,2000 0.0000 100,01 3.9886 NNA NNA 128,1700 0.0000 0.0000 128,17 0.0001 NNA NNA 178,2300 0.0000 0.0000 178,23 0.0001 NNA NNA 178,2300 0.0000 0.0000 178,23 0.0001 NNA NNA 165,830 0.0000 0.0000 165,83 0.0109 NNA NNA 165,830 0.0000 0.0000 165,83 0.0109 NNA NNA 100,0000 0.0000 1.0000 18,000 1.155 NNA NNA 100,0000 0.0000 0.0000 128,17 0.1155 NNA NNA 100,0000 0.0000 0.0000 128,17 0.1155 NNA NNA 120,1900 0.0000 0.0000 128,17 1.5491 NNA NNA 121,9900 0.0000 0.0000 128,17 1.5491 NNA NNA 14,193900 0.0000 0.0000 165,14 0.0112 NNA NNA 14,193900 0.0000 0.0000 165,14 0.0147 NNA NNA 161,3900 0.0000 0.0000 165,14	5 (Untreated Wastewater)	May	68.64	63.30	73.97	62.99	3.0930	N/A	•	0000.00			18.00	Option 1: VP60 = 3.093 VP70 = 3.093
3.64820 NNA NNA 34,0800 0,0000 0,0000 34,080 1.4769 NNA NNA 119,3900 0,0000 0,0000 119,39 3.0482 NNA NNA 116,1400 0,0000 0,0000 116,39 0.0112 NNA NNA 1165,1400 0,0000 0,0000 105,14 0.0702 NNA NNA 106,1400 0,0000 0,0000 106,17 268.8688 NNA NNA 128,1700 0,0000 0,0000 32,04 1.8830 NNA NNA 128,1700 0,0000 0,0000 172,20 0.0001 NNA NNA 128,1700 0,0000 0,0000 178,23 0.0001 NNA NNA 168,8300 0,0000 0,0000 166,17 0.0109 NNA NNA 168,8300 0,0000 0,0000 166,17 0.0109 NNA NNA 168,8300 0,0000 0,0000 166,17 0.0109 NNA NNA 100,0000 0,0000 166,17 0.0115 NNA NNA 100,0000 0,0000 166,17 0.015 NNA NNA 100,0000 0,0000 166,17 0.0161 NNA NNA 100,0000 0,0000 106,17 1.88074 NNA NNA 100,0000 0,0000 0,0000 166,17 1.88074 NNA NNA 119,3900 0,0000 0,0000 166,17 1.8907 NNA NNA 119,3900 0,0000 0,0000 166,17 1.9908 0,0112 NNA NNA 119,3900 0,0000 0,0000 166,17 1.9909 0,0112 NNA NNA 119,3900 0,0000 0,0000 166,17 1.9009 0,0112 NNA NNA 119,3900 0,0000 0,0000 166,17	t-Trimethylbenzene						0.0287	N/A	•	20.1900	0.0000	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
274.8300 N/A N/A 74.0600 0.0000 0.0000 34.08 1,4769 N/A N/A 119.3800 0.0000 0.0000 176.11 2,004.858 N/A N/A 105.1400 0.0000 0.0000 106.17 2,004.858 N/A N/A 100.0000 0.0000 0.0000 106.17 2,004.85 N/A N/A N/A 178.2300 0.0000 0.0000 128.15 2,001.09 N/A N/A 100.0000 0.0000 106.13 2,004.85 N/A N/A 100.0000 0.0000 0.0000 165.83 2,004.85 N/A N/A N/A 100.0000 0.0000 0.0000 165.83 2,004.85 N/A N/A N/A 100.0000 0.0000 106.17 2,004.85 N/A N/A N/A 193.300 0.0000 0.0000 128.19 2,004.85 N/A N/A N/A N/A 193.300 0.0000 0.0000 128.19 2,004.85 N/A N/A N/A 193.300 0.0000 0.0000 128.19	one						3.6420	N/A	N/A	58.0800	0.0000	0.000	58.08	Option 2: A=7.117, B=1210.595, C=229.664
3.0482 N/A N/A 78,1100 0,0000 0,0000 119,39 3.0482 N/A N/A 105,1400 0,0000 0,0000 119,39 3.0482 N/A N/A 105,1400 0,0000 0,0000 115,39 3.0482 N/A N/A 105,1400 0,0000 0,0000 115,14 0,1457 N/A N/A 105,1400 0,0000 0,0000 105,14 0,1457 N/A N/A 106,1700 0,0000 0,0000 105,14 0,0001 1,8830 N/A N/A 178,2300 0,0000 0,0000 122,03 0,0001 N/A N/A 178,2300 0,0000 0,0000 128,17 0,0001 N/A N/A N/A 178,2300 0,0000 0,0000 178,23 0,0010 N/A N/A N/A 106,1700 0,0000 0,0000 165,83 0,0010 N/A N/A N/A 106,1700 0,0000 1,0000 1,001 18,00 0,01155 N/A N/A 106,1700 0,0000 0,0000 1,06,17 0,0001 1,0000 1,0000 1,0000 1,001 1,5401 N/A N/A 106,1700 0,0000 0,0000 1,06,17 1,5401 N/A N/A 19,3400 0,0000 0,0000 1,06,17 0,0501 N/A N/A 19,3400 0,0000 0,0000 1,06,17 0,0501 N/A N/A 119,3900 0,0000 0,0000 1,06,17 0,0501 N/A N/A N/A 119,3900 0,0000 0,0000 1,06,17 0,0501 N/A N/A N/A 119,3900 0,0000 0,0000 1,06,17	nonia						274.8300	N/A	N/A	34.0800	0.0000	0.000	34.08	Option 1: VP60 = 274.83 VP70 = 274.83
3.0482 N/A N/A 119.3900 0.0000 0.10939 0.0112 N/A N/A 119.3900 0.0000 0.0000 119.39 0.0112 N/A N/A 119.3900 0.0000 0.0000 106.14 268.8588 N/A N/A 120.2000 0.0000 0.0000 1.02.20 1.8830 N/A N/A 120.2000 0.0000 0.0000 32.04 1.8830 N/A N/A 128.1700 0.0000 0.0000 120.20 0.0006 N/A N/A 128.1700 0.0000 0.0000 128.17 0.0006 N/A N/A 128.1700 0.0000 0.0000 178.23 0.0006 N/A N/A 128.1700 0.0000 0.0000 165.83 0.0007 N/A N/A 128.2300 0.0000 0.0000 165.83 0.01155 N/A N/A 100.0038 1.0000 0.0000 165.83 3.0928 N/A N/A 100.0038 1.0000 0.0000 165.83 0.01155 N/A N/A 100.0000 0.0000 0.0000 165.14 1.5491 N/A N/A 19.3900 0.0000 0.0000 106.17 2.14.8300 N/A N/A 19.3900 0.0000 0.0000 106.17 0.0157 N/A N/A 19.3900 0.0000 0.0000 106.17	zene						1.4769	N/A	A/A	78.1100	0.0000	0.0000	78.11	Option 2: A=6.905, B=1211.033, C=220.79
0.0112 N/A N/A 105.1400 0.0000 0.0000 105.14 268.88 N/A N/A 120.2000 0.0000 0.0000 120.20 1.8830 N/A N/A 120.2000 0.0000 0.0000 120.20 1.8830 N/A N/A 120.2000 0.0000 0.0000 120.20 1.8830 N/A N/A 120.2000 0.0000 0.0000 120.20 0.0000 N/A N/A 128.1700 0.0000 0.0000 126.20 0.0109 N/A N/A 128.2300 0.0000 0.0000 178.23 0.0109 N/A N/A 178.2300 0.0000 0.0000 178.23 0.0109 N/A N/A 178.2300 0.0000 0.0000 178.23 0.0109 N/A N/A 100.038 1.0000 0.0000 165.83 0.02730 N/A N/A 100.038 1.0000 1.0000 165.73 0.01155 N/A N/A 100.0000 0.0000 0.0000 165.73 0.01155 N/A N/A 100.0000 0.0000 0.0000 165.73 0.01155 N/A N/A 100.0000 0.0000 0.0000 165.73 0.01155 N/A N/A 120.1900 0.0000 0.0000 165.73 0.01157 N/A N/A 119.3900 0.0000 0.0000 105.14 0.0501 N/A N/A 119.3900 0.0000 0.0000 105.14 0.0501 N/A N/A 119.3900 0.0000 0.0000 105.14	roform						3.0482	N/A	N/A	19.3900	0.0000	0.0000	119.39	Option 2: A=6.493, B=929.44, C=196.03
268588 NA NIA 106.1700 0.0000 0.0000 106.17 268588 NA NIA 120.2000 0.0000 0.0000 12.02 0.0702 NA NIA 120.2000 0.0000 0.0000 12.02 1.8830 NA NIA 120.2000 0.0000 0.0000 12.02 1.8830 NA NIA 120.2000 0.0000 0.0000 12.02 0.01061 NA NIA 178.2300 0.0000 0.0000 178.23 0.0109 NA NIA 178.2300 0.0000 0.0000 178.23 0.0109 NA NIA 178.2300 0.0000 0.0000 178.23 0.01155 NA NIA 100.0000 0.0000 1.00.01 18.00 0.1155 NA NIA 100.0000 0.0000 0.0000 120.13 0.01155 NA NIA 119.300 0.0000 0.0000 120.13 0.0115 NA NIA 119.300 0.0000 0.0000 106.17 0.01547 NA NIA 119.300 0.0000 0.0000 106.17	nanolamine (DEA)						0.0112	N/A		05.1400	0.0000	0.0000	105.14	Option 1: VP60 = .011157319 VP70 = .011157319
269,8588 N/A N/A 34,0800 0,0000 34,08 0,0702 N/A N/A 120,200 0,0000 120,20 1,880 0,070 N/A 1,880 0,0000 120,20 1,880 0,006 1,0000 0,0000 120,20 1,000 1,000 0,0000 0,0000 120,20 1,000 1,000 1,000 178,17 0,000 1,000 1,000 178,17 0,000 1,000 1,000 178,17 0,000 1,000 1,000 178,17 0,000 1,000 1,000 1,18,17 0,000 1,000 1,000 1,18,17 0,000 1,000 1,000 1,18,17 0,000 1,000 1,000 1,18,17 0,000 1,000 1,000 1,18,00 0,115 N/A N/A N/A 1,000 1,000 1,15 N/A N/A 1,000 0,000 1,000 1,15 N/A N/A 1,000 0,000 0,0	Ibenzene						0.1457	N/A		06.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
1,833 NA NA 120,2000 0,0000 1,20,20 1,883 NA NA 120,200 0,0000 0,0000 120,20 1,883 NA NA 128,1700 0,0000 0,0000 18,17 0,0006 NA NA 128,1700 0,0000 0,0000 18,17 0,0006 NA NA 128,1700 0,0000 1,20,20 1,78,23 0,0119 NA NA 168,230 0,0000 0,0000 16,53 3,0928 NA NA NA 100,0038 1,000 0,0000 16,53 3,0928 NA NA NA 100,0000 0,0000 16,53 3,0928 NA NA NA 100,0000 0,0000 16,53 3,0928 NA NA NA 100,0000 0,0000 16,17 1,5491 NA NA 13,3900 0,0000 0,0000 106,17 1,5491 NA NA 119,3900 0,0000 0,0000 106,17 0,155 NA NA NA 119,3900 0,0000 0,0000 106,17 0,156 NA NA NA 119,3900 0,0000 0,0000 106,17 0,157 NA NA NA 119,3900 0,0000 0,0000 106,17	ogen Sulfide						269.8588	N/A	A/A	34.0800	0.0000	0.0000	34.08	Option 1: VP60 = 238.39 VP70 = 274.83
18830 N/A N/A 82,040 0,0000 0,0000 32,04 3,9886 N/A N/A 128,1700 0,0000 0,0000 128,15 0,0000 N/A N/A 178,2300 0,0000 0,0000 178,23 0,0109 N/A N/A 178,2300 0,0000 0,0000 178,23 0,0109 N/A N/A 178,2300 0,0000 0,0000 178,23 0,02730 N/A N/A 100,0038 1,0000 1,0000 165,83 0,01155 N/A N/A 100,0038 1,0000 1,0000 1,001 1,000 0,01155 N/A N/A 100,1000 0,0000 1,001 1,000 0,01155 N/A N/A 100,1000 0,0000 1,001 1,000 0,0000 1,0000 1,001 1,540 N/A N/A 19,3800 0,0000 0,0000 1,001 1,540 N/A N/A 19,3800 0,0000 0,0000 1,05,14 1,540 N/A N/A 19,3800 0,0000 0,0000 1,05,14 1,541 N/A N/A 19,3800 0,0000 0,0000 1,05,14 1,541 N/A N/A 19,3800 0,0000 0,0000 1,05,14 1,541 N/A N/A 19,3800 0,0000 0,0000 1,05,14 1,542 N/A N/A 19,3800 0,0000 0,0000 1,05,14 1,543 N/A N/A 19,105,140 0,0000 0,0000 1,05,14	ropyl benzene						0.0702	N/A	•	20.2000	0.0000	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
3.9886 NA NA R81500 0.0000 0.0000 128.15 0.00661 NA NA 778.2300 0.0000 0.0000 128.17 0.00061 NA NA NA 778.2300 0.0000 0.0000 128.17 0.0109 NA NA NA 178.2300 0.0000 0.0000 178.23 0.0109 NA NA NA 165.830 0.0000 0.0000 165.83 0.02730 NA NA NA 100.0038 1.0000 0.0000 128.17 0.0155 NA NA NA 100.0000 0.0000 1.06.17 0.0156 NA NA NA 100.0000 0.0000 1.06.17 0.0156 NA NA NA 100.0000 0.0000 0.0000 128.08 0.0156 NA NA NA 198.3800 0.0000 0.0000 128.19 0.0157 NA NA NA 198.3800 0.0000 0.0000 128.19 0.0172 NA NA NA 198.3000 0.0000 0.0000 118.39 0.0172 NA NA NA 198.300 0.0000 0.0000 118.39 0.0157 NA NA NA 198.300 0.0000 0.0000 118.39	lyl alcohol						1.8830	N/A	A/A	32.0400	0.0000	0.0000	32.04	Option 2: A=7.897, B=1474.08, C=229.13
0,00061 N/A N/A 128.1700 0,0000 0,0000 128.17 0,0000 N/A N/A 178.2300 0,0000 0,0000 178.23 0,0000 N/A N/A 168.8300 0,0000 0,0000 165.83 0,4297 N/A N/A 100.0038 1,0000 0,0000 165.83 0,411 0,01155 N/A N/A 100.0038 1,0000 0,0000 165.83 0,111 0,01155 N/A N/A 100.0000 0,0000 1,0000 1,0000 0,0000 1,0000 1,0000 0,0000 1,0000 1,0000 0,0000 1,0019 0,0010 1,0000 0,0000 0,0000 1,0019 0,0112 N/A N/A 119.3300 0,0000 0,0000 1,0019 0,0112 N/A N/A 19.3300 0,0000 0,0000 1,0019 0,0112 N/A N/A 19.3300 0,0000 0,0000 1,0019 0,0112 N/A N/A 19.3300 0,0000 0,0000 1,0011	nyl-tert-butyl ether (MTBE)						3.9886	N/A	A/A	88.1500	0.0000	0.0000	88.15	Option 1: VP60 = 3.22 VP70 = 4.11
0,0000 N/A N/A 178.230 0,0000 178.23 0,0109 N/A N/A 178.230 0,0000 0,0000 178.23 0,04297 N/A N/A 92.1300 0,0000 0,0000 94.11 3,0928 N/A N/A 100.0038 1,0000 0,0000 95.13 3,0928 N/A N/A 100.0038 1,000 0,0000 16.17 3,0928 N/A N/A 100.0030 1,0000 1,0000 16.17 3,0928 N/A N/A 100.0000 0,0000 0,0000 16.17 3,8074 N/A N/A 120.1900 0,0000 0,0000 120.19 3,8074 N/A N/A 193.3900 0,0000 0,0000 120.19 1,5491 N/A N/A 119.3900 0,0000 0,0000 106.17 1,5491 N/A N/A 119.3900 0,0000 0,0000 106.17 0,1547 N/A N/A 119.3900 0,0000 0,0000 106.14	hthalene						0.0061	N/A	N/A	28.1700	0.0000	0.000	128.17	Option 3: A=47362, B=7.927
0.0109 N/A N/A 94.1100 0.0000 0.0000 94.11 0.2730 N/A N/A 100.0038 1.0000 0.0000 165.83 0.02730 N/A N/A 100.0038 1.0000 0.0000 92.13 0.01155 N/A N/A 100.0038 1.0000 1.0000 1.06.17 0.1155 N/A N/A 100.0038 1.0000 0.0000 126.19 0.1155 N/A N/A 100.0000 0.0000 1.06.17 0.1156 N/A N/A 100.0000 0.0000 0.0000 126.19 0.1248300 N/A N/A 119.3900 0.0000 0.0000 126.19 0.1541 N/A N/A 119.3900 0.0000 0.0000 126.19 0.1541 N/A N/A 119.3900 0.0000 0.0000 106.14 0.1541 N/A N/A 119.3900 0.0000 0.0000 106.14 0.1541 N/A N/A 119.3900 0.0000 0.0000 106.14	nanthrene						0.0000	N/A	•	78.2300	0.0000	0.0000	178.23	Option 1: VP60 = .00000447 VP70 = .00000447
0.2730 N/A N/A 165,830 0.0000 0.0000 165,83 0.4297 N/A N/A 92,130 0.0000 0.0000 165,83 0.4297 N/A N/A 100,0038 1,0000 1,0000 1,8.00 0.0307 N/A N/A 100,0000 0.0000 1,0000 1,8.00 0.0307 N/A N/A 100,0000 0.0000 0.0000 1,20.19 3.8074 N/A N/A 19,8000 0.0000 0.0000 1,20.19 3.8074 N/A N/A 119,390 0.0000 0.0000 1,20.19 1,5491 N/A N/A 119,390 0.0000 0.0000 1,9.39 0.0112 N/A N/A 105,100 0.0000 0.0000 1,05.14 0.1547 N/A N/A 105,100 0.0000 0.0000 1,05.14	lon						0.0109	N/A	A/A	94.1100	0.0000	0.0000	94.11	Option 3: A=49644, B=8.587
3.0828 NA NIA 100 0038 1,0000 0,0000 92.13 3.0828 NA NIA 100 0038 1,0000 1,0000 1,0000 1,0000 3.0828 NA NIA 100 0038 1,0000 1,0000 1,0000 1,0000 3.0826 NA NIA 100 0038 1,0000 0,0000 1,0000 1,0000 3.8074 NA NIA 100,0000 0,0000 0,0000 1,0019 3.8074 NA NIA 58,0800 0,0000 0,0000 1,0019 1.5807 NA NIA 119,3800 0,0000 0,0000 7,811 1.5807 NA NIA 119,3800 0,0000 0,0000 1,0019 3.1900 NA NIA 119,3800 0,0000 0,0000 1,0014 0,1547 NA NIA 105,1400 0,0000 0,0000 1,05,14	achloroethylene						0.2730	N/A	N/A	65.8300	0.0000	0.0000	165.83	Option 2: A=6.98, B=1386.92, C=217.53
3.0928 N/A N/A 100.0038 1,0000 1,0000 1617 Jun 70.44 64.85 76.03 65.99 3.0928 N/A N/A 106.1700 0,0000 0,0000 106.17 3.8074 N/A N/A 107.1900 0,0000 0,0000 120.19 3.8074 N/A N/A 187.390 0,0000 0,0000 120.19 1.5491 N/A N/A 119.3900 0,0000 0,0000 78.18 1.5491 N/A N/A 119.3900 0,0000 0,0000 106.14 0,1547 N/A N/A 119.3900 0,0000 0,0000 106.14	ene						0.4297	N/A	A/N	92.1300	0.0000	0.0000	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Jun 70,44 64.85 76.03 65.99 3.0830 NA NIA 106.1700 0.0000 0.0000 106.17 Jun 70,44 64.85 76.03 65.99 3.0830 NA NIA 100.0000 1.0000 1.2019 3.8074 NIA NIA 58.0800 0.0000 0.0000 120.19 274.8300 NIA NIA 34.0800 0.0000 0.0000 34.08 1.5491 NA NIA 119.3900 0.0000 0.0000 119.39 0.01547 NIA NIA 105.1400 0.0000 0.0000 106.17	lentified Components						3.0928	N/A	N/A	00.0038	1.0000	1.0000	18.00	
Jun 70.44 64.85 76.03 65.99 3.0930 N/A N/A 100.0000 1.0000 1.20.19 18.00 1.0000 1.0000 1.20.19 18.00 1.0000 1.0000 1.20.19 18.00 1.0000 1.0000 1.20.19 18.39 18.00 1.20.19 18.39 18.00 1.20.19 18.39 18.00 1.20.19 18.39 1	nes (mixed isomers)						0.1155	Ϋ́	, V	06.1700	0.0000	0.0000	106.17	Option 2: A=7.005, B=1466, C=215
0.0307 N/A N/A 120.1900 0.0000 0.0000 120.19 3.8074 N/A N/A 58.0800 0.0000 0.0000 58.08 274.8300 N/A N/A 119.3800 0.0000 0.0000 78.11 1.5901 N/A N/A 119.3800 0.0000 0.0000 105.14 0.0112 N/A N/A 105.1400 0.0000 0.0000 105.14 0.1547 N/A N/A 105.1400 0.0000 0.0000 105.14	35 (Untreated Wastewater)	Jun	70.44		76.03	62.99	3.0930	ΑN	V V	000000			18.00	Option 1: VP70 = 3.093 VP80 = 3.093
3.8074 N/A N/A 58.0800 0.0000 0.0000 58.08 274.8300 N/A N/A 74.0800 0.0000 0.0000 34.08 1.5491 N/A N/A 74.110.3800 0.0000 0.0000 78.11 3.1900 N/A N/A 119.3800 0.0000 0.0000 119.38 0.0112 N/A N/A 105.1400 0.0000 0.0000 105.14 0.1547 N/A N/A 105.1400 0.0000 0.0000 106.17	4-Trimethylbenzene						0.0307	ΑN	V/N	20.1900	0.0000	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
274.8300 NA N/A 34.0800 0.0000 0.0000 34.08 1.5491 NA N/A 78.1100 0.0000 0.0000 78.11 3.1900 NA N/A 119.3900 0.0000 0.0000 119.39 0.0112 NA N/A 105.1400 0.0000 0.0000 105.14 0.1547 NA N/A 105.140 0.0000 0.0000 106.17	tone						3.8074	ΑN	۷ ۷	58.0800	0.0000	0.0000	58.08	Option 2: A=7.117, B=1210.595, C=229.664
1,5491 N/A N/A 78,1100 0,0000 0,0000 78,11 3,1900 N/A N/A 119,3900 0,0000 0,0000 119,39 0,0112 N/A N/A 105,1400 0,0000 0,0000 105,14 0,1547 N/A N/A 105,140 0,0000 0,0000 1,05,14	nonia						274.8300	A/N	Α/N	34.0800	0.0000	0.0000	34.08	Option 1: VP70 = 274.83 VP80 = 274.83
3.1900 N/A N/A 119.3900 0.0000 0.0000 119.39 0.0112 N/A N/A 105.1400 0.0000 0.0000 105.14 0.1547 N/A N/A 106.1700 0.0000 0.0000 106.17	Zene						1.5491	Α.Χ	ΑX	78.1100	0.0000	0.0000	78.11	Option 2: A=6.905, B=1211.033, C=220.79
0.0112 N/A N/A 105.1400 0.0000 0.0000 105.14 0.1547 N/A N/A 106.1700 0.0000 0.0000 106.17	roform						3.1900	ΑN	, V	19.3900	0.0000	0.0000	119.39	Option 2: A=6.493, B=929.44, C=196.03
0.1547 N/A 106.1700 0.0000 0.0000 106.17	anolamine (DEA)						0.0112	¥ N	× ×	05.1400	0.0000	0.0000	105.14	Option 1: VP70 = .011157319 VP80 = .011157319
11001 00000 00000 001100 111 111 1110	henzene						0 1547	δ/N	ν Δ/Ν	06 1700	0000	00000	106 17	Ontion 2: A=6 975 B=1424 255 C=213 21
							5	2	(00.	0000	2000	ć	CONTROL 2: 0-0:0/0. D-1441,500. O-210:51

