Warehouse Truck Trip Study Data Results and Usage

Inland Empire Logistics Council
June 2014

Cleaning the Air That We Breathe...

Purpose

- To provide guidance on how to quantify warehouse truck emissions for CEQA air quality analyses
 - Technical guidance to lead agencies and project proponents
 - Consistency for SCAQMD staff comments on air quality analysis
 - To establish "substantial evidence" for assumptions used

CEQA Air Quality Analyses for Warehouses

- Quantifying air quality impacts for CEQA
 - Different than traffic impacts
 - > Truck emissions >90% of air impact
- CEQA requires use of "conservative analysis" to afford "fullest possible protection of the environment"
 - SCAQMD CEQA Air Quality Handbook recommends "utilizing the highest daily emissions"
- SCAQMD staff comment letters or testimonies may be used in CEQA litigation

Key Challenges When Determining Trip Rate for Warehouses

- Tenant often unknown when CEQA document certified
- Finding most appropriate trip rate for air quality analysis
 - ITE vs. other recommendations
 - Annual average rates vs. peak daily rates
 - Potential for overbuilding transportation infrastructure
- Availability of mitigation options
 - Feasibility of clean trucks
 - Other (e.g., siting, truck routes, fueling infrastructure)

Current Guidance to Determine Use of Peak Rates for CEQA Air Quality Analysis

- Guidance applicable to all land uses
- Different air quality thresholds / averaging periods require different emission rates

CEQA Threshold	Averaging Period	Use Average Rate	Use Peak Rate
Regional Criteria Pollutant	Daily		X
Localized Criteria Pollutant	<u><</u> 24hrs		X
Localized Criteria Pollutant	> 24hrs	X	
HRA – cancer	70 year	X	
HRA – chronic	1 year	X	
HRA – acute	1 hour		Χ
GHG	30 year	X	

ITE Trip Rates

- Institute of Transportation Engineers
 - ➤ ITE is an international educational and scientific association of transportation engineers and other professionals who are responsible for meeting mobility and safety needs.
 - ITE compiles data provided voluntarily to ITE by local government, consultants, etc. for use with:
 - Site access requirements
 - Estimates for off-site transportation improvements
 - Implications for zoning/land use changes

Local governments

- Project-specific rates commonly differ from ITE guidance
 - □ 14 out of 18 CEQA docs in past year use truck rates < ITE</p>

SCAQMD Warehouse Truck Study Findings

- Study collected two datasets
 - Trip Counts at Warehouses (average rates)
 - Business Surveys (peaking factor)

Trip Count Data

Crouning	Trip Rate (trips/tsf)		
Grouping	Overall	Trucks	
All Sites (N=33)	1.51	0.50	
Non-Cold Storage (N=28)	1.34	0.40	
Only Cold Storage (N=5)	2.49	1.10	

Peaking Factor from Business Survey

Cold Storage	Non-Cold Storage
20%	33%

SCAQMD Trip Counts Compared to Existing Data

- Trip counts demonstrate wide range of trip rates
 - High variability consistent with ITE results
 - SCAQMD trip counts ~60% higher than trip rates from available CEQA documents for same facility
 - ➤ SCAQMD truck trip counts ~140% higher than truck trip counts from 2008 NAIOP study for same facility
- Key parameters contributing to variation
 - Business cycle (e.g., seasonal, daily, recession, etc.)
 - Business type (e.g., e-commerce vs. grocery)

Data Comparison - SCAQMD Trip Counts vs. Previous CEQA Analyses*

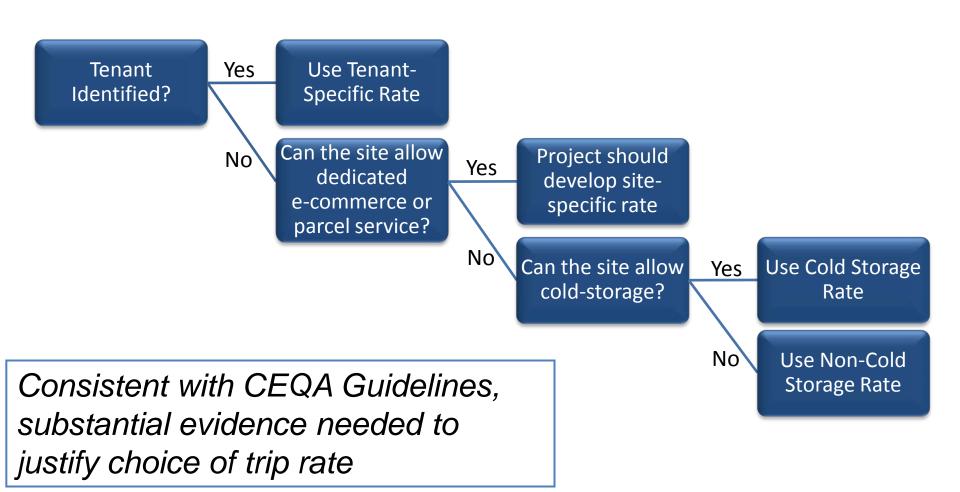
Facility Name	ity Nama City		SCAQMD Rate / CEQA Rate		
Facility Name	City	CEQA Doc	Overall	Truck	
Cott Beverages	San Bernardino	1995	3.24 / 1.44	1.39 / 0.53	
Walmart	SB County	1998	2.1 / 1.57	1.06 / 0.37	
Home Depot	Redlands	2006	2.8 / 1.1	0.97 / 0.54	
Ralphs	Paramount	2006	2.07 / 4.96	NA	
Smart and Final - Quad/Graphics	Riverside	1982	2.53 / 1.86	NA	
Georgia Pacific	Ontario	1997	0.72 / 1.6	0.53 / 0.38	
Ross	Moreno Valley	2003	3.34 / 1.58	0.5 / 0.32	
Ross	Perris	2001	3.68 / 0.59	0.45 / 0.26	
Western States Distribution	Riverside	1982	1.17 / 1.86	NA	
UPS SCS	Jurupa Valley	2003	1.95 / 1.58	0.39 / 0.32	
Bridgestone/Firestone	Ontario	1997	0.82 / 1.6	0.35 / 0.38	
Skechers	Moreno Valley	2008	0.93 / 1.69	0.12 / 0.91	