Option 3: A=47362, B=7.927 Option 1: VP70 = .00000447 VP80 = .00000447 Option 3: A=449644, B=8.867 Option 2: A=6.98, B=1386.92, C=217.53 Option 2: A=7.005, B=1486, C=215 Option 1: VP60 = 3.093 VP70 = 3.093 Option 1: VP60 = 3.093 VP70 = 3.093 Option 1: VP60 = 274.83 VP70 = 279.664 Option 1: VP60 = 274.83 VP70 = 274.83 Option 2: A=7.117, B=1210.595, C=229.664 Option 2: A=7.117, B=1210.595, C=229.664 Option 2: A=6.905, B=124.483 Option 2: A=6.905, B=124.483 Option 2: A=6.905, A=14.6.196.03	Option 1: VPG = 2.011b3/319 Option 2: A=6.975, B=1442.4256, C=2713.21 Option 2: A=6.975, B=1442.4256, C=2713.21 Option 2: A=6.9673, B=1450, C=229, 13 Option 1: VPG0 = 3.22 VP70 = 4.11 Option 1: VPG0 = 3.22 VP70 = 4.11 Option 1: VPG0 = 3.02 VP70 = 4.14 Option 1: VPG0 = 0.00000447 Option 1: VPG0 = 1.00000447 Option 3: A=49644, B=6.856 Option 2: A=6.964, B=1344.8, C=219.48 Option 2: A=6.965, B=14466, C=215 Option 1: VPG0 = 3.093 VP70 = 3.093	Option 2: A=7.04383, B=1573.267, C=208.56 Option 2: A=7.117, B=12016.595, C=229.664 Option 1: VP60 = 274.83 VP70 = 274.83 Option 2: A=6.905, B=1211.033, C=220.79 Option 1: VP60 = 0.1167319 VP70 = 0.11157319 Option 1: VP60 = 0.11157319 VP70 = 0.11157319 Option 1: VP60 = 0.11157319 VP70 = 2.13.21 Option 1: VP60 = 0.238.39 VP70 = 274.83 Option 1: VP60 = 2.38.39 VP70 = 2.14.83 Option 1: VP60 = 3.22.970 = 4.11 Option 1: VP60 = 0.00000447 Option 1: VP60 = 0.00000447 Option 3: A=6.965, B=1386.92, C=219.48 Option 2: A=6.965, B=1348.92 Option 2: A=6.965, B=1344.8, C=219.48 Option 2: A=6.965, B=1344.8, C=219.48	Option 2: A=7.04383, B=1573.267, C=208.56 Option 2: A=7.17, B=1210.595, C=229.664 Option 1: VP60 = 274.83 VP70 = 274.83 Option 2: A=6.905, B=1211.033, C=220.79 Option 1: VP60 = 0.7115.31, C=220.79 Option 1: VP60 = 0.7115.7319 Option 1: VP60 = 0.7115.7319 Option 1: VP60 = 238.39 VP70 = 274.83 Option 1: VP60 = 238.39 VP70 = 274.83 Option 2: A=6.893, B=146.0783, C=207.78 Option 2: A=7.897, B=1474.08, C=229.13 Option 3: A=47362, B=7.397 Option 1: VP60 = 3.22 VP70 = 4.11 Option 3: A=47362, B=7.397
	105.14 Opt 105.14 Opt 105.14 Opt 120.20 Opt 120.20 Opt 120.21 Opt 120.11 Opt 120.11 Opt 120.13 Opt 18.00 O		
0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000	000000 000000 000000 000000 000000 00000
000000000000000000000000000000000000000	0.0000 0.	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000	00000000000000000000000000000000000000
128.1700 178.2300 94.1100 165.8300 92.1300 100.0000 120.1900 58.0800 34.0800 78.1100 78.1100	105.1400 106.1700 34.0800 120.2000 32.0400 88.1500 178.1700 178.2300 94.1100 165.8300 100.0038 100.0038	120.1900 58.0800 34.0800 119.3900 119.1400 105.1400 34.0800 120.2000 32.0400 88.1500 128.1700 128.1700 128.1700 128.1700 128.1300 100.0038	120.1900 58.0800 34.0800 78.1100 119.3900 1105.1400 34.0800 32.0400 88.1500 178.2300 178.2300 94.1100
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		N N N N N N N N N N N N N N N N N N N
4 4 4 4 4 4 4 4 4 4 4 4 5 2 2 2 2 2 2 2		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0.0068 0.0000 0.0123 0.2995 0.4695 3.0928 3.0930 0.0295 3.0930 1.5065 3.1064	0.0112 0.0112 0.07218 0.0721 1.9260 4.0560 0.0063 0.0063 0.0013 0.2794 0.4394 3.0928	0.0259 3.4100 2748300 1.3759 2.8492 0.0112 0.0133 2.60.2253 0.0638 1.7374 3.7355 0.0000 0.0000 0.0009 0.2512 0.3969 3.0928 3.0928 0.0059	0.0237 3.2198 274.8300 1.2935 2.6859 0.0112 0.1234 251.9319 0.0587 1.6196 3.5507 0.0000
65.99	90 90 90	60 90 90	
74.33	70.59	88 12	
64.44	6. 6.	69	
69.38	ර ග ග	63.72	
Og	ò	9	
Naphthalene Phenautrene Phenoi Tetrachloroethylene Toluene Unidentified Components Xylenes (mixed isomers) Tk 035 (Untreated Wastewater) 1.2.4-Trimethylbenzene Acetone Ammonia Benzene Chloroform	Uptransoriamine (UEA) Ethylbenzene Hydrogen Sulfide Isopropyl benzene Methyl-tert-butyl ether (MTBE) Naphthalene Phenal Tetrachloroethylene Toluene Unidentified Components Xylenes (mixed isomers) TK O35 (Unireated Wastewater)	1.2.4-Trimethylbenzene Acetone Ammonia Benzene Chloroform Diethanolamine (DEA) Ethylbenzene Hydrogen Sulfide Isopropyl benzene Methyl-tert-butyl ether (MTBE) Methyl-tert-butyl ether (MTBE) Naphithalene Phenanthrene Phenanthrene Phenanthrene Components Toluene Unidentified Components Toluene Unidentified Components Toluene (mixed isomers)	1,2,4-Trimethylbenzene Acelone Amononia Benzene Chloroform Delthanolamine (DEA) Ettylbenzene Hybrozene Hybrozene Hybrozene Albrydrogen Sulfide Isopropyl benzene Methyl actorol Methyl-tert-butyl ether (MTBE) Naphthalene Phenantirrene

0.0000 0.0000 165.83	N/A 92.1300 0.0000 0.0000 92.13 Option 2: A=6.954, B=1344.8, C=219.48	1.0000 1.0000 18.00	0.000 0.0000
N/A	N/A		
	0.3703		
Tetrachloroethylene	Toluene	Unidentified Components	Xylenes (mixed isomers)

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

035 (Wastewater @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Rim Seal Losses (Ib):	73.1472	73.1472	73.1472	73.1472	73.1472	73.1472	73.1472	73.1472	73.1472	73.1472	73.1472	73.1472
Seal Factor A (Ib-mole/ft-vr):	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000
Seal Factor B (lb-mole/ft-vr (mph)^n):	03000	0.3000	03000	0.3000	03000	03000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000
Average Wind Speed (mph):	00000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Seal-related Wind Speed Exponent:	1 5000	1 5000	1 5000	1 5000	1 5000	15000	1 5000	1 5000	1 5000	1 5000	1 5000	1 5000
Value of Vapor Pressure Function:	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):	3.0930	3 0930	3 0930	3 0930	3 0930	3.0930	3 0930	3 0930	3 0930	3 0930	3 0930	3 0930
Tank Diameter (#):	135,000	135,000	135,000	135,000	135,000	135,000	135,000	135,000	135,000	135,000	135,000	135,0000
Vanor Molecular Weight (Ib/Ib-mole):	100.000	100 000	100 000	100 000	100.000	100,000	100 000	100.000	100 000	100 000	100.000	100.000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Withdrawal Losses (Ib):	87.4381	87.4381	87.4381	87.4381	87.4381	87.4381	87.4381	87.4381	87.4381	87.4381	87.4381	87.4381
Net Throughput (gal/mo.):	42,000,000.000042,0	000,000.000042,	000,000.000042,0	000,000.000042,	\sim	000,000.000042,0	ĕ	00,000.000042,0	000,000.000042,0	100,000.000042,0	100,000.000042,0	0000.000,00
Shell Clingage Factor (bbl/1000 sqft):	0.0015	0.0015	0.0015	0.0015		0.0015		0.0015	0.0015	0.0015	0.0015	0.0015
Average Organic Liquid Density (lb/gal):	8.3451	8.3451	8.3451	8.3451	8.3451	8.3451	8.3451	8.3451	8.3451	8.3451	8.3451	8.3451
Tank Diameter (ft):	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000	135.0000
Roof Fitting Losses (lb):	13.6837	13.6837	13.6837	13.6837	13.6837	13.6837	13.6837	13.6837	13.6837	13.6837	13.6837	13.6837
Value of Vapor Pressure Function:	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591	0.0591
Vapor Molecular Weight (lb/lb-mole):	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.000	100.0000	100.0000	100.0000	100.0000	100.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800	27.7800
Average Wind Speed (mph):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total Losses (lb):	174.2690	174.2690	174.2690	174.2690	174.2690	174.2690	174.2690	174.2690	174.2690	174.2690	174.2690	174.2690
						_	Roof Fitting Loss Factors	actors				
Roof Fitting/Status				QUE	Quantity	KFa(Ib-mole/yr)	KFb(lb-mole/(yr mph^n))	mph^n))		E	(q))sesso(
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	sketed				3	1.60		0.00	0.0	00	28.3723	
Automatic Gauge Float Well/Bolted Cover, Gasketed	sketed				_	2.80		0.00	ö	00	16.5505	
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask	ted Mech. Actuation, Ga	š.			-	0.47		0.02	Ö	97	2.7781	
Roof Drain (3-in. Diameter)/90% Closed					-	1.80		0.14	.	10	10.6396	
Roof Leg (3-in. Diameter)/Fixed					30	0.00		0.00	0	00	0.0000	
Slotted Guide-Pole/Sample Well/Gask Sliding Covr, w. Float, Sleeve, Wiper	Covr, w. Float, Sleeve, Wip	oer .			-	11.00		06.6	ö	89	65.0198	
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	. Actuation, Gask.				- ,	6.20		1.20	ö	0.94	36.6475	
Kim Vent (6-in. Diameter)/weignted Mech. Actuation, Gask.	Jation, Gask.				-	0.77		0.10	-	00	4.1967	

TANKS 4.0.9d
Emissions Report - Detail Format
Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

035 (Wastewater @ 1MM bbl/mo) - Domed External Floating Roof Tank Carson, California

			Losses(lbs)		
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
TK 035 (Untreated Wastewater)	77.778	1,049.26	164.20	00:00	2,091.23
1,2,4-Trimethylbenzene	0.00	00:00	00:00	00:00	0.00
Acetone	0.00	00:00	0.00	0.00	0.00
Ammonia	0.02	00:00	00:00	00:00	0.02
Benzene	0.00	00:00	0.00	0.00	0.00
Chloroform	0.00	00:00	00:00	0.00	0.00
Diethanolamine (DEA)	00.00	00:00	0.00	0.00	0.00
Ethylbenzene	0.00	00:00	0.00	0.00	0.00
Hydrogen Sulfide	0.00	00:00	0.00	00:00	0.00
Isopropyl benzene	0.00	00:00	0.00	0.00	0.00
Methyl alcohol	00:00	00:00	0.00	0.00	0.00
Methyl-tert-butyl ether (MTBE)	0.00	00:00	0.00	0.00	0.00
Naphthalene	0.00	00:00	00:00	00:00	0.00
Phenanthrene	00.00	00:00	0.00	0.00	0.00
Phenol	00.00	00:00	0.00	0.00	0.00
Tetrachloroethylene	00.00	00:00	0.00	00:00	0.00
Toluene	00.00	00:00	0.00	0.00	0.00
Unidentified Components	877.75	1,049.25	164.20	0.00	2,091.20
Xylenes (mixed isomers)	0.00	0.00	00:00	0.00	0.00

Carson Crude Tank Emission Calculations

[This page intentionally left blank.]

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

EIR- CCT (Jan 2019 - Updated Toxics	Long Beach	California	Tesoro	Domed External Floating Roof Tank	
User Identification:	City:	State:	Company:	Type of Tank:	- incitation C

		240.00	21,000,000.00	
New				
Description:	Tank Dimensions	Diameter (ft):	Volume (gallons):	

240.00 21,000,000.00 51.10	
	Light Rust Gray/Light Good
Diameter (ft): Volume (gallons): Turnovers:	Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition

Good	Pontoon Detail
Shell Condition	Roof Characteristics Type: Fitting Category

al System	Welded	Mechanical Shoe	Rim-mounted	
Tank Construction and Rim-Seal System	Construction:	Primary Seal:	Secondary Seal	Deck Fitting/Status

Deck Fitting/Status
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed
Automatic Gauge Float Well/Bolted Cover, Gasketed
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.
Roof Leg (3-in. Diameter)/Adjustable, Pontoon Area, Sock
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Sock
Sample Pipe or Well (24-in. Diam.)/Slotted Pipe-Sliding Cover, Gask.
Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.
Ladder Well (36 in Diam VSliding Course Cashata

34 + 101

Quantity

Meterological Data used in Emissions Calculations: Long Beach, California (Avg Atmospheric Pressure = 14.7 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

EIR- CCT (Jan 2019 - Updated Toxics) - Domed External Floating Roof Tank Long Beach, California

		Tem Tem	Daily Liquid Surf. Temperature (deg F)	H. F)	Liquid Bulk Temp	Vapor	Vapor Pressure (psia)	(g	Vapor	Liquid	Vapor	Z Z	Basis for Vanor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
TSO Light Crude Oil (RVP 10.5 psia)	Jan	65.62	58.33	72.92	66.55	8.7251	A/N	4×	50.0000			205.00	Option 4: RVP=10.5
Benzene						1.3622	N/A	Ϋ́	78.1100	0.0047	0.0030	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Benzo(a)anthracene						0.0000	N/A	V/A	228.3000	0.0000	0.0000	228.30	Option 1: VP60 = .000000003 VP70 = .000000003
Benzo(a)pyrene						0.0000	N/A	Ϋ́	252.3100	0.0000	0.000	252.31	Option 2: A=9.3, B=3700, C=270
Benzo(b)fluoroanthene						0.0000	Κ/N	Α/N	252.3000	0.0000	0.000	252.30	Option 1: VP60 = .0000000016 VP70 = .0000000016
Chrysene						0.0000	N/A	A/N	228.2800	0.0000	0.000	228.28	Option 2: A=7.30847, B=2609.83, C=148.439
Dibenzo(a,h)anthracene						0.0000	K/N	Α/Z	278.3000	0.0000	0.0000	278.30	Option 1: VP60 = .000000000000406 VP70 = .000000000000406
Ethylbenzene						0.1317	N/A	A/N	106.1700	0.0030	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						2.2108	N/A	ΑŅ	86.1700	0.0191	0.0199	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Hydrogen Sulfide						252.0000	N/A	ΑŅ	34.0000	0.0000	0.0053	34.00	Option 1: VP60 = 252 VP70 = 252
Isopropyl benzene						0.0629	N/A	ΥN	120.2000	0.0004	0.000.0	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0032	N/A	ΑŅ	128.2000	900000	0.000.0	128.20	Option 2: A=7.3729, B=1968.36, C=222.61
Toluene						0.3924	N/A	ΑN	92.1300	0.0119	0.0022	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						9.7194	N/A	ΑŅ	49.5673	0.9442	0.9686	220.68	
Xylenes (mixed isomers)						0.1098	N/A	ΚŅ	106.1700	0.0160	0.0008	106.17	Option 2: A=7.009, B=1462.266, C=215.11
TSO Light Crude Oil (RVP 10.5 psia)	Feb	67.37	59.29	75.45	66.55	8.9707	N/A	ΥN	50.0000			205.00	Option 4: RVP=10.5
Benzene						1.4278	N/A	ΑŅ	78.1100	0.0047	0.0031	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Benzo(a)anthracene						0.0000	N/A	ΑŅ	228.3000	0.0000	0.000	228.30	Option 1: VP60 = .000000003 VP70 = .000000003
Benzo(a)pyrene						0.0000	N/A	۷ N	252.3100	0.0000	0.000.0	252.31	Option 2: A=9.3, B=3700, C=270
Benzo(b)fluoroanthene						0.0000	N/A	N/A	252.3000	0.0000	0.000	252.30	Option 1: VP60 = .0000000016 VP70 = .0000000016
Chrysene						0.0000	N/A	ΥN	228.2800	0.0000	0.0000	228.28	Option 2: A=7.30847, B=2609.83, C=148.439
Dibenzo(a,h)anthracene						0.0000	N/A	Α/N	278.3000	0.0000	0.0000	278.30	Option 1: VP60 = .000000000000406 VP70 = .00000000000406
Ethylbenzene						0.1396	N/A	A/N	106.1700	0.0030	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						2.3104	N/A	ΑN	86.1700	0.0191	0.0202	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Hydrogen Sulfide						252.0000	N/A	ΥN	34.0000	0.0000	0.0052	34.00	Option 1: VP60 = 252 VP70 = 252
Isopropyl benzene						0.0670	N/A	۷ N	120.2000	0.0004	0.000.0	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0034	N/A	ΑN	128.2000	900000	0.000	128.20	Option 2: A=7.3729, B=1968.36, C=222.61
Toluene						0.4137	ΑN	Ϋ́	92.1300	0.0119	0.0022	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						9.9924	Υ :	∀ :	49.5535	0.9442	0.9683	220.68	
Aylenes (mixed isomers)						0.1180	Z .	Z :	100.1700	0.0100	0.0009	100.17	Option 2: A=7.009, B=1462.266, C=215.11
TSO Light Crude Oil (RVP 10.5 psia)	Mar	69.41	60.32	78.50	66.55	9.2643	ĕ Ş	∀	50.0000	0.0047	2000	205.00	Option 4: RVP=10.5
						0,000	X X X X X X X X X X	2 2	700.1100	400.0	0000	- 0.00	Option 2: A=0.903, B=1211.033, C=220.79
Denzo(a)ammacene						0.0000	¥	₹ <u>₹</u>	253.3000	0.0000	0.0000	250.30	Option 2: 4-6.3 B-3700 C-270
Delizo(a/pyrerie						3	[(202.0.202	2	2000		Option 2: A=8:0, E=0; 00; 0=1; 0
Benzo(b)fluoroanthene						0.0000	N/A	Υ/N	252.3000	0.000.0	0.0000	252.30	
Chrysene						0.0000	N/A	N/A	228.2800	0.0000	0.000	228.28	Option 2: A=7.30847, B=2609.83, C=148.439
Dibenzo(a,h)anthracene						0.0000	Κ V	N/A	278.3000	0.0000	0.0000	278.30	Option 1: VP60 = .000000000000406 VP70 = .00000000000406
Ethylbenzene						0.1495	N/A	Α/Z	106.1700	0.0030	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						2.4315	N/A	Υ/N	86.1700	0.0191	0.0206	86.17	Option 2: A=6.876, B=1171.17, C=224.41

1/19/2019

1/19/2019

Option 1: VP70 = .0000000016 VP80 = .000000016 Option 2: A=7.30847, B=2609.83, C=148.439 Option 1: VP70 = .000000000000406 VP80 = .0000000000000000000000000000000000	= .000000000000000000000000000000000000	Option 2: A7.009. B=1402.206. C=215.11 Option 4: RVP=10.5 Option 2: A=6.905, B=1211.033, C=220.79 Option 1: VP70 = .000000003 VP80 = .000000003 Option 1: VP70 = .000000015 VP80 = .0000000016 = .0000000016 Option 2: AF7.30847, B=2609.83, C=148.439 Option 2: AF7.30847, B=2609.83, C=148.439 Option 1: VP70 = .0000000000000000000000000000000000	Option 2: A=6.975, B=1424.255, C=213.21 Option 2: A=6.876, B=11717, C=224.41 Option 1: VP70 = 252 VP80 = 252 Option 2: A=6.876, B=14460.793, C=207.78 Option 2: A=6.854, B=1460.793, C=222.61 Option 2: A=7.3729, B=1968.36, C=222.61 Option 2: A=7.009, B=1462.286, C=215.11 Option 4: RVPP=10.5 Option 1: VP70 = .000000003 VP80 = .000000003 Option 1: VP70 = .0000000016 VP80 Explored 1: VP70 = .0000000016 VP80 Explored 1: VP70 = .0000000016 VP80	Cubrouncounce Chibon 1: VP70 = .00000000000406 VP80 Cption 1: VP70 = .00000000000406 VP80 Cption 2: A=6 876, B=1424.256, C=213.21 Option 2: A=6 876, B=1171.17, C=224.41 Option 1: VP70 = .252 VP80 = .252 Option 2: A=6.963, B=1460.793, C=222.61 Option 2: A=7.009, B=1965.36, C=222.61 Option 2: A=7.009, B=1462.266, C=215.11 Option 2: A=7.009, B=1462.266, C=215.11 Option 2: A=8.964, B=1344.8, C=219.48 Option 2: A=8.905, B=1211.033, C=220.79 Option 1: VP70 = .0000000003 VP80 = .000000003 Option 1: VP70 = .00000000016 VP80 = .0000000016 VP80 = .000000000000000000000000000000000000
252.30 228.28 278.30	106.17 86.17 34.00 120.20 128.20 92.13 220.68	106.17 205.00 78.11 228.30 252.31 252.30 228.28 278.30	106.17 34.00 120.20 128.20 92.13 220.68 106.17 206.00 78.11 228.30 252.31	228.28 278.30 106.17 86.17 34.00 128.20 128.20 92.13 220.68 106.17 226.08 252.30 252.30 252.30 262.31 266.30 106.17 86.17 86.17
0.0000.0	0.0002 0.0025 0.0003 0.0000 0.0006 0.0026	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0002 0.0224 0.0003 0.0000 0.0000 0.0010 0.0034 0.0000 0.0000 0.0000	0.0000 0.0000 0.0002 0.0019 0.0019 0.0000 0.
0.00000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0160 0.0047 0.0000 0.0000 0.0000 0.0000	0.0030 0.00191 0.0000 0.0006 0.0119 0.0160 0.0000 0.0000 0.0000	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000
252.3000 228.2800 278.3000	106.1700 86.1700 34.0000 120.2000 92.1300 94.4598	106.1700 50.0000 78.1100 228.3000 252.3100 252.3000 278.3000	106.1700 86.1700 120.2000 128.2000 92.1300 49.46.14 106.1700 50.0000 78.1100 228.3000 252.3100	228.2800 106.1700 86.1700 34.0000 120.2000 92.1300 92.1300 92.1300 92.1300 78.1100 228.3000 228.3000 228.2800 225.3100 227.3300 227.3300 228.2800 227.3300 228.2800 228.2800 227.3300 228.2800 228.2800 227.3300 228.2800 228.2800
4 4 4 2 2 2	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	4 4 4 4 4 4 4 Z Z Z Z Z Z Z Z Z Z Z Z Z	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
A A A	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		4 4 4 4 4 4 4 4 4 4 4 7 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0.0000	0.2058 3.0893 252.0000 0.1017 0.0056 0.5855 12.0013	0.1725 10.7489 1.9357 0.0000 0.0000 0.0000 0.0000	0.2045 3.0748 252.0000 0.01010 0.0056 0.5822 11.9665 0.714 10.3233 1.8089 0.0000 0.0000	0.0000 0.0000 0.1878 2.8852 252.0000 0.0022 0.0059 11.4938 0.1573 9.7779 1.6612 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
		66.55	66.55	66.55
		90.49	86.31	81.56
		67.58	96.46	64.16
		79.03	76.38	72.86
		Aug	des	Ö
Benzo(b/Nuoroanthene Chrysene Dibenzo(a.h)anthracene	Ethylbenzene Hexane (-n) Hydrogen Sulfide Isopropyl benzene Naphthalene Toluene Unidentified Components	Aylenes (mixed isomers) TSO Light Crude Oil (RVP 10.5 psia) Benzane Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoroanthene Chrysene	Ethylbenzene Hexane (-n) Hydrogen Sulfide Isopropyl benzene Naphthalene Toluene Unidentified Components Xylenes (mixed isomers) TSO Light Crude Oil (RVP 10.5 psia) Benzache Benzache anthracene Benzache)hiluoroanthene	Chrysene Dibenzo(ah.)an thracene Ethylbenzene Hexane (-n) Hydrogen Suffide Isoproyl benzene Naphthalene Toluene Unidentified Components Xylenes (mixed isomers) TSO Light Crude Oil (RVP 10.5 psia) Benzene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoroanthene Chrysene Chrysene Ethylbenzene Ethylbenzene Hexane (-n) Hydrogen Suffide Isopropyl benzene Naphthalene

Page 5 of 9

Option 2: A=6.954, B=1344.8, C=219.48	Option 2: A=7.009, B=1462.266, C=215.11	Option 4: RVP=10.5	Option 2: A=6.905, B=1211.033, C=220.79	Option 1: VP60 = .000000003 VP70 = .000000003	Option 2: A=9.3, B=3700, C=270	Option 1: VP60 = .0000000016 VP70 = .000000016	Option 2: A=7.30847, B=2609.83, C=148.439	Option 1: VP60 = .000000000000406 VP70 = .0000000000406	Option 2: A=6.975, B=1424.255, C=213.21	Option 2: A=6.876, B=1171.17, C=224.41	Option 1: VP60 = 252 VP70 = 252	Option 2: A=6.963, B=1460.793, C=207.78	Option 2: A=7.3729, B=1968.36, C=222.61	Option 2: A=6.954, B=1344.8, C=219.48		Option 2: A=7.009, B=1462.266, C=215.11	Option 4: RVP=10.5	Option 2: A=6.905, B=1211.033, C=220.79	Option 1: VP60 = .000000003 VP70 = .000000003	Option 2: A=9.3, B=3700, C=270	Option 1: VP60 = .0000000016 VP70 = .000000016	Option 2: A=7.30847, B=2609.83, C=148.439	Option 1: VP60 = .000000000000406 VP70 = .0000000000406	Option 2: A=6.975, B=1424.255, C=213.21	Option 2: A=6.876, B=1171.17, C=224.41	Option 1: VP60 = 252 VP70 = 252	Option 2: A=6.963, B=1460.793, C=207.78	Option 2: A=7.3729, B=1968.36, C=222.61	Option 2: A=6.954, B=1344.8, C=219.48		Option 2: A=7.009, B=1462.266, C=215.11
92.13 220.68	106.17	205.00	78.11	228.30	252.31	252.30	228.28	278.30	106.17	86.17	34.00	120.20	128.20	92.13	220.68	106.17	205.00	78.11	228.30	252.31	252.30	228.28	278.30	106.17	86.17	34.00	120.20	128.20	92.13	220.68	106.17
0.0024	6000.0		0.0031	0.000	0.000	0.0000	0.0000	0.0000	0.0002	0.0204	0.0051	0.000	0.000	0.0023	0.9681	6000.0		0.0030	0.000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0198	0.0053	0.000	0.000	0.0022	0.9686	0.0008
0.0119	0.0160		0.0047	0.0000	0.0000	0.0000	0.0000	0.0000	0.0030	0.0191	0.0000	0.0004	9000.0	0.0119	0.9442	0.0160		0.0047	0.0000	0.0000	0.0000	0.0000	0.0000	0.0030	0.0191	0.0000	0.0004	9000.0	0.0119	0.9442	0.0160
92.1300 49.5100	106.1700	50.0000	78.1100	228.3000	252.3100	252.3000	228.2800	278.3000	106.1700	86.1700	34.0000	120.2000	128.2000	92.1300	49.5449	106.1700	50.0000	78.1100	228.3000	252.3100	252.3000	228.2800	278.3000	106.1700	86.1700	34.0000	120.2000	128.2000	92.1300	49.5690	106.1700
A A Z Z	N/A	A/N	N/A	A/A	N/A	N/A	N/A	Α/Z	N/A	N/A	N/A	A/N	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α/N	N/A	A/A	N/A	N/A	N/A	N/A	N/A	Ϋ́Z
A A	N/A	N/A	N/A	Ν	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ΝA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Ν	N/A	N/A	N/A	N/A	N/A	N/A
0.4870	0.1401	9.1259	1.4697	0.0000	0.0000	0.0000	0.0000	0.0000	0.1448	2.3742	252.0000	0.0697	0.0036	0.4274	10.1648	0.1209	8.6945	1.3542	0.0000	0.0000	0.0000	0.0000	0.0000	0.1307	2.1985	252.0000	0.0624	0.0031	0.3898	9.6854	0.1090
		66.55															66.55														
		76.12															72.46														
		60.79															58.35														
		68.45															65.40														
		Nov															Dec														
Toluene Unidentified Components	Xylenes (mixed isomers)	TSO Light Crude Oil (RVP 10.5 psia)	Benzene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoroanthene	Chrysene	Dibenzo(a,h)anthracene	Ethylbenzene	Hexane (-n)	Hydrogen Sulfide	Isopropyl benzene	Naphthalene	Toluene	Unidentified Components	Xylenes (mixed isomers)	'SO Light Crude Oil (RVP 10.5 psia)	Benzene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoroanthene	Chrysene	Dibenzo(a,h)anthracene	Ethylbenzene	Hexane (-n)	Hydrogen Sulfide	Isopropyl benzene	Naphthalene	Toluene	Unidentified Components	Xylenes (mixed isomers)

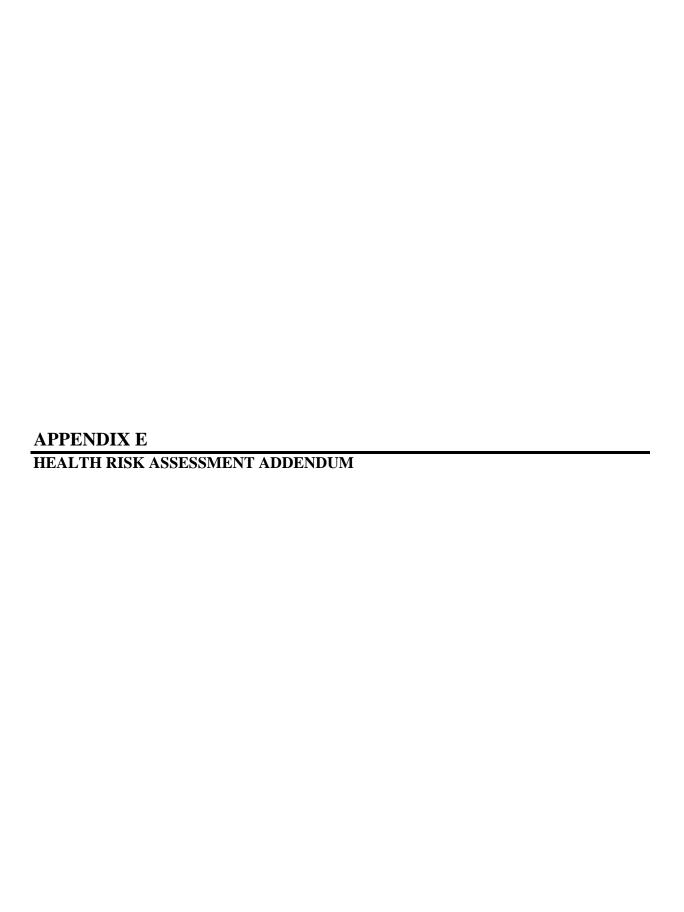
TANKS 4.0.9d
Emissions Report - Detail Format
Detail Calculations (AP-42)

EIR- CCT (Jan 2019 - Updated Toxics) - Domed External Floating Roof Tank Long Beach, California