SCAQMD
Rate Higher
CEQA Doc
Rate Higher

On Average, SCAQMD Counts ~60% higher

Data Comparison – SCAQMD 2013/2014 vs. NAIOP 2008

Facility Name	SCAQMD Rate / NAIOP Rate		
racility Name	Overall	Truck	
Ross	3.68 / 2.11	0.45 / 0.22	
Home Depot*	0.84 / 0.65	0.41 / 0.1	
UPS Supply Chain Solutions	1.95 / 0.25	0.39 / 0.01	
Loma Grande Distribution Center / Schneider (Walmart)	0.64 / 0.48	0.36 / 0.08	
Unilever	0.68 / 0.47	0.35 / 0.24	
American Port Services / Schneider (Walmart)	1.2 / 0.52	0.26 / 0.19	
K-Mart	0.51 / 0.63	0.23 / 0.21	
Big 5	1.56 / 1.46	0.2 / 0.08	


SCAQMD Rate Higher NAIOP Rate Higher

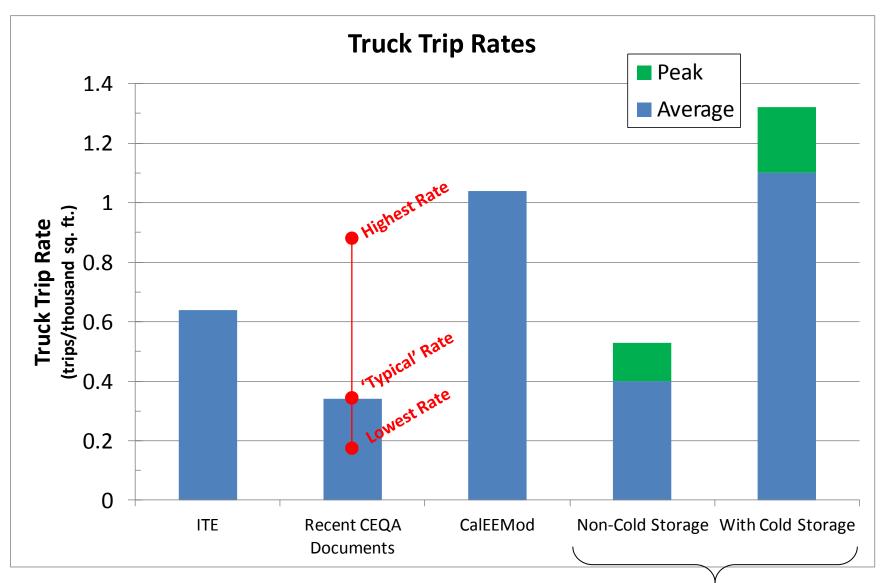
On Average, SCAQMD counts[†] 40% higher 140% higher

*Excluding UPS

Possible CEQA Air Quality Analysis Approach Facility Category Selection

Possible CEQA AQ Analysis Approach

		Overall Rates (trips/tsf)		Truck Rate (trips/tsf)	
	Grouping	Average Rate	Rate with Peaking Factor*	Average Rate	Rate with Peaking Factor*
	ITE	1.68		0.64	
Existing Trip Rates	Typical CEQA doc	1.68		0.34	
	CalEEMod Guidance		2.59		1.04
Possible Approach ^{A,B}	Only Cold Storage	2.49	2.99	1.10	1.32
Possible Approach	Non-Cold Storage	1.34	1.78	0.40	0.53


A Peaking Factor applied only to averaging periods ≤ one day

*Peaking Factor from Business Survey

Cold Storage	Non-Cold Storage
20%	33%

^B Outlier data removed

Truck Trip Rate Comparison

SCAQMD Truck Study

Next Steps

- Seek stakeholders input to:
 - Further refine analysis and recommendations
 - Develop HDT fleet mix based on study
 - Develop interim stand alone spreadsheet to calculate mobile source emissions in lieu of CalEEMod
- Collect additional trip count data from warehouses on a biannual basis
- Recommend to ITE to consider splitting out warehouses with cold storage
- Develop updated emission mitigation menu
 - > e.g., WRCOG "Good Neighbor" Guidelines (2005)

WRCOG Guidelines

- Recommended mitigation in WRCOG Guidelines:
 - Buffer zones
 - Encourage fleet owners to replace existing diesel fleets with "new model vehicles and/or cleaner technologies, such as electric or compressed natural gas"
 - Reduce diesel trucking activity outside of warehouses
 - Reduce onsite idling
 - Place clearly marked truck routes away from sensitive receptors
 - Encourage alternative fueling infrastructure
 - Educate workers and truckers about impacts from diesel and available resources to reduce impacts