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Rim Seal Losses (lb):	53.1055	55.4944	58.4707	63.4233	66.8972	70.6398	76.5257	76.0836	70.5227	64.0346	57.0502	52.8148
Seal Factor A (lb-mole/ft-yr):	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Average Wind Speed (mph):	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000
Seal-related Wind Speed Exponent:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Value of Vapor Pressure Function:	0.2213	0.2312	0.2436	0.2643	0.2787	0.2943	0.3189	0.3170	0.2938	0.2668	0.2377	0.2201
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):	8.7251	8.9707	9.2643	9.7236	10.0253	10.3327	10.7812	10.7489	10.3233	9.7779	9.1259	8.6945
Tank Diameter (ft):	240.0000	240.0000	240.0000	240.0000	240.0000	240.0000	240.0000	240.0000	240.0000	240.0000	240.0000	240.0000
Vapor Molecular Weight (Ib/Ib-mole):	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	50.0000	20.0000
Product Factor:	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
With drawing 00000 (15):	0300 330	0200 0300	0200 020	256 2052	256 2052	020000	0200 020	256 2052	256 2062	256 2052	0200 020	0200 020
Williamal Losses (10).	330.3632	125,	330.3632	330.3632	330.3632	330.3632	330.3632	330.3632	330.3632	330.3632	330.3632	330.3632
Shell Clingage Factor (bbl/1000 soft):	0.0060	,	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060
Average Organic Liquid Density (Ih/gal)	7 1000	7 1000	7 1000	7 1000	7 1000	7 1000	7 1000	7 1000	7 1000	7 1000	7 1000	7 1000
Tank Diameter (ft):	240.0000	240.0000	240.0000	240.0000	240.0000	240.0000	240,0000	240,0000	240.0000	240.0000	240.0000	240.0000
Roof Fitting Losses (lb):	125.1187	130.7472	137.7594	149.4280	157.6127	166.4302	180.2978	179.2561	166.1544	150.8683	134.4127	124.4338
Value of Vapor Pressure Function:	0.2213	0.2312	0.2436	0.2643	0.2787	0.2943	0.3189	0.3170	0.2938	0.2668	0.2377	0.2201
Vapor Molecular Weight (lb/lb-mole):	20.0000	20.0000	50.0000	50.0000	50.0000	50.0000	20.0000	20.0000	20.0000	20.0000	50.0000	20.0000
Product Factor:	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	339.2700	339.2700	339.2700	339.2700	339.2700	339.2700	339.2700	339.2700	339.2700	339.2700	339.2700	339.2700
Average Wind Speed (mph):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total Losses (lb):	534.6094	542.6269	552.6154	569.2366	580.8951	593.4553	613.2088	611.7250	593.0624	571.2882	547.8481	533.6338
							Roof Fitting Loss Factors	Factors				
Roof Fitting/Status				Qua	Quantity	KFa(Ib-mole/yr)	KFb(lb-mole/(yr mph^n))	mph^n))		Е	(q))sesso	
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	eted				5	1.60		0.00	0.0	00	42.5367	
Automatic Gauge Float Well/Bolted Cover, Gasketed	eted				2	2.80		0.00	0.0	00	29.7757	
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	Actuation, Gask.				_	6.20		1.20	0.9	94	32.9659	
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	ed Mech. Actuation, Ga	sk.			_	0.47		0.02	0.0	37	2.4990	
Roof Leg (3-in. Diameter)/Adjustable, Pontoon Area, Sock	rea, Sock				34	1.20		0.14	0.0	35	216.9370	
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Sock	sa, Sock				101	0.49		0.16	Ö	4	263.1424	
Sample Pipe or Well (24-in. Diam.)/Slotted Pipe-Sliding Cover, Gask	Sliding Cover, Gask.				4	43.00		0.00	0.0	0 :	914.5382	
Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask	ation, Gask.					0.71		0.10	1.00	2 2	3.7751	
Laudel Well (30-11). Dialit./Joinning Cover, Gasher	ופת				_	00:00		9.0	õ	8	291.1900	

1/19/2019

TANKS 4.0.9d
Emissions Report - Detail Format
Individual Tank Emission Totals


Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December


EIR- CCT (Jan 2019 - Updated Toxics) - Domed External Floating Roof Tank Long Beach, California

			Losses(lbs)		
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
TSO Light Crude Oil (RVP 10.5 psia)	765.06	4,276.62	1,802.52	00:00	6,844.20
Benzene	2.50	20.19	5.89	00:00	28.58
Benzo(a)anthracene	0.00	80:0	0.00	00:00	0.08
Benzo(a)pyrene	0.00	0.03	0.00	00:00	0.03
Benzo(b)fluoroanthene	0.00	0.17	0.00	00:00	0.17
Chrysene	0.00	0.16	0.00	00:00	0.16
Dibenzo(a,h)anthracene	0.00	0.01	0.00	00:00	0.01
Ethylbenzene	0.16	12.87	0.38	00:00	13.42
Hexane (-n)	16.24	81.73	38.27	00:00	136.23
Hydrogen Sulfide	3.65	0.19	8.60	00:00	12.44
Isopropyl benzene	0.01	1.87	0.03	00:00	1.91
Naphthalene	0.00	2.35	0.00	00:00	2.35
Toluene	1.85	89.03	4.37	00:00	56.90
Unidentified Components	739.92	4,037.87	1,743.28	00:00	6,521.07
Xylenes (mixed isomers)	0.72	68.43	1.70	00:00	70.85

1/19/2019

[This page intentionally left blank.]

HEALTH RISK ASSESSMENT ADDENDUM

FOR THE

TESORO LOS ANGELES REFINERY INTEGRATION AND COMPLIANCE PROJECT

CARSON AND WILMINGTON, CALIFORNIA

Prepared by:

Ashworth Leininger Group

601 East Daily Drive, Suite 302 Camarillo, CA 93010 (805) 764-6010

APRIL 2019

[This page intentionally left blank.]

Appendix E

SECTION	<u>PAGE</u>
1.0	EXECUTIVE SUMMARY1
2.0	INTRODUCTION
3.0	BACKGROUND3
3.1	HEALTH EFFECTS
3.2	SIGNIFICANCE CRITERIA3
4.0	RISK ASSESSMENT APPROACH
4.1	EMISSION SOURCES
4.2	EXPOSURE ASSESSMENT
5.0	HEALTH RISK RESULTS - OPERATIONS
5.1	CANCER RISK
5.1.1	FEIR Sources with 2012-2016 Meteorological Dataset
5.1.2	FEIR Addendum Sources with 2012-2016 Meteorological Dataset 11
5.2	CHRONIC AND ACUTE RISK
5.2.1	FEIR Sources with 2012-2016 Meteorological Dataset
5.2.2	FEIR Addendum Sources with 2012-2016 Meteorological Dataset 11
5.3	CANCER BURDEN12
6.0	IMPACT OF CONSTRUCTION EMISSIONS
6.1	EXPOSURE ASSESSMENT
6.2	HEALTH RISK RESULTS
6.2.1	Cancer Risk
6.2.2	Chronic Risk

Appendix E

LIST OF TA	ABLES PAGE
Table 1.	Summary of Toxic Risk Increase
Table 2.	Tank 35 Circular Area Source Parameters
Table 3.	Tank 35 Modeled Emission Rates
Table 4.	C3 Splitter Volume Source Parameters7
Table 5.	C3 Splitter Modeled Emission Rates
Table 6.	CCT Modeled Emission Rates8
Table 7.	Cancer Burden Calculation
Table 8.	Summary of Maximum Offsite Cancer and Non-Cancer Risks
Table 9.	Summary of Project Cancer Risks at the Most Exposed Sensitive Receptors20
Table 10.	Cancer Risk by Pollutant at MEIR (FEIR Addendum Sources)
Table 11.	Cancer Risk by Source at MEIR (FEIR Addendum Sources)
Table 12.	Cancer Risk by Pollutant at MEIW (FEIR Addendum Sources)
Table 13.	Cancer Risk by Source at MEIW (FEIR Addendum Sources)
Table 14.	Chronic Risk by Pollutant at Maximum Exposed Individual (FEIR Addendum Sources). 29
Table 15.	Chronic Risk by Source at Maximum Exposed Individual (FEIR Addendum Sources) 30
Table 16.	Acute Risk by Pollutant at Maximum Exposed Individual (FEIR Addendum Sources) 33
Table 17.	Acute Risk by Source at Maximum Exposed Individual (FEIR Addendum Sources) 34
Table 18.	Summary of Construction Emissions
Table 19:	Summary of Maximum Project Offsite Cancer and Non-cancer Risks (Operation Sources
	Only)
Table 20:	Summary of Maximum Project Offsite Cancer and Non-cancer Risks (Construction
	Sources Only)
Table 21:	Summary of Maximum Project Offsite Cancer and Non-cancer Risks (Operation Plus
	Construction Sources)
Tahla 22	Summary of Project Cancer Risks at the Most Exposed Sensitive Recentors 43

ii APRIL 2019

Appendix E

LIST OF FIG	<u>PAGE</u>
Figure 1.	Tesoro Los Angeles Refinery
Figure 2.	Addendum 1 Modeled Sources Location Map9
Figure 3.	Location of Maximum Calculated Health Risks, FEIR Sources with 2012-2016
	Meteorological Data
Figure 4.	Contours of Residential Cancer Risk, per million exposed, FEIR Sources with 2012-2016
	Meteorological Data
Figure 5.	Contours of Worker Cancer Risk, per million exposed, FEIR Sources with 2012-2016
	Meteorological Data
Figure 6.	Location of Maximum Calculated Health Risks, FEIR Addendum Sources with 2012-2016
	Meteorological Data
Figure 7.	Contours of Residential Cancer Risk, per million exposed, FEIR Addendum Sources with
	2012-2016 Meteorological Data
Figure 8.	Contours of Worker Cancer Risk, per million exposed, FEIR Addendum Sources with
	2012-2016 Meteorological Data
Figure 9.	Location of Maximum Calculated Health Risks, FEIR Addendum Sources Plus
	Construction Sources with 2012-2016 Meteorological Data
Figure 10.	Contours of Residential Cancer Risk, per million exposed, FEIR Addendum Sources Plus
	Construction Sources with 2012-2016 Meteorological Data
Figure 11.	Contours of Worker Cancer Risk, per million exposed, FEIR Addendum Sources Plus
	Construction Sources with 2012-2016 Meteorological Data 42

LIST OF ATTACHMENTS

Attachment A Windroses

Attachment B Air Dispersion Modeling Files¹

E-5

¹ Available separately from South Coast AQMD.

[This page intentionally left blank.]

1.0 EXECUTIVE SUMMARY

The Los Angeles Refinery Integration and Compliance (LARIC) project is intended to further integrate the Carson Operations with the adjacent Tesoro Wilmington Operations to form the Tesoro Los Angeles Refinery (Refinery). Toxic pollutant modeling was conducted to support the Environmental Impact Report required by the California Environmental Quality Act (CEQA) for this project. The purpose of the analysis was to determine if project toxic chemical emissions exceed significance thresholds.

Following release of the May 2017 Final Environmental Impact Report (FEIR), Tesoro proposes three modifications to project components of the FEIR. Specifically, Tesoro is proposing to: 1) relocate propane recovery from the Carson Operations Naphtha Isomerization Unit to the Carson Operations C3 Splitter Unit; 2) include increased throughput of the Carson Operations Tank 35, and, 3) update the toxic air contaminant (TAC) speciation for the crude oil storage tanks at the Carson Crude Terminal (CCT) with additional data. This HRA Addendum also incorporates modifications to the construction schedule and associated changes to the construction diesel particulate matter emissions. Additionally, this HRA Addendum evaluates these emissions using an updated meteorological dataset which was released after certification of the May 2017 FEIR.

This analysis demonstrates that health risk associated with the project is still expected to be less than significant. **Table 1** below summarizes the May 2017 FEIR health risks modeled with the original and updated meteorological datasets, as well as the proposed changes modeled with the updated meteorological dataset.

Table 1. Summary of Toxic Risk Increase

	(Operations Only	1	Operations Plus Construction			
Receptor	FEIR sources (original, 06- 11 met data)	FEIR sources (12-16 met data)	FEIR + CCT with updated ERs + T35 + C3 Splitter - Naplsom (12- 16 met data)	FEIR sources + Construction (original, 06- 11 met data)	FEIR sources + Construction (12-16 met data)	FEIR + CCT with updated ERs + T35 + C3 Splitter - Naplsom + Construction (12-16 met data)	
Maximum cancer risk (per millio	n)						
Residential receptor	3.7	2.8	2.9	5.7	4.7	4.7	
Offsite workplace receptor	9.3	7.0	7.0	9.3	7.0	7.0	
Sensitive receptor	2.1	2.4	2.4	4.2	4.1	4.1	
Maximum chronic risk							
Residential receptor	0.030	0.021	0.024	0.033	0.023	0.025	
Offsite workplace receptor	0.106	0.078	0.085	0.115	0.089	0.096	
Sensitive receptor	0.025	0.019	0.019	0.027	0.019	0.019	
Maximum 8-Hr chronic risk			•	•			
Residential receptor	0.006	0.005	0.005	0.006	0.005	0.005	
Offsite workplace receptor	0.108	0.084	0.084	0.108	0.084	0.084	
Sensitive receptor	0.005	0.006	0.006	0.005	0.006	0.006	

	(Operations Only	1	Operations Plus Construction		
Receptor	FEIR sources (original, 06- 11 met data)	FEIR sources (12-16 met data)	FEIR + CCT with updated ERs + T35 + C3 Splitter - Naplsom (12- 16 met data)	FEIR sources + Construction (original, 06- 11 met data)	FEIR sources + Construction (12-16 met data)	FEIR + CCT with updated ERs + T35 + C3 Splitter - Naplsom + Construction (12-16 met data)
Maximum acute risk						
Residential receptor	0.052	0.039	0.040	0.052	0.039	0.040
Offsite workplace receptor	Offsite workplace receptor 0.052		0.076	0.052	0.076	0.076
Sensitive receptor	0.010	0.009	0.009	0.010	0.009	0.009

The complete health risk assessment is presented below.

2.0 INTRODUCTION

This HRA Addendum is being conducted to support the FEIR Addendum for the proposed project as required by CEQA. The purpose of the analysis is to determine if project emissions result in an unacceptable level of cancer, chronic, or acute health risk. The approach used in this assessment is described later in this report and is based on written SCAQMD guidelines and discussions with SCAQMD staff.

This HRA Addendum demonstrates that the proposed project modifications do not change the original conclusion that project emissions will not cause a significant increase in health risk in the vicinity of the refinery.

3.0 BACKGROUND

3.1 HEALTH EFFECTS

A background discussion of cancer and non-cancer risk health effects is provided in Section 4.1 of Appendix B-4 of the May 2017 FEIR.

3.2 SIGNIFICANCE CRITERIA

Risks for the entire project that are less than the following regulatory thresholds are not considered to be significant and, therefore, acceptable:

Cancer risk equal to or less than 10 in one million

- Chronic hazard index equal to or less than 1
- 8-hr chronic hazard index equal to or less than 1
- Acute hazard index equal to or less than 1
- Cancer burden equal to or less than 0.5

The cancer risk and hazard index metrics are generally applied to the maximally exposed individual (MEI). There are separate MEIs for residential exposure (i.e., residential areas) and for worker exposure (i.e., offsite work places).

4.0 RISK ASSESSMENT APPROACH

This health risk assessment was performed following the Office of Environmental Health Hazard Assessment (OEHHA), *Air Toxics Hot Spots Program Risk Assessment Guidelines*². As recommended by this guideline, the California Air Resources Board (CARB) Hotspots Analysis and Reporting Program Version 2 (HARP2)³ was used to perform a refined health risk assessment for the project's emission sources.

Consistent with SCAQMD modeling guidelines, the AMS/EPA Regulatory Model (AERMOD, v 18081) was used as the air dispersion model for this analysis. HARP2 includes AERMOD but also allows model runs to be performed with AERMOD outside of HARP2. For this project, AERMOD was run outside of HARP2, and the results were imported into HARP2 to complete the risk analysis. This HRA evaluates risk following SCAQMD guidelines⁴. Further discussion of AERMOD is provided in Section 4.2.1 of Appendix B-4 of the FEIR.

In general, risk assessment involves four steps:

- 1. Hazard identification
- 2. Exposure assessment
- 3. Dose-response assessment
- 4. Risk characterization

Hazard identification involves identifying the toxic pollutants and whether the pollutant is a carcinogen or is associated with other types of adverse health effects. Toxic emissions from project sources are then quantified. Exposure assessment includes air dispersion modeling, identification of exposure routes, and estimation of exposure levels (dose). Dose-response requires identifying the relationship between exposure to a pollutant and the incidence of an adverse health effect in exposed populations. Finally, risk characterization combines the hazard identification, exposure assessment, and dose-response assessment to estimate total cancer and non-cancer risk. The details of these four steps are provided in Sections 4.0 and 5.0 of Appendix B-4 of the May 2017 FEIR.

4

² California Office of Environmental Health Hazard Assessment (OEHHA) 2015. <u>Air Toxics Hot Spots Program</u> Risk Assessment Guidelines, Guidance Manual for Preparation of Health Risk Assessments, February 2015.

³ HARP2 (Hotspots Analysis and Reporting Program) Air Dispersion Modeling & Risk Tool, v 18159.

⁴ South Coast Air Quality Management District, <u>Supplemental Guidelines for Preparing Risk Assessments for the Air Toxics "Hot Spots" Information and Assessment Act</u>, June 5, 2015.

4.1 EMISSION SOURCES

The only changes in toxic emission sources from the FEIR are the following:

- Addition of Tank 35 emissions increases due to the throughput increase
- Addition of fugitive emissions from piping changes at the C3 Splitter unit
- Removal of fugitive emissions from the Naphtha Isomerization unit
- Update to the toxic emissions from the Carson Crude Tank terminal to incorporate additional toxic concentration data.
- Updates to the construction schedule and associated diesel particulate matter (DPM) emissions (addressed in Section 6.0, below).

The TACs emitted by the project, and included in the analysis⁵, are:

Chemical	CAS#	Chemical	CAS#
1,2,4-Trimethylbenzene*	95-63-6	Hexane	110-54-3
1,3-Butadiene	106-99-0	Hydrochloric acid	7647-01-0
2,2,4-Trimethylpentane*	540-84-1	Hydrogen cyanide	74-90-8
2-Methylnaphthalene*	91-57-6	Hydrogen sulfide	7783-06-4
3-Methylchloranthrene	56-49-5	Indeno(1,2,3-cd)pyrene	193-39-5
Acenaphthene*	83-32-9	Isoprene*	78-79-5
Acenaphthylene*	208-96-8	Lead	7439-92-1
Acetaldehyde	75-07-0	Manganese	7439-96-5
Acrolein	107-02-8	Mercury	7439-97-6
Ammonia	7664-41-7	Methanol	67-56-1
Anthracene*	120-12-7	Molybdenum Trioxide*	1313-27-5
Antimony*	7440-36-0	Naphthalene	91-20-3
Arsenic	7440-38-2	Nickel	7440-02-0
Barium*	7440-39-3	PAHs, total reported	1150
Benzene	71-43-2	Perylene*	198-55-0
Benzo(a)anthracene	56-55-3	Phenanthrene*	85-01-8
Benzo(a)pyrene	50-32-8	Phenol	108-95-2
Benzo(b)fluoranthene	205-99-2	Phosphorus*	7723-14-0
Benzo(g,h,i)perylene*	191-24-2	Propylene	115-07-1
Benzo(k)fluoranthene	207-08-9	Pyrene*	129-00-0
Benzo[e]pyrene*	192-97-2	Selenium	7782-49-2
Beryllium	7440-41-7	Silver*	7440-22-4
Cadmium	7440-43-9	Sulfuric Acid	7664-93-9
Biphenyl*	92-52-4	Thallium*	7440-28-0
Carbon Disulfide	75-15-0	Toluene	108-88-3
Carbonyl sulfide	463-58-1	Trimethylbenzene* (mixed isomers)	25551-13-7
Chromium*	7440-47-3	Vanadium	7440-62-2
Chromium (hexavalent)	18540-29-9	Xylenes (mixed)	1330-20-7

⁵ TACs that were emitted but did not have any OEHHA/ARB approved cancer, chronic, or acute risk assessment health values are indicated with an asterisk (*).

Chemical	CAS#	<u>Chemical</u>	CAS#
Chrysene	218-01-9	Zinc*	7440-66-6
Copper	7440-50-8	Cyanide compounds	57-12-5
Cresols (mixtures of) {cresylic acid}	1319-77-3	Cyclohexane*	110-82-7
Cumene*	98-82-8	Dibenz(a,h)anthracene	53-70-3
Ethylene*	74-85-1	Dioxin and dioxin-like compounds	N150
Fluoranthene*	206-44-0	Ethylbenzene	100-41-4
Fluorene*	86-73-7	Diesel exhaust	
Formaldehyde	50-00-0	particulate matter	
Chlorine	<u>7782-50-5</u>		

Figure 2 shows the modeled source locations with the changes from the FEIR highlighted in pink.

Tank 35 was modeled as a circular area ("AREACIRC") source with the diameter equal to the diameter of the tank and the release height equal to the height of the tank. The source parameters are shown in **Table 2** below.

Table 2. Tank 35 Circular Area Source Parameters

Source Description	Model ID	Release Height Above Ground		Radius of Circle		UTM Coordinates ^a Easting/ Northing	
		(ft)	(m)	(ft)	(m)	(m)	(m)
Tank 35	TK35	41.0	12.5	67.5	20.6	384593.3	3742082.8

Emission rates were calculated using the EPA TANKS program. The modeled emission rates are shown in **Table 3** below.

Table 3. Tank 35 Modeled Emission Rates

		Emission Rate Increase						
Pollutant	CAS Number	(lb/yr)	(lb/hr)					
1,2,4-Trimethylbenzene	95-63-6	12.42	1.42E-03					
1,3-Butadiene	106-99-0	0.07	7.99E-06					
2,2,4Trimethylpentane	540-84-1	60.94	6.96E-03					
Benzene	71-43-2	11.95	1.36E-03					
Cresols (Mixtures of)	1319-77-3	0.06	6.85E-06					
Cumene	98-82-8	4.31	4.92E-04					
Cyclohexane	110-82-7	13.49	1.54E-03					
Ethyl Benzene	100-41-4	9.12	1.04E-03					
n-Hexane	110-54-3	25.52	2.91E-03					
Isoprene	78-79-5	0.48	5.48E-05					

		Emission Rate Increase		
Pollutant	CAS Number	(lb/yr)	(lb/hr)	
Methanol	67-56-1	0.01	1.14E-06	
Naphthalene	91-20-3	12.28	1.40E-03	
Ammonia	7664-41-7	0.02	2.28E-06	
Phenanthrene	85-01-8	0.96	1.10E-04	
Phenol	108-95-2	0.07	7.99E-06	
Propylene (Propene)	115-07-1	0.03	3.42E-06	
Toluene	108-88-3	66.55	7.60E-03	
Xylenes (Mixed Isomers)	1330-20-7	49.59	5.66E-03	

Fugitive emissions from the C3 Splitter unit were modeled in the same manner as other process unit piping component fugitive sources — as a volume source with a release height equal to 10 feet and lateral dimensions appropriate to the physical extents of the unit. The source parameters are shown in **Table 4** below.

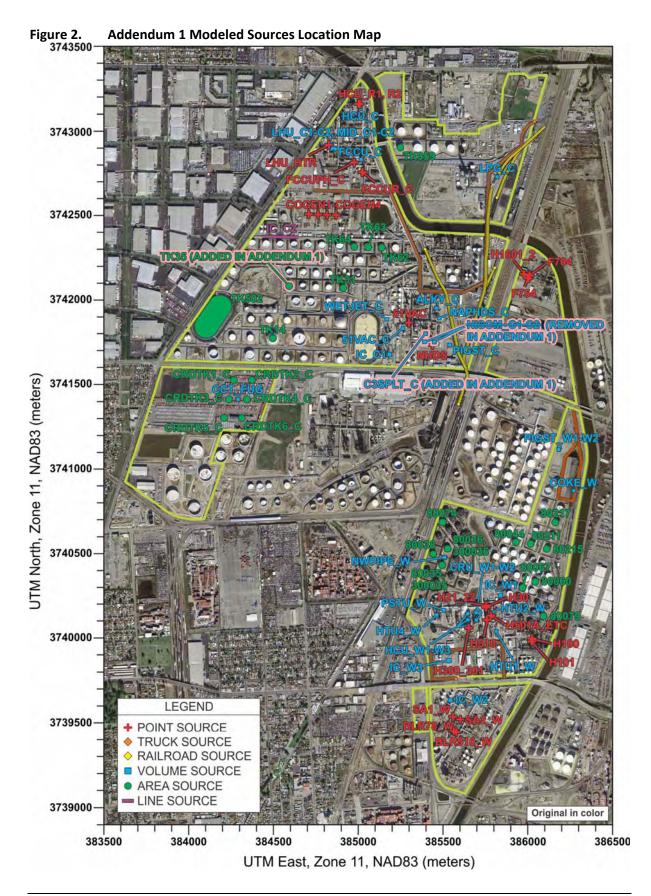
Table 4. C3 Splitter Volume Source Parameters

Source Description	Model ID	•		Initial Ho	orizontal Initial Ver ion (σ _{yo}) Dimension			UTM Coordinates ^a Easting/ Northing	
Description		(ft)	(m)	(ft)	(m)	(ft)	(m)	(m)	(m)
C3 Splitter fugitives	C3SPLT_C	10.0	3.0	19.1	5.8	9.3	2.8	385399.3	3741799.5

^a Center of volume source

Emissions rates were calculated based on the number of components, SCAQMD approved emission factors, and HAP concentration of the C3 Splitter material. The modeled emission rates are shown in **Table 5** below.

Table 5. C3 Splitter Modeled Emission Rates


		Emission Rate ⁶		
Pollutant	CAS Number	(lb/yr)	(lb/hr)	
1,3-Butadiene	106-99-0	3.01E-04	3.44E-08	
Ethylene	74-85-1	0.25	2.85E-05	
H₂S	7783-06-4	0.11	1.31E-05	
Propylene (Propene)	115-07-1	0.27	3.06E-05	
Carbonyl Sulfide	463-58-1	9.34E-03	1.07E-06	
Arsine	7784-42-1	4.94E-04	5.64E-08	

⁶ The modeled emission rates are the emission *increases* associated with the project.

Maximum potential toxic emissions from the Carson Crude Terminal were updated for this analysis based on additional available data. The original and updated emission rates are shown in **Table 6** below. Other than the updated emissions, no other parameters were changed for the Carson Crude Terminal emission sources.

Table 6. CCT Modeled Emission Rates

		l	FEIR Emission Rates			FEIR Addendum Er			Emission Rates	
		CCT Fu	•	CCT Storage		CCT Fugitive		CCT Storage		
	CAS	Compo	onents	Tank	(Each)	Compo	onents	Tank	(Each)	
Pollutant	Number	(lb/yr)	(lb/hr)	(lb/yr)	(lb/hr)	(lb/yr)	(lb/hr)	(lb/yr)	(lb/hr)	
Benzo[a]pyrene	50-32-8	1.2E-01	1.3E-05	3.0E-02	3.4E-06	1.2E-01	1.3E-05	3.0E-02	3.4E-06	
Dibenz[a,h]anthracene	53-70-3	3.9E-02	4.4E-06	1.0E-02	1.1E-06	3.9E-02	4.4E-06	1.0E-02	1.1E-06	
Benz[a]anthracene	56-55-3	2.9E-01	3.3E-05	6.0E-02	6.9E-06	2.9E-01	3.3E-05	8.0E-02	9.1E-06	
Benzene	71-43-2	7.4E+01	8.5E-03	2.9E+01	3.3E-03	7.4E+01	8.5E-03	2.9E+01	3.3E-03	
Naphthalene	91-20-3	8.6E+00	9.9E-04	2.4E+00	2.7E-04	8.6E+00	9.9E-04	2.4E+00	2.7E-04	
Cumene	98-82-8	6.9E+00	7.8E-04	1.9E+00	2.2E-04	6.9E+00	7.8E-04	1.9E+00	2.2E-04	
Ethyl benzene	100-41-4	4.3E+01	4.9E-03	1.2E+01	1.4E-03	4.7E+01	5.4E-03	1.3E+01	1.5E-03	
Toluene	108-88-3	1.3E+02	1.5E-02	4.1E+01	4.6E-03	1.9E+02	2.1E-02	5.7E+01	6.5E-03	
Hexane	110-54-3	2.5E+02	2.9E-02	1.1E+02	1.3E-02	3.0E+02	3.4E-02	1.4E+02	1.6E-02	
Benzo[b]fluoranthene	205-99-2	6.3E-01	7.2E-05	1.4E-01	1.6E-05	6.3E-01	7.2E-05	1.7E-01	1.9E-05	
Chrysene	218-01-9	5.8E-01	6.6E-05	1.3E-01	1.5E-05	5.8E-01	6.6E-05	1.6E-01	1.8E-05	
Xylene	1330-20-7	1.9E+02	2.1E-02	5.2E+01	6.0E-03	2.5E+02	2.9E-02	7.1E+01	8.1E-03	
Hydrogen sulfide	7783-06-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.1E-01	8.1E-05	1.2E+01	1.4E-03	

4.2 EXPOSURE ASSESSMENT

The exposure assessment includes air dispersion modeling, identification of exposure routes, and estimation of exposure levels. The methodology followed the same approach as described in Appendix B-4 of the May 2017 FEIR. Dispersion modeling for the May 2017 FEIR was performed using a meteorological dataset developed by SCAQMD that covered the years 2006, 2007, 2008, 2009, and 2011 for the Long Beach, CA monitoring station. The SCAQMD updated the available meteorological datasets in 2017. Modeling for this addendum was performed using the updated Long Beach dataset which covered the years 2012 through 2016. The original Long Beach station was located about 2.5 miles east-northeast of the facility and the new Long Beach station is located about 4.5 miles east of the facility at the Long Beach airport. Windroses for the two datasets are provided in Appendix A.

Two exposure assessments were performed. The first assessment was remodeling of the same sources and emissions rates that were used in the May 2017 FEIR but with the latest versions of AERMOD and HARP and using the 2012-2016 meteorological dataset. The second assessment considered the changes for this addendum: the Tank 35 emissions increase, the addition of fugitive piping component emissions from the C3 splitter unit, the removal of emissions from the Naphtha Isomerization unit fugitive piping component emissions, and the updated toxic emissions from the Carson Crude Terminal. The second assessment used the latest versions of AERMOD and HARP and the 2012-2016 meteorological dataset.

5.0 HEALTH RISK RESULTS - OPERATIONS

5.1 CANCER RISK

The predicted increase in cancer risk at maximally exposed offsite receptors is summarized by category in **Table 8**. The table shows the original May 2017 FEIR highest calculated cancer risks at residential, sensitive, and worker receptors as well as the values and locations for the highest cancer risks using the latest models and meteorological dataset for the May 2017 FEIR sources, and the source changes of this addendum.

5.1.1 FEIR Sources with 2012-2016 Meteorological Dataset

The highest cancer risk at a residential receptor is a cancer risk value of 2.8 in one million. The receptor is located just west of the western boundary of the refinery nearest to the proposed new crude tanks (same location as the FEIR) – see **Figure 3**. Contours showing the aerial distribution of calculated cancer risks for worst-case residential exposure are shown on **Figure 4**. The highest calculated cancer risk at a sensitive receptor was 2.4 in one million, at Bethune Mary School located about 500 meters east of the eastern boundary of the Wilmington Operations area (same location as the FEIR). **Table 9** provides a list of the highest sensitive receptors in terms of cancer risk.

The receptor with the highest calculated worker exposure cancer risk is located near the railroad tracks at the northeastern boundary of the refinery – see **Figure 3**. The receptor is in the immediate vicinity of the location where a locomotive engine enters and exits the facility boundary when moving LPG railcars (similar location as in the FEIR). The worst-case worker cancer risk at this

receptor is 7.0 in one million. This receptor is located along the fenceline where long-term (multi-decade) 40 hour/week exposure is highly unlikely to occur. Contours showing the areal distribution of calculated cancer risks for worst-case worker exposure are shown on **Figure 5**.

5.1.2 FEIR Addendum Sources with 2012-2016 Meteorological Dataset

The highest cancer risks at a residential receptor, a worker receptor, and a sensitive receptor are slightly higher values than the FEIR sources with 2012-2016 meteorological dataset at the same locations described above (see **Figure 6**). The impacts from the changes associated with the addendum caused very small increases in cancer risk (<0.1 per million). Based on the number of decimal places reported, only the residential cancer risk was different (2.9 per million versus 2.8). Contours showing the areal distribution of calculated cancer risks for worst-case residential and worker exposure are shown on **Figure 7** and **Figure 8**.

Table 10 and **Table 12** provide the contributions of DPM and other toxics to the total cancer risks shown in **Table 1**. DPM is the primary source of cancer risk for the maximum offsite worker receptor, but only a small contributor to cancer risk for the maximum residential and sensitive receptors. **Table 11** and **Table 13** identify the contribution to total cancer risk by source.

5.2 CHRONIC AND ACUTE RISK

The predicted increase in chronic and acute health risks at maximally exposed offsite receptors are summarized by category in **Table 8**. The table shows the original May FEIR highest calculated chronic and acute risks at residential, sensitive, and worker receptors as well as the values and locations for the highest chronic and acute risks using the latest models and meteorological dataset for the May FEIR sources, as well as the source changes of this addendum.

5.2.1 FEIR Sources with 2012-2016 Meteorological Dataset

The maximum chronic hazard index (worker or residential) of 0.078 was predicted at a receptor just west of the Wilmington operations refinery interconnect system. The maximum 8-hr chronic hazard index (worker or residential) of 0.084 was predicted at the same receptor. The maximum acute hazard index value was predicted to be 0.076 at the same receptor. The maximum chronic HI and acute HI receptors are shown in **Figure 3**. All maximum residential and worker chronic and acute HI receptors were in close proximity to or along facility boundaries.

5.2.2 FEIR Addendum Sources with 2012-2016 Meteorological Dataset

The maximum chronic hazard index (worker or residential) of 0.085 was predicted at a receptor just west of the Wilmington operations refinery interconnect system (same as without the addendum source changes). The maximum 8-hr chronic hazard index (worker or residential) of 0.084 was predicted at the same receptor. The maximum acute hazard index value was predicted to be 0.076 at the same receptor. The maximum chronic HI and acute HI receptors are shown in **Figure 6**. All maximum residential and worker chronic and acute HI receptors were in close proximity to or along facility boundaries.

Table 14 and **Table 16** identify the contribution to total chronic and acute risk by pollutant. **Table 15** and **Table 17** identify the contribution to total chronic and acute risk by source.

5.3 CANCER BURDEN

Rule 1401 Risk Assessment Procedures⁷ require that cancer burden (increase in cancer cases in the population) be calculated whenever the maximum individual cancer risk (MICR) exceeds one in a million. Since both the maximum residential receptor and maximum worker receptor exceeded one in a million, a calculation was performed to determine if cancer burden could exceed 0.5. Cancer burden was calculated for the FEIR addendum sources⁸ using the 2012-2016 meteorological data. A conservative approach was used as a screening calculation. Using the default population density of 4,000 persons per square kilometer, the cumulative area (in square kilometers) of all residential areas within the one in a million isopleth line based on 70 year residential exposure, and the highest calculated cancer risk between the residential and worker receptors, cancer burden is estimated as shown in **Table 7** below:

Table 7. Cancer Burden Calculation

Parameter	May 2017 FEIR	FEIR Addendum
Residential area within 1 in million cancer risk isopleth line (km²)	12.8	7.0
Population density (persons/km²)	4,000	4,000
Cancer risk	9.3E-06	7.0E-06
Cancer burden (total cancer cases)	0.47	0.19

Since the cancer burden is less than 0.5, no further analysis is necessary.

⁷ South Coast Air Quality Management District, <u>Risk Assessment Procedures for Rules 1401, 1401.1 and 212,</u> Version 8.0, June 5, 2015.

⁸ FEIR sources plus the addition of Tank 35 emissions, the addition of fugitive piping component emissions from the C3 splitter unit, the removal of emissions from the Naphtha Isomerization unit fugitive piping component emissions, and the updated toxic emissions from the Carson Crude Terminal

Table 8. Summary of Maximum Offsite Cancer and Non-Cancer Risks

		Cancer Risk			Chronic Risk	ĸ	8	8-Hr Chronic Risk	Risk		Acute Risk ^c	, c
	Increase	UTM Coordinate	ates (NAD83)	Hazard	UTM Coordin	UTM Coordinates (NAD83)	Hazard	UTM Coordinates (NAD83)	ates (NAD83)	Hazard	UTM Coordinates (NAD83)	ates (NAD83)
Location ^a	one-million	Easting (m)	Northing (m)	Index	Easting (m)	Easting (m) Northing (m)	Index	Easting (m)	Northing (m)	Index	Easting (m)	Northing (m)
FEIR, 2006-2011 meteorological data	gical data											
Residential receptor ^b	3.7	383700	3741400	0:030	385251	3739503	90000	383700	3741400	0.052	385305	3742454
Offsite workplace receptor	9.3	386006	3742921	0.106	386153	3741128	0.108	386153	3741128	0.052	385305	3742454
Sensitive Receptor ^b	2.1	386721	3739987	0.025	387304	3739447	0.005	386721	3739987	0.010	386721	3739987
FEIR, 2012-2016 meteorological data	gical data											
Residential receptor ^b	2.8	383700	3741400	0.021	385251	3739503	0.005	383700	3741500	0.039	384329	3741584
Offsite workplace receptor	7.0	386019	3742969	0.078	386153	3741128	0.084	386153	3741128	0.076	386153	3741128
Sensitive Receptor ^b	2.4	386721	3739987	0.019	388750	3737361	90000	386721	3739987	600.0	386721	3739987
FEIR Addendum, 2012-2016 meteorological data	6 meteorolog	gical data										
Residential receptor ^b	2.9	383700	3741400	0.024	385251	3739503	0.005	383700	3741500	0.040	384329	3741584
Offsite workplace receptor	7.0	386019	3742969	0.085	386153	3741128	0.084	386153	3741128	0.076	386153	3741128
Sensitive Receptor ^b	2.4	386721	3739987	0.019	388750	3737361	0.006	386721	3739987	0.009	386721	3739987

^a Excluding onsite grid receptors

E-19

^b Worst-case residential exposure

^c Fenceline receptors were conservatively included as potential residential and worker receptors for determination of maximum acute risk.

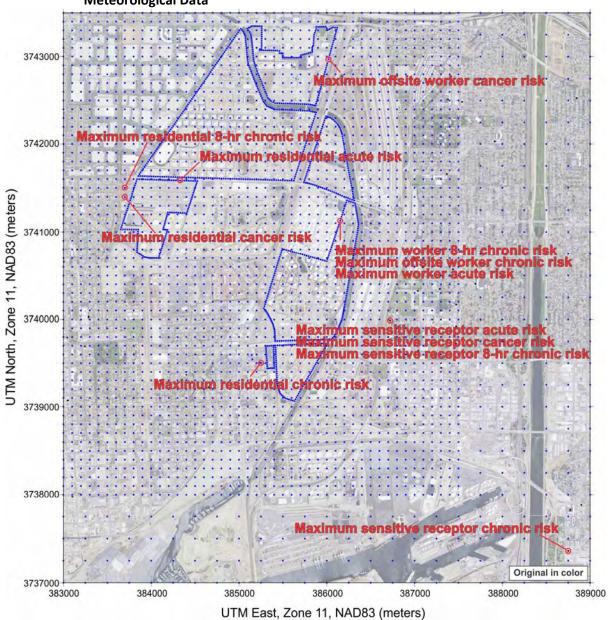


Figure 3. Location of Maximum Calculated Health Risks, FEIR Sources with 2012-2016 Meteorological Data

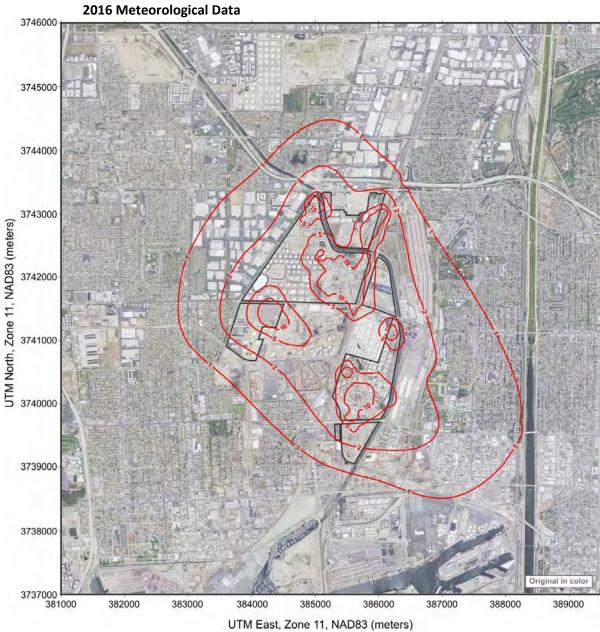
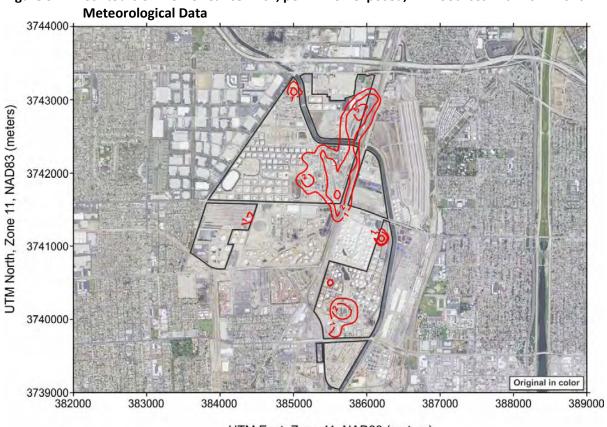



Figure 4. Contours of Residential Cancer Risk, per million exposed, FEIR Sources with 2012-2016 Meteorological Data

Contours of Worker Cancer Risk, per million exposed, FEIR Sources with 2012-2016 Figure 5.

UTM East, Zone 11, NAD83 (meters)

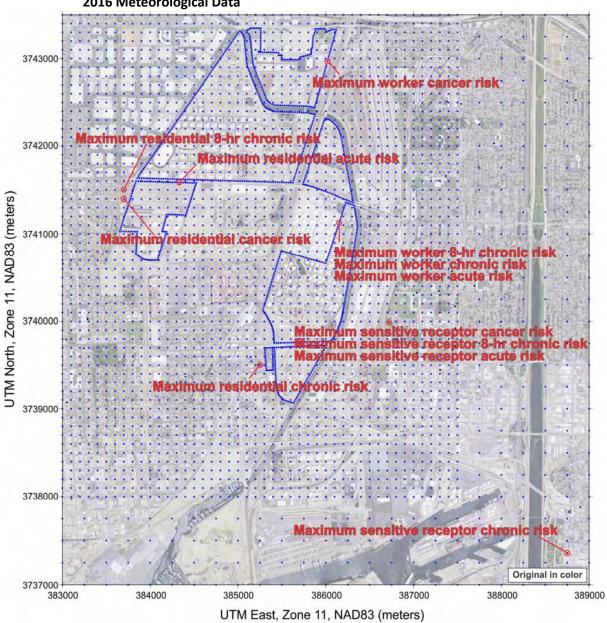


Figure 6. Location of Maximum Calculated Health Risks, FEIR Addendum Sources with 2012-2016 Meteorological Data

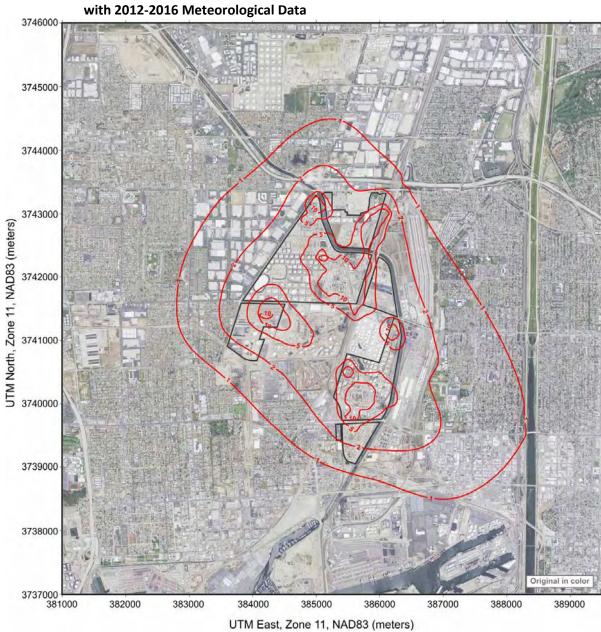
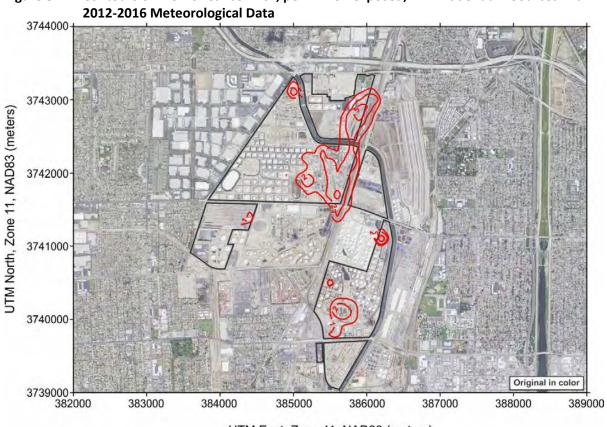



Figure 7. Contours of Residential Cancer Risk, per million exposed, FEIR Addendum Sources with 2012-2016 Meteorological Data

Contours of Worker Cancer Risk, per million exposed, FEIR Addendum Sources with Figure 8.

UTM East, Zone 11, NAD83 (meters)

 Table 9.
 Summary of Project Cancer Risks at the Most Exposed Sensitive Receptors

	UTM Coordi	nates (NAD83)	Increased Car one-m	ncer Cases (in- nillion)
Sensitive Receptor Name	Easting (m)	Northing (m)	FEIR sources, 12-16 met data	FEIR Addendum sources, 12-16 met data
Bethune Mary School	386721	3739987	2.37	2.41
Wyo Tech National Institute of Tech	387041	3739640	1.85	1.88
Elizabeth Hudson Elementary School	387091	3740595	1.74	1.76
Will J. Reid High School	387037	3740324	1.73	1.76
Long Beach Child Development	387287	3740345	1.53	1.56
Long Beach Japanese School	387304	3739447	1.51	1.54
St. Lucy's School	387437	3740571	1.40	1.42
West Child Development Center	387474	3740168	1.39	1.41
Long Beach Job Corp Dynamic Educational	387472	3739724	1.38	1.41
Cabrillo High School	387473	3739922	1.37	1.40
Garfield Head Start Elementary School	387692	3740405	1.24	1.26
William Logan Stephens Junior High	387367	3741657	1.12	1.12
Broad Avenue Elementary School	383158	3740800	1.01	1.04

Table 10. Cancer Risk by Pollutant at MEIR (FEIR Addendum Sources)

Pollutant	CAS Number	Total risk	Fraction
Benzene	71-43-2	9.1E-07	31.1%
Benzo[a]pyrene	50-32-8	7.4E-07	25.2%
Benzo[b]fluoranthene	205-99-2	4.1E-07	13.9%
Naphthalene	91-20-3	2.7E-07	9.3%
Benz[a]anthracene	56-55-3	1.9E-07	6.5%
Diesel exhaust particulate matter	9901	1.2E-07	4.0%
Dioxin and dioxin-like compounds	N150	1.1E-07	3.6%
Dibenz[a,h]anthracene	53-70-3	8.5E-08	2.9%
1,3-Butadiene	106-99-0	6.3E-08	2.1%
Arsenic	7440-38-2	5.2E-08	1.8%
Ethyl benzene	100-41-4	4.1E-08	1.4%
Chromium, hexavalent (& compounds)	18540-29-9	3.8E-08	1.3%
Chrysene	218-01-9	3.8E-08	1.3%
Formaldehyde	50-00-0	3.6E-09	0.1%
Nickel	7440-02-0	2.2E-09	0.1%
Acetaldehyde	75-07-0	1.0E-09	0.0%
Beryllium	7440-41-7	6.4E-10	0.0%
Lead	7439-92-1	4.1E-10	0.0%
Indeno[1,2,3-cd]pyrene	193-39-5	1.3E-10	0.0%
Benzo[k]fluoranthene	207-08-9	3.5E-11	0.0%
3-Methylcholanthrene	56-49-5	-6.1E-09	-0.2%
Cadmium	7440-43-9	-1.3E-07	-4.5%
Total		2.9E-06	100.0%

Table 11. Cancer Risk by Source at MEIR (FEIR Addendum Sources)

Source Description	Source ID	Total risk	Fraction
Carson New 500 MBBL Crude Tanks	CRDTK1_C to CRDTK6_C	1.3E-06	46.0%
Crude Tank Farm - Pipeline Component Fugitives	CCT_FUG	8.0E-07	27.7%
Locomotives	RRB_0001 to RRB_0098, RRG_0001 to RRG_0303	1.0E-07	3.5%
Carson FCCU Regenerator	FCCUR_C	9.8E-08	3.4%
Wilmington Hydrocracker Unit	HCU_W1 to HCU_W3	9.0E-08	3.1%
Carson Wet Jet Treater (New)	WETJET_C	8.1E-08	2.8%
Carson Tank 63	TK63	6.2E-08	2.1%
Carson Tank 62	TK62	6.2E-08	2.1%
Carson Side Pig Station - Piping Interconnect	PIGST_C	4.2E-08	1.4%
Wilmington Tank 300036 (replaces 80036)	300036	3.2E-08	1.1%
Wilmington Tank 300035 (replaces 80035)	300035	3.2E-08	1.1%
Carson HCU	HCU_C	3.1E-08	1.1%
Wilmington Interconnect Piping - PSTU	IC_W3	2.9E-08	1.0%
Wilmington Side Pig Station - Piping Interconnect	PIGST_W1 to PIGST_W2	2.3E-08	0.8%
Wilmington HTU3 Unit H-21/H-22 Heaters Stack	H21_22	2.2E-08	0.8%
Wilmington Tank 80060	80060	1.7E-08	0.6%
Onsite Trucks	CAR_0001 to CAR_0417, WLM_0001 to WLM_0154, COK_0001 to COK_0165	1.6E-08	0.5%
Wilmington Boilers 7 & 8 Stack	BLR78_W	1.4E-08	0.5%
Wilmington - Sulfuric Acid Regen Plant Stk 2 - Decomp Furnace	SA2_W	1.2E-08	0.4%
Wilmington - Sulfuric Acid Regen Plant Stk 1 - Process Air & Converter Htr	SA1_W	1.1E-08	0.4%
Wilmington Tank 80067	80067	1.1E-08	0.4%
Carson Naphtha HDS Heater Stack (D1433)	NHDS	1.1E-08	0.4%
Carson LPG Rail Car Loading/Unloading	LPG_C	1.0E-08	0.4%
Wilmington Tank 80079	80079	9.4E-09	0.3%
Carson 51 Vacuum Unit Heater Stack (D63)	51VAC	9.2E-09	0.3%
Wilmington - New Piping for Tanks 300035- 300036	NWPIPE_W	9.1E-09	0.3%
Wilmington Interconnect Piping - OSBL	IC_W1 to IC_W2	7.8E-09	0.3%
Wilmington HTU3 Unit H-30 Heater Stack	H30	6.5E-09	0.2%
Wilmington Hydrotreater Unit No. 2	HTU2_W	5.7E-09	0.2%
Wilmington Boilers 9 & 10 Stack	BLR910_W	4.8E-09	0.2%
Wilmington H100 Heater Stack	H100	4.6E-09	0.2%
Carson Hydrocracker R1 Heater Stack (D625)	HCU_R1	4.4E-09	0.2%

Source Description	Source ID	Total risk	Fraction
Carson Interconnect Piping - OSBL	IC_C1 to IC_C2	4.3E-09	0.1%
Carson Hydrocracker R2 Heater Stack (D627)	HCU_R2	4.1E-09	0.1%
Carson Mid Barrel Distillate Treater	MID_C1 to MID_C2	3.8E-09	0.1%
Wilmington Hydrotreater Unit No. 1	HTU1_W	2.9E-09	0.1%
Carson Cogeneration Unit 4 Turbine and Duct Burner Stack (D1239/D1240)	COGEN4	2.4E-09	0.1%
Carson Cogeneration Unit 1 Turbine and Duct Burner Stack (D1226/D1227)	COGEN1	2.3E-09	0.1%
Carson Cogeneration Unit 2 Turbine and Duct Burner Stack (D1233/D1234)	COGEN2	2.3E-09	0.1%
Carson Cogeneration Unit 3 Turbine and Duct Burner Stack (D1236/D1237)	COGEN3	2.3E-09	0.1%
Carson Naphtha HDS	NAPHDS_C	2.3E-09	0.1%
Wilmington Coker Heater H101	H101	1.7E-09	0.1%
Carson Tank 31	TK31	1.7E-09	0.1%
Carson No. 51 Vacuum Unit	51VAC_C	1.5E-09	0.1%
Wilmington Tank 80044	80044	1.5E-09	0.1%
Wilmington CRU2 Unit H-510 Heater Stack	H510	1.1E-09	0.0%
Carson Light Hydro Unit	LHU_C1 to LHU_C2	9.9E-10	0.0%
Wilmington Tank 80217	80217	8.2E-10	0.0%
Wilmington Coke Handling Emissions	COKE_W	6.3E-10	0.0%
Wilmington Hydrotreater Unit No. 4	HTU4_W	5.6E-10	0.0%
Carson Alkylation Unit	ALKY_C	5.2E-10	0.0%
Wilmington CRU2 Unit H-501A/B 502 503 504 Heaters Stack	H501A_ET	3.8E-10	0.0%
Wilmington CRU	CRU_W1 to CRU_W2	3.4E-10	0.0%
Carson FCCU	FCCU_C	3.1E-10	0.0%
Wilmington Sulfur Plant Combined H- 1601/1602 Stack	H1601_2	1.2E-10	0.0%
Wilmington Tank 80074	80074	1.2E-10	0.0%
Wilmington Tank 80211	80211	1.1E-10	0.0%
Carson Light Hydrotreating Unit Heater (D425)	LHU_HTR	1.0E-10	0.0%
Carson FCCU Pre-Heater	FCCUPH_C	5.7E-11	0.0%
Wilmington Propane Sales Treating Unit	PSTU_W	8.5E-12	0.0%
Carson Tank 64	TK64	7.7E-12	0.0%
Wilmington Sulfur Plant Incinerator Stack 2	F754	4.0E-12	0.0%
Wilmington Sulfur Plant Incinerator Stack 1	F704	3.3E-12	0.0%
C3 Splitter Fugitives	C3SPLT_C	5.7E-13	0.0%
Carson Tank 14	TK14	0.0E+00	0.0%
Carson Tank 35	TK35	0.0E+00	0.0%
Carson Tank 502	TK502	0.0E+00	0.0%
Carson Tank 959	TK959	0.0E+00	0.0%

Appendix E

Source Description	Source ID	Total risk	Fraction
Wilmington Tank 80035	80035	-2.3E-12	0.0%
Wilmington Tank 80036	80036	-4.7E-12	0.0%
Wilmington Tank 80215	80215	-7.0E-11	0.0%
Wilmington Tank 80038	80038	-1.2E-10	0.0%
Wilmington HCU H-300 and H-301 Heaters Stack	H300_301	-1.5E-07	-5.0%
Total		2.9E-06	100.0%

Table 12. Cancer Risk by Pollutant at MEIW (FEIR Addendum Sources)

Pollutant	CAS Number	Total risk	Fraction
Diesel exhaust particulate matter	9901	6.9E-06	98.7%
1,3-Butadiene	106-99-0	4.1E-08	0.6%
Naphthalene	91-20-3	2.7E-08	0.4%
Benzene	71-43-2	2.2E-08	0.3%
Dioxin and dioxin-like compounds	N150	4.8E-09	0.1%
Chromium, hexavalent (& compounds)	18540-29-9	2.8E-09	0.0%
Arsenic	7440-38-2	2.2E-09	0.0%
Benzo[a]pyrene	50-32-8	1.5E-09	0.0%
Ethyl benzene	100-41-4	1.2E-09	0.0%
Benzo[b]fluoranthene	205-99-2	8.1E-10	0.0%
Benz[a]anthracene	56-55-3	3.7E-10	0.0%
Formaldehyde	50-00-0	2.8E-10	0.0%
Nickel	7440-02-0	1.9E-10	0.0%
Dibenz[a,h]anthracene	53-70-3	1.4E-10	0.0%
Acetaldehyde	75-07-0	9.5E-11	0.0%
Chrysene	218-01-9	7.5E-11	0.0%
Beryllium	7440-41-7	7.0E-11	0.0%
Lead	7439-92-1	2.1E-11	0.0%
Indeno[1,2,3-cd]pyrene	193-39-5	4.5E-12	0.0%
Benzo[k]fluoranthene	207-08-9	9.8E-13	0.0%
3-Methylcholanthrene	56-49-5	-2.1E-10	0.0%
Cadmium	7440-43-9	-1.5E-08	-0.2%
Total		7.0E-06	100.0%

Table 13. Cancer Risk by Source at MEIW (FEIR Addendum Sources)

Source Description	Source ID	Total risk	Fraction
Locomotives	RRB_0001 to RRB_0098,	6.8E-06	97.8%
	RRG_0001 to RRG_0303		
Onsite Trucks	CAR_0001 to CAR_0417, WLM 0001 to	6.2E-08	0.9%
	WLM_0154, COK_0001 to		
	COK_0165		
Carson LPG Rail Car Loading/Unloading	LPG_C	3.4E-08	0.5%
Carson HCU	HCU_C	1.3E-08	0.2%
Carson Wet Jet Treater (New)	WETJET_C	8.4E-09	0.1%
Carson Side Pig Station - Piping Interconnect	PIGST_C	7.1E-09	0.1%
Wilmington Hydrocracker Unit	HCU_W1 to HCU_W3	5.6E-09	0.1%
Carson FCCU Regenerator	FCCUR_C	4.6E-09	0.1%
Carson Tank 62	TK62	3.9E-09	0.1%
Wilmington Side Pig Station - Piping Interconnect	PIGST_W1 to PIGST_W2	3.8E-09	0.1%
Carson Tank 63	TK63	3.4E-09	0.0%
Crude Tank Farm - Pipeline Component Fugitives	CCT_FUG	3.3E-09	0.0%
Carson New 500 MBBL Crude Tanks	CRDTK1_C to CRDTK6_C	2.0E-09	0.0%
Wilmington Interconnect Piping - PSTU	IC_W3	1.7E-09	0.0%
Carson 51 Vacuum Unit Heater Stack (D63)	51VAC	1.1E-09	0.0%
Wilmington Tank 300036 (replaces 80036)	300036	9.3E-10	0.0%
Wilmington HTU3 Unit H-21/H-22 Heaters Stack	H21_22	8.7E-10	0.0%
Wilmington Tank 300035 (replaces 80035)	300035	8.6E-10	0.0%
Carson Mid Barrel Distillate Treater	MID_C1 to MID_C2	8.4E-10	0.0%
Wilmington Tank 80060	80060	8.0E-10	0.0%
Carson Hydrocracker R2 Heater Stack (D627)	HCU_R2	5.9E-10	0.0%
Wilmington Boilers 7 & 8 Stack	BLR78_W	5.7E-10	0.0%
Wilmington - Sulfuric Acid Regen Plant Stk 2 - Decomp Furnace	SA2_W	5.6E-10	0.0%
Carson Hydrocracker R1 Heater Stack (D625)	HCU_R1	5.4E-10	0.0%
Wilmington Interconnect Piping - OSBL	IC_W1 to IC_W2	5.2E-10	0.0%
Wilmington Tank 80067	80067	5.2E-10	0.0%
Carson Naphtha HDS Heater Stack (D1433)	NHDS	5.1E-10	0.0%
Wilmington - Sulfuric Acid Regen Plant Stk 1 - Process Air & Converter Htr	SA1_W	4.4E-10	0.0%
Carson Naphtha HDS	NAPHDS_C	4.3E-10	0.0%
Wilmington Hydrotreater Unit No. 2	HTU2_W	4.0E-10	0.0%
Wilmington H100 Heater Stack	H100	3.9E-10	0.0%
Wilmington Tank 80079	80079	3.6E-10	0.0%
Wilmington HTU3 Unit H-30 Heater Stack	H30	3.2E-10	0.0%

Source Description	Source ID	Total risk	Fraction
Wilmington - New Piping for Tanks 300035- 300036	NWPIPE_W	3.0E-10	0.0%
Wilmington Boilers 9 & 10 Stack	BLR910_W	2.9E-10	0.0%
Carson Interconnect Piping - OSBL	IC_C1 to IC_C2	2.7E-10	0.0%
Carson Light Hydro Unit	LHU_C1 to LHU_C2	2.1E-10	0.0%
Wilmington Hydrotreater Unit No. 1	HTU1_W	2.0E-10	0.0%
Carson No. 51 Vacuum Unit	51VAC_C	1.7E-10	0.0%
Wilmington Coker Heater H101	H101	1.5E-10	0.0%
Wilmington Tank 80044	80044	1.1E-10	0.0%
Carson Alkylation Unit	ALKY_C	1.0E-10	0.0%
Carson FCCU	FCCU C	8.8E-11	0.0%
Wilmington Tank 80217	80217	7.9E-11	0.0%
Carson Cogeneration Unit 4 Turbine and Duct Burner Stack (D1239/D1240)	COGEN4	7.8E-11	0.0%
Carson Cogeneration Unit 3 Turbine and Duct Burner Stack (D1236/D1237)	COGEN3	7.5E-11	0.0%
Carson Cogeneration Unit 2 Turbine and Duct Burner Stack (D1233/D1234)	COGEN2	7.4E-11	0.0%
Carson Cogeneration Unit 1 Turbine and Duct Burner Stack (D1226/D1227)	COGEN1	7.2E-11	0.0%
Wilmington Coke Handling Emissions	COKE_W	6.5E-11	0.0%
Carson Tank 31	TK31	4.5E-11	0.0%
Wilmington CRU2 Unit H-510 Heater Stack	H510	4.5E-11	0.0%
Wilmington Sulfur Plant Combined H- 1601/1602 Stack	H1601_2	3.5E-11	0.0%
Wilmington Hydrotreater Unit No. 4	HTU4_W	3.1E-11	0.0%
Wilmington CRU	CRU_W1 to CRU_W2	2.2E-11	0.0%
Wilmington CRU2 Unit H-501A/B 502 503 504 Heaters Stack	H501A_ET	1.9E-11	0.0%
Wilmington Tank 80211	80211	8.5E-12	0.0%
Carson Light Hydrotreating Unit Heater (D425)	LHU_HTR	8.4E-12	0.0%
Wilmington Tank 80074	80074	5.1E-12	0.0%
Carson FCCU Pre-Heater	FCCUPH_C	5.0E-12	0.0%
Wilmington Sulfur Plant Incinerator Stack 2	F754	2.1E-12	0.0%
Wilmington Sulfur Plant Incinerator Stack 1	F704	1.8E-12	0.0%
Wilmington Propane Sales Treating Unit	PSTU_W	4.8E-13	0.0%
Carson Tank 64	TK64	3.8E-13	0.0%
C3 Splitter Fugitives	C3SPLT_C	8.1E-14	0.0%
Carson Tank 14	TK14	0.0E+00	0.0%
Carson Tank 35	TK35	0.0E+00	0.0%
Carson Tank 502	TK502	0.0E+00	0.0%
Carson Tank 959	TK959	0.0E+00	0.0%

Appendix E

Source Description	Source ID	Total risk	Fraction
Wilmington Tank 80035	80035	-9.7E-14	0.0%
Wilmington Tank 80036	80036	-2.1E-13	0.0%
Wilmington Tank 80038	80038	-4.8E-12	0.0%
Wilmington Tank 80215	80215	-6.0E-12	0.0%
Wilmington HCU H-300 and H-301 Heaters Stack	H300_301	-1.6E-08	-0.2%
Total		7.0E-06	100.0%

Table 14. Chronic Risk by Pollutant at Maximum Exposed Individual (FEIR Addendum Sources)⁹

Pollutant	CAS Number	Total risk	Fraction
Benzene	71-43-2	8.3E-02	97.5%
Nickel	7440-02-0	1.4E-03	1.7%
Dioxin and dioxin-like compounds	N150	6.4E-04	0.8%
Diesel exhaust particulate matter	9901	2.0E-05	0.0%
Chromium, hexavalent (& compounds)	18540-29-9	2.6E-06	0.0%
Total		8.5E-02	100.0%

⁹ To calculate maximum chronic risk, HARP2 determines risk from all chemicals for all pathways, and the pathway with the highest total is considered the maximum. If a chemical contributes risk to one or more pathways but does affect the pathway with the highest risk, that chemical is not shown in this table. For this project, the pathway with the highest chronic risk at the MEI was the hematologic system (blood).

Table 15. Chronic Risk by Source at Maximum Exposed Individual (FEIR Addendum Sources)

Source Description	Source ID	Total risk	Fraction
Wilmington Side Pig Station - Piping	PIGST_W1 to PIGST_W2	7.8E-02	91.5%
Interconnect			
Carson Tank 62	TK62	1.2E-03	1.4%
Carson Tank 63	TK63	1.2E-03	1.4%
Wilmington Coke Handling Emissions	COKE_W	9.7E-04	1.1%
Carson FCCU Regenerator	FCCUR_C	5.8E-04	0.7%
Carson Side Pig Station - Piping Interconnect	PIGST_C	5.8E-04	0.7%
Wilmington Hydrocracker Unit	HCU_W1 to HCU_W3	4.6E-04	0.5%
Carson New 500 MBBL Crude Tanks	CRDTK1_C to CRDTK6_C	3.3E-04	0.4%
Wilmington Tank 80060	80060	2.1E-04	0.2%
Crude Tank Farm - Pipeline Component Fugitives	CCT_FUG	1.7E-04	0.2%
Wilmington HTU3 Unit H-21/H-22 Heaters Stack	H21_22	1.6E-04	0.2%
Wilmington Tank 80067	80067	1.3E-04	0.2%
Wilmington Interconnect Piping - PSTU	IC_W3	1.3E-04	0.1%
Wilmington Hydrotreater Unit No. 2	HTU2_W	1.2E-04	0.1%
Wilmington Tank 300036 (replaces 80036)	300036	7.7E-05	0.1%
Wilmington Tank 300035 (replaces 80035)	300035	7.0E-05	0.1%
Wilmington Boilers 7 & 8 Stack	BLR78_W	7.0E-05	0.1%
Wilmington Tank 80079	80079	6.0E-05	0.1%
Wilmington Tank 80217	80217	5.7E-05	0.1%
Wilmington HTU3 Unit H-30 Heater Stack	H30	5.5E-05	0.1%
Wilmington Interconnect Piping - OSBL	IC_W1 to IC_W2	5.4E-05	0.1%
Carson Naphtha HDS	NAPHDS_C	5.2E-05	0.1%
Wilmington Coker Heater H101	H101	4.7E-05	0.1%
Wilmington Tank 80044	80044	4.2E-05	0.0%
Wilmington - New Piping for Tanks 300035- 300036	NWPIPE_W	4.0E-05	0.0%
Locomotives	RRB_0001 to RRB_0098, RRG_0001 to RRG_0303	3.9E-05	0.0%
Wilmington Boilers 9 & 10 Stack	BLR910_W	3.8E-05	0.0%
Wilmington H100 Heater Stack	H100	3.5E-05	0.0%
Carson Interconnect Piping - OSBL	IC_C1 to IC_C2	3.0E-05	0.0%
Carson Naphtha HDS Heater Stack (D1433)	NHDS	2.8E-05	0.0%
Carson Mid Barrel Distillate Treater	MID_C1 to MID_C2	2.3E-05	0.0%
Carson Tank 31	TK31	2.2E-05	0.0%
Carson Cogeneration Unit 1 Turbine and Duct Burner Stack (D1226/D1227)	COGEN1	1.6E-05	0.0%
Carson Cogeneration Unit 2 Turbine and Duct Burner Stack (D1233/D1234)	COGEN2	1.6E-05	0.0%
Carson Cogeneration Unit 3 Turbine and Duct	COGEN3	1.5E-05	0.0%

Source Description	Source ID	Total risk	Fraction
Burner Stack (D1236/D1237)			
Carson Cogeneration Unit 4 Turbine and Duct Burner Stack (D1239/D1240)	COGEN4	1.5E-05	0.0%
Carson 51 Vacuum Unit Heater Stack (D63)	51VAC	1.4E-05	0.0%
Wilmington HCU H-300 and H-301 Heaters Stack	H300_301	1.3E-05	0.0%
Wilmington - Sulfuric Acid Regen Plant Stk 2 - Decomp Furnace	SA2_W	8.9E-06	0.0%
Wilmington CRU2 Unit H-510 Heater Stack	H510	8.1E-06	0.0%
Wilmington - Sulfuric Acid Regen Plant Stk 1 - Process Air & Converter Htr	SA1_W	7.3E-06	0.0%
Onsite Trucks	CAR_0001 to CAR_0417, WLM_0001 to WLM_0154, COK_0001 to COK_0165	6.5E-06	0.0%
Carson Hydrocracker R1 Heater Stack (D625)	HCU_R1	6.3E-06	0.0%
Carson Hydrocracker R2 Heater Stack (D627)	HCU_R2	6.0E-06	0.0%
Carson Light Hydro Unit	LHU_C1 to LHU_C2	6.0E-06	0.0%
Wilmington CRU2 Unit H-501A/B 502 503 504 Heaters Stack	H501A_ET	2.1E-06	0.0%
Carson LPG Rail Car Loading/Unloading	LPG_C	1.1E-06	0.0%
Wilmington Sulfur Plant Combined H- 1601/1602 Stack	H1601_2	5.4E-07	0.0%
Wilmington Tank 80211	80211	4.9E-07	0.0%
Carson No. 51 Vacuum Unit	51VAC_C	3.3E-07	0.0%
Carson Alkylation Unit	ALKY_C	1.0E-07	0.0%
Wilmington Hydrotreater Unit No. 4	HTU4_W	7.7E-08	0.0%
Carson Light Hydrotreating Unit Heater (D425)	LHU_HTR	4.4E-08	0.0%
Carson FCCU	FCCU_C	2.3E-08	0.0%
Carson FCCU Pre-Heater	FCCUPH_C	1.6E-08	0.0%
Wilmington Sulfur Plant Incinerator Stack 2	F754	4.2E-09	0.0%
Wilmington Sulfur Plant Incinerator Stack 1	F704	3.5E-09	0.0%
Wilmington Tank 80035	80035	0.0E+00	0.0%
Wilmington Tank 80036	80036	0.0E+00	0.0%
Wilmington Tank 80038	80038	0.0E+00	0.0%
Wilmington Tank 80074	80074	0.0E+00	0.0%
C3 Splitter Fugitives	C3SPLT_C	0.0E+00	0.0%
Wilmington CRU	CRU_W1 to CRU_W2	0.0E+00	0.0%
Carson HCU	HCU_C	0.0E+00	0.0%
Wilmington Hydrotreater Unit No. 1	HTU1_W	0.0E+00	0.0%
Wilmington Propane Sales Treating Unit	PSTU_W	0.0E+00	0.0%
Carson Tank 14	TK14	0.0E+00	0.0%
Carson Tank 35	TK35	0.0E+00	0.0%

Appendix E

Source Description	Source ID	Total risk	Fraction
Carson Tank 502	TK502	0.0E+00	0.0%
Carson Tank 64	TK64	0.0E+00	0.0%
Carson Tank 959	TK959	0.0E+00	0.0%
Carson Wet Jet Treater (New)	WETJET_C	0.0E+00	0.0%
Wilmington Tank 80215	80215	-5.0E-06	0.0%
Total		8.5E-02	100.0%

Table 16. Acute Risk by Pollutant at Maximum Exposed Individual (FEIR Addendum Sources)¹⁰

Pollutant	CAS Number	Total risk	Fraction
Benzene	71-43-2	7.5E-02	98.1%
Nickel	7440-02-0	1.5E-03	1.9%
Total		7.6E-02	100.0%

¹⁰ To calculate maximum acute risk, HARP2 determines risk from all chemicals for all pathways, and the pathway with the highest total is considered the maximum. If a chemical contributes risk to one or more pathways but does affect the pathway with the highest risk, that chemical is not shown in this table. For this project, the pathway with the highest acute risk at the MEI was the immune system.

Table 17. Acute Risk by Source at Maximum Exposed Individual (FEIR Addendum Sources)

Source Description	Source ID	Total risk	Fraction
Wilmington Side Pig Station - Piping	PIGST_W1 to PIGST_W2	6.3E-02	83.0%
Interconnect	Tuco	4.75.00	2.224
Carson Tank 62	TK62	1.7E-03	2.2%
Carson Tank 63	TK63	1.5E-03	2.0%
Carson New 500 MBBL Crude Tanks	CRDTK1_C to CRDTK6_C	1.2E-03	1.6%
Wilmington Tank 80044	80044	1.2E-03	1.6%
Wilmington Tank 300036 (replaces 80036)	300036	7.7E-04	1.0%
Wilmington Coke Handling Emissions	COKE_W	6.8E-04	0.9%
Wilmington Tank 300035 (replaces 80035)	300035	6.7E-04	0.9%
Wilmington Tank 80060	80060	6.5E-04	0.9%
Wilmington Hydrocracker Unit	HCU_W1 to HCU_W3	6.4E-04	0.8%
Carson Side Pig Station - Piping Interconnect	PIGST_C	5.7E-04	0.7%
Wilmington Tank 80067	80067	4.4E-04	0.6%
Wilmington Tank 80079	80079	3.6E-04	0.5%
Crude Tank Farm - Pipeline Component Fugitives	CCT_FUG	3.4E-04	0.5%
Wilmington HTU3 Unit H-21/H-22 Heaters Stack	H21_22	3.2E-04	0.4%
Wilmington Tank 80215	80215	2.9E-04	0.4%
Wilmington Interconnect Piping - PSTU	IC_W3	2.6E-04	0.3%
Wilmington H100 Heater Stack	H100	1.6E-04	0.2%
Wilmington Hydrotreater Unit No. 2	HTU2_W	1.5E-04	0.2%
Wilmington Tank 80217	80217	1.4E-04	0.2%
Wilmington Boilers 7 & 8 Stack	BLR78_W	1.2E-04	0.2%
Wilmington Interconnect Piping - OSBL	IC_W1 to IC_W2	9.8E-05	0.1%
Carson Tank 31	TK31	8.6E-05	0.1%
Wilmington - New Piping for Tanks 300035- 300036	NWPIPE_W	8.1E-05	0.1%
Carson 51 Vacuum Unit Heater Stack (D63)	51VAC	7.8E-05	0.1%
Wilmington HTU3 Unit H-30 Heater Stack	H30	7.3E-05	0.1%
Wilmington Boilers 9 & 10 Stack	BLR910_W	5.7E-05	0.1%
Carson Naphtha HDS	NAPHDS_C	4.5E-05	0.1%
Wilmington Tank 80211	80211	3.9E-05	0.1%
Carson Interconnect Piping - OSBL	IC_C1 to IC_C2	3.4E-05	0.0%
Wilmington Coker Heater H101	H101	3.4E-05	0.0%
Carson Mid Barrel Distillate Treater	MID_C1 to MID_C2	2.8E-05	0.0%
Wilmington HCU H-300 and H-301 Heaters Stack	H300_301	2.5E-05	0.0%
Wilmington - Sulfuric Acid Regen Plant Stk 2 - Decomp Furnace	SA2_W	2.1E-05	0.0%
Carson Naphtha HDS Heater Stack (D1433)	NHDS	1.9E-05	0.0%

Source Description	Source ID	Total risk	Fraction
Wilmington - Sulfuric Acid Regen Plant Stk 1 -	SA1_W	1.5E-05	0.0%
Process Air & Converter Htr			
Wilmington CRU2 Unit H-510 Heater Stack	H510	1.3E-05	0.0%
Carson Hydrocracker R1 Heater Stack (D625)	HCU_R1	8.1E-06	0.0%
Carson Light Hydro Unit	LHU_C1 to LHU_C2	7.4E-06	0.0%
Carson Hydrocracker R2 Heater Stack (D627)	HCU_R2	7.2E-06	0.0%
Wilmington CRU2 Unit H-501A/B 502 503 504 Heaters Stack	H501A_ET	2.2E-06	0.0%
Carson FCCU Regenerator	FCCUR_C	2.0E-06	0.0%
Carson LPG Rail Car Loading/Unloading	LPG_C	1.9E-06	0.0%
Wilmington Sulfur Plant Combined H- 1601/1602 Stack	H1601_2	1.4E-06	0.0%
Carson No. 51 Vacuum Unit	51VAC_C	2.4E-07	0.0%
Wilmington Hydrotreater Unit No. 4	HTU4_W	1.2E-07	0.0%
Carson Alkylation Unit	ALKY_C	9.1E-08	0.0%
Carson Light Hydrotreating Unit Heater (D425)	LHU_HTR	5.5E-08	0.0%
Carson FCCU Pre-Heater	FCCUPH_C	3.2E-08	0.0%
Carson FCCU	FCCU_C	3.0E-08	0.0%
Wilmington Sulfur Plant Incinerator Stack 2	F754	1.1E-08	0.0%
Wilmington Sulfur Plant Incinerator Stack 1	F704	9.0E-09	0.0%
Wilmington Tank 80035	80035	0.0E+00	0.0%
Wilmington Tank 80036	80036	0.0E+00	0.0%
Wilmington Tank 80038	80038	0.0E+00	0.0%
Wilmington Tank 80074	80074	0.0E+00	0.0%
C3 Splitter Fugitives	C3SPLT_C	0.0E+00	0.0%
Carson Cogeneration Unit 1 Turbine and Duct Burner Stack (D1226/D1227)	COGEN1	0.0E+00	0.0%
Carson Cogeneration Unit 2 Turbine and Duct Burner Stack (D1233/D1234)	COGEN2	0.0E+00	0.0%
Carson Cogeneration Unit 3 Turbine and Duct Burner Stack (D1236/D1237)	COGEN3	0.0E+00	0.0%
Carson Cogeneration Unit 4 Turbine and Duct Burner Stack (D1239/D1240)	COGEN4	0.0E+00	0.0%
Wilmington CRU	CRU_W1 to CRU_W2	0.0E+00	0.0%
Carson HCU	HCU_C	0.0E+00	0.0%
Wilmington Hydrotreater Unit No. 1	HTU1_W	0.0E+00	0.0%
Wilmington Propane Sales Treating Unit	PSTU_W	0.0E+00	0.0%
Carson Tank 14	TK14	0.0E+00	0.0%
Carson Tank 35	TK35	0.0E+00	0.0%
Carson Tank 502	TK502	0.0E+00	0.0%
Carson Tank 64	TK64	0.0E+00	0.0%
Carson Tank 959	TK959	0.0E+00	0.0%

Source Description	Source ID	Total risk	Fraction
Carson Wet Jet Treater (New)	WETJET_C	0.0E+00	0.0%
Locomotives	RRB_0001 to RRB_0098, RRG_0001 to RRG_0303	0.0E+00	0.0%
Onsite Trucks	CAR_0001 to CAR_0417, WLM_0001 to WLM_0154, COK_0001 to COK_0165	0.0E+00	0.0%
Total		7.6E-02	100.0%

6.0 IMPACT OF CONSTRUCTION EMISSIONS

A Supplemental HRA was included in the May 2017 FEIR as Appendix H. The Supplemental HRA addressed DPM emissions resulting from the construction of the project (portable engines, mobile equipment, etc.). The construction schedule and associated DPM emissions have been updated following the release of the May 2017 FEIR; updated emissions are shown in **Table 18** below. A detailed description of the construction emissions methodology is provided in Appendix B of this Addendum.

Table 18. Summary of Construction Emissions

Construction Project	Duration (months)	Total DPM Emissions (lbs)
Wilmington	24	659
Wilmington Crude Tanks	12	169
SARP	14	201
Carson North	21	450
Carson South	29	569
Carson Crude Tanks	51	370
Pipeline	14	1,013
Electric	23	457

6.1 EXPOSURE ASSESSMENT

Exposure assessment for construction emissions was performed in the same manner as described in Appendix H to the May 2017 FEIR with the following exceptions:

- Modeling was performed with the latest versions of AERMOD and HARP
- Modeling was performed with the 2012-2016 Long Beach meteorological data
- Modeling was performed with the updated emission rates (shown in Table 18 above)

6.2 HEALTH RISK RESULTS

Acute and 8-hr chronic reference exposure levels do not exist for DPM, therefore, the health risk associated with construction emissions was only evaluated for cancer and chronic risk.

6.2.1 Cancer Risk

The predicted increase in health risks at maximally exposed offsite receptors are summarized by category in **Table 19**, **Table 20**, and **Table 21**. **Table 19** shows the predicted increase in cancer and chronic health risks from emissions of operational sources. **Table 20** shows the predicted increase in cancer and chronic health risks from construction DPM emissions. **Table 21** shows the predicted increase in cancer and chronic health risks from emissions of operational and construction sources combined. As shown, the highest calculated cancer risks in the combined scenario at residential, sensitive, and worker receptors are below 10 in one million. It should be noted that because the maximum risk associated with operational emissions does not necessarily occur at the same receptor location as the maximum risk associated with construction emissions, the combined risk may not be equal to the sum of each maximum value.

For the combined scenario, the highest cancer risk at a residential receptor is a cancer risk value of 4.7 in one million. The receptor is located north of the refinery just north of the 405 freeway – see **Figure 9**. Contours showing the aerial distribution of calculated cancer risks for worst-case residential exposure are shown on **Figure 10**. The highest calculated cancer risk at a listed sensitive receptor was 4.1 in one million, at Bethune Mary School located about 500 meters east of the eastern boundary of the Wilmington Operations area. **Table 22** provides a list of the highest cancer risk for sensitive receptors.

The receptor with the highest calculated worker exposure cancer risk was located near the railroad tracks at the northeastern boundary of the refinery – see Figure 5. The receptor is in the immediate vicinity of the location where a locomotive engine enters and exits the facility boundary when moving LPG railcars. The worst-case worker cancer risk at this receptor is 7.0 in one million. This receptor is located along the fenceline where long-term (multi-decade) 40 hour/week exposure is highly unlikely to occur. Contours showing the areal distribution of calculated cancer risks for worst-case worker exposure are shown on **Figure 11**.

6.2.2 Chronic Risk

The maximum chronic hazard index (worker or residential) of 0.096 was predicted at a receptor on the western fenceline of the southern portion of the facility. The highest calculated chronic risk at a listed sensitive receptor was 0.019, at Cesar Chavez Elementary School located about 4 kilometers southeast of the Wilmington Operations area. The maximum chronic HI receptors are shown in **Figure 9**. The maximum residential and worker chronic HI receptors were in close proximity to or along facility boundaries.

Summary of Maximum Project Offsite Cancer and Non-cancer Risks (Operation Sources Only) Table 19:

		Cancer Risk			Chronic Risk	
	Increase Cases in-one-	UTM Coordin:	UTM Coordinates (NAD83)	Hazard Index	UTM Coordin:	JTM Coordinates (NAD83)
Location ^a	million	Easting (m)	Northing (m)		Easting (m)	Northing (m)
Residential receptor ^b	2.9	383700.0	3741400.0	0.024	385251.4	3739502.8
Offsite workplace receptor	7.0	386019.1	3742969.4	0.085	386152.5	3741127.8
Sensitive Receptor ^b	2.4	386720.8	3739987.2	0.019	388750.0	3737361.0

^a Excluding onsite grid receptors

^b Worst-case residential exposure ^c Maximum sensitive receptors:

Cancer Risk: Bethune Mary School

Chronic Risk: Cesar Chavez Elementary School

Summary of Maximum Project Offsite Cancer and Non-cancer Risks (Construction Sources Only) Table 20:

Location ^a Location ^a Location ^b Location ^b Location ^a Location ^a Location ^b Location ^a Easting (m) Easting (m) Easting (m) Resting (m)			Cancer Risk			Chronic Risk	
million Easting (m) Northing (m) .b 2.3 385000.0 3743600.0 0.002 :ceptor 1.1 385701.4 3741819.3 0.018 1.7 386720.8 3739987.2 0.0001		Increase Cases in-one-	UTM Coordin	ates (NAD83)	Hazard Index	UTM Coordinates (NAD83)	ates (NAD83)
.b 2.3 385000.0 3743600.0 0.002 iceptor 1.1 385701.4 3741819.3 0.018 1.7 386720.8 3739987.2 0.001	Location ^a	million	Easting (m)	Northing (m)		Easting (m)	Northing (m)
ceptor 1.1 385701.4 3741819.3 0.018 1.7 386720.8 3739987.2 0.001	Residential receptor ^b	2.3	385000.0	3743600.0	0.002	385000.0	3743600.0
1.7 386720.8 3739987.2 0.001	Offsite workplace receptor	1.1	385701.4	3741819.3	0.018	385701.4	3741819.3
	Sensitive Receptor ^b	1.7	386720.8	3739987.2	0.001	386720.8	3739987.2

^a Excluding onsite grid receptors

^b Worst-case residential exposure

 $^{\circ}$ Maximum sensitive receptors:

Cancer Risk: Bethune Mary School

Chronic Risk: Bethune Mary School

APRIL 2019

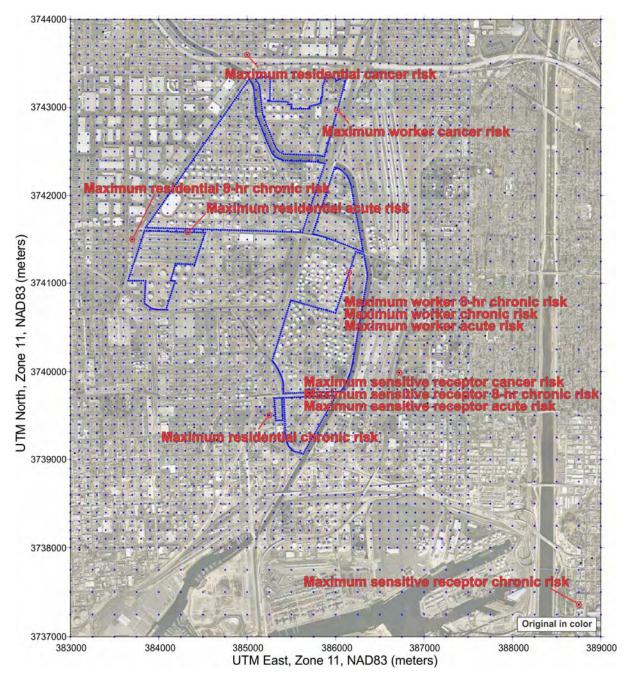
38

APRIL 2019

39

Summary of Maximum Project Offsite Cancer and Non-cancer Risks (Operation Plus Construction Sources) **Table 21:**

		Cancer Risk			Chronic Risk	
	Increase Cases in-one-	UTM Coordin	UTM Coordinates (NAD83)	Hazard Index	UTM Coordin	JTM Coordinates (NAD83)
Location ^a	million	Easting (m)	Northing (m)		Easting (m)	Northing (m)
Residential receptor ^b	4.7	385000.0	3743600.0	0.025	385251.4	3739502.8
Offsite workplace receptor	7.0	386019.1	3742969.4	960'0	386152.5	3741127.8
Sensitive Receptor ^b	4.1	386720.8	3739987.2	0.019	388750.0	3737361.0


Excluding onsite grid receptors

^b Worst-case residential exposure

^c Maximum sensitive receptors:

Cancer Risk: Bethune Mary School Chronic Risk: Cesar Chavez Elementary School

Figure 9. Location of Maximum Calculated Health Risks, FEIR Addendum Sources Plus Construction Sources with 2012-2016 Meteorological Data

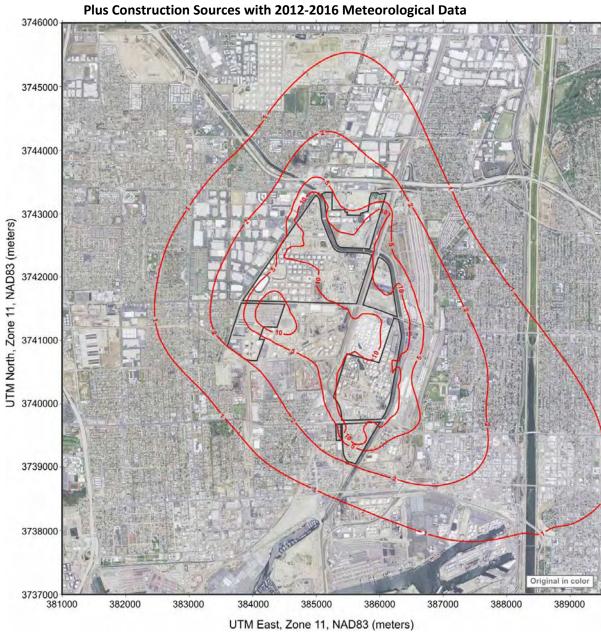
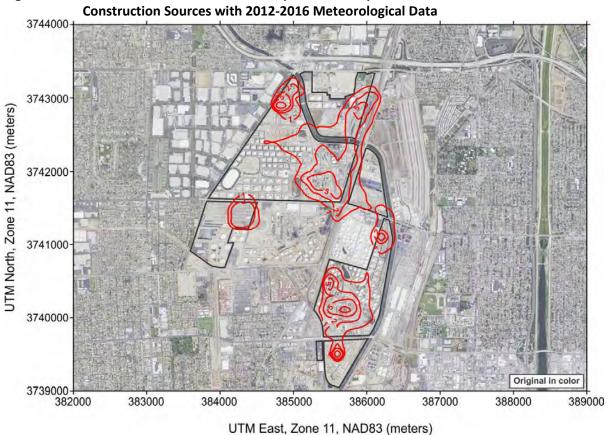
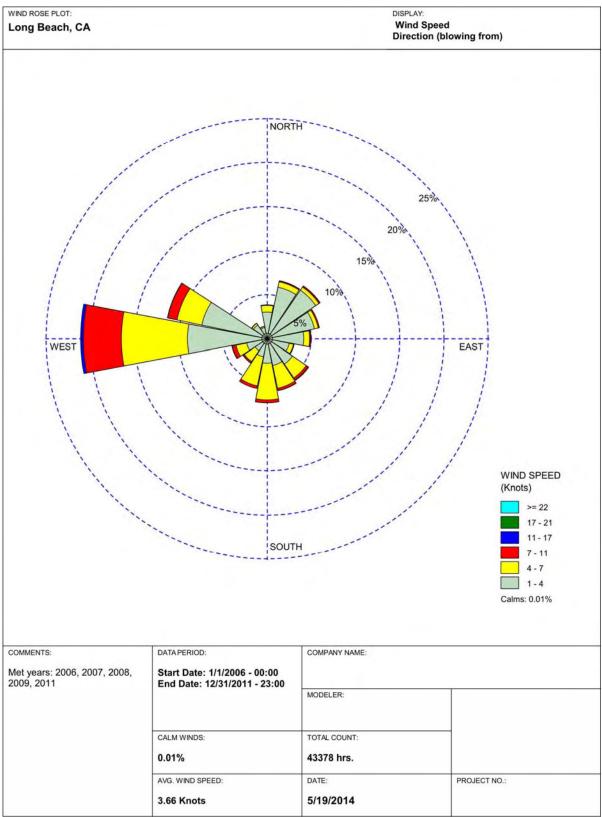


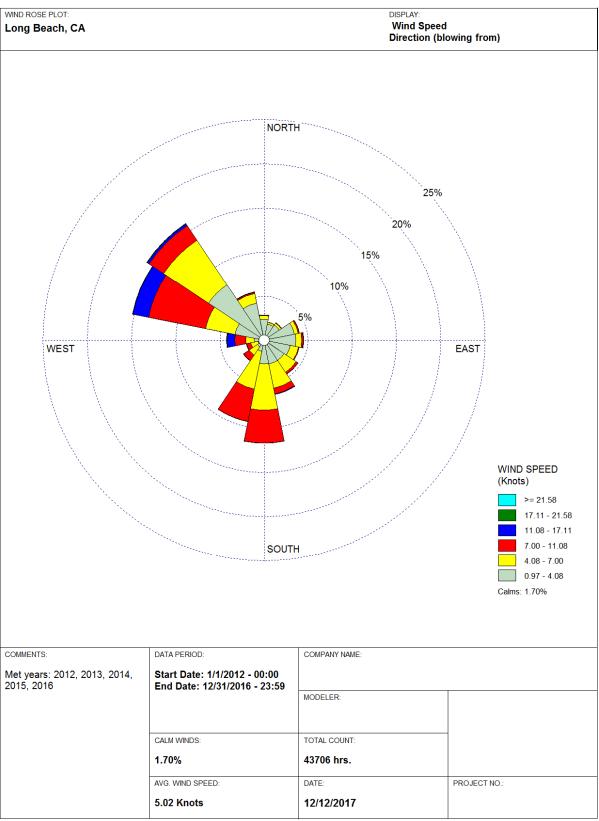
Figure 10. Contours of Residential Cancer Risk, per million exposed, FEIR Addendum Sources
Plus Construction Sources with 2012-2016 Meteorological Data




Figure 11. Contours of Worker Cancer Risk, per million exposed, FEIR Addendum Sources Plus Construction Sources with 2012-2016 Meteorological Data

OTM Eddt, Zono TT, TV Doo (motoro)

Table 22. Summary of Project Cancer Risks at the Most Exposed Sensitive Receptors


	UTM Coordinates (NAD83)		Increased Cancer Cases (in-one- million), FEIR
Sensitive Receptor Name	Easting (m)	Northing (m)	Addendum Sources + Construction Sources, 12-16 Met Data
Bethune Mary School	386721	3739987	4.09
Wyo Tech National Institute of Tech	387041	3739640	3.15
Elizabeth Hudson Elementary School	387091	3740595	2.91
Will J. Reid High School	387037	3740324	2.86
Long Beach Japanese School	387304	3739447	2.56
Long Beach Child Development	387287	3740345	2.48
St. Lucy's School	387437	3740571	2.30
Long Beach Job Corp Dynamic Educational	387472	3739724	2.22
West Child Development Center	387474	3740168	2.20
Cabrillo High School	387473	3739922	2.18
Garfield Head Start Elementary School	387692	3740405	1.99
William Logan Stephens Junior High	387367	3741657	1.81
Del Amo Elementary School	385247	3744738	1.45
Wilmington Park Children's Center	384655	3739221	1.38
Wilmington Park Elementary School	384618	3739222	1.35
Holy Family Grammar School	384401	3739366	1.31
Broad Avenue Elementary School	383158	3740800	1.31
Webster Elementary School	387380	3742512	1.15
Regency High School	389116	3738789	1.12
Wilmington Christian School	383005	3740658	1.11
Mary Bethune School	389232	3738849	1.10
Long Beach Day Nursery	389275	3739143	1.07
Washington Middle School	389361	3738974	1.06
Long Beach School for Adult	389368	3739487	1.04
Santa Fe Convalescent Hospital	387542	3742485	1.03

ATTACHMENT A WINDROSES

WRPLOT View - Lakes Environmental Software

ATTACHMENT A WINDROSES

WRPLOT View - Lakes Environmental Software

45

The AERMOD and HARP2 input and output files are available to SCAQMD upon request.