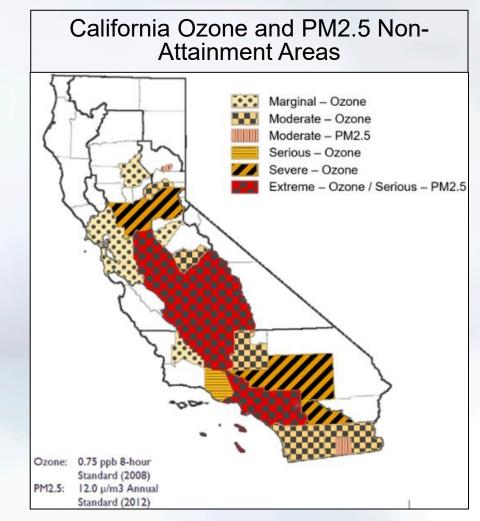


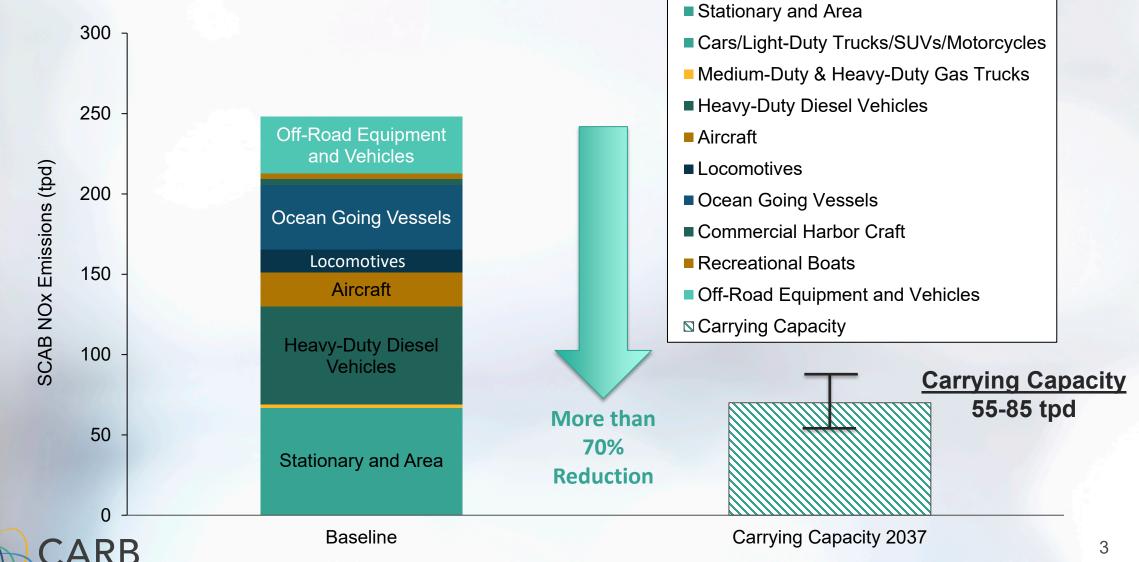
Clean Technology Adoption in Off-Road Sector

2022 AQMP Mobile Source Working Group


April 7, 2021

Major NOx and PM_{2.5} Emission Reductions Needed

- California has the worst air quality in the nation
- Key challenges


CARB

- San Joaquin Valley PM2.5
- South Coast Ozone
- Off-road equipment are one of the largest contributors
- Actions beyond current programs needed to meet air quality goals in various regions

South Coast 2037 Attainment

(Working Draft)

Disadvantaged Community Focus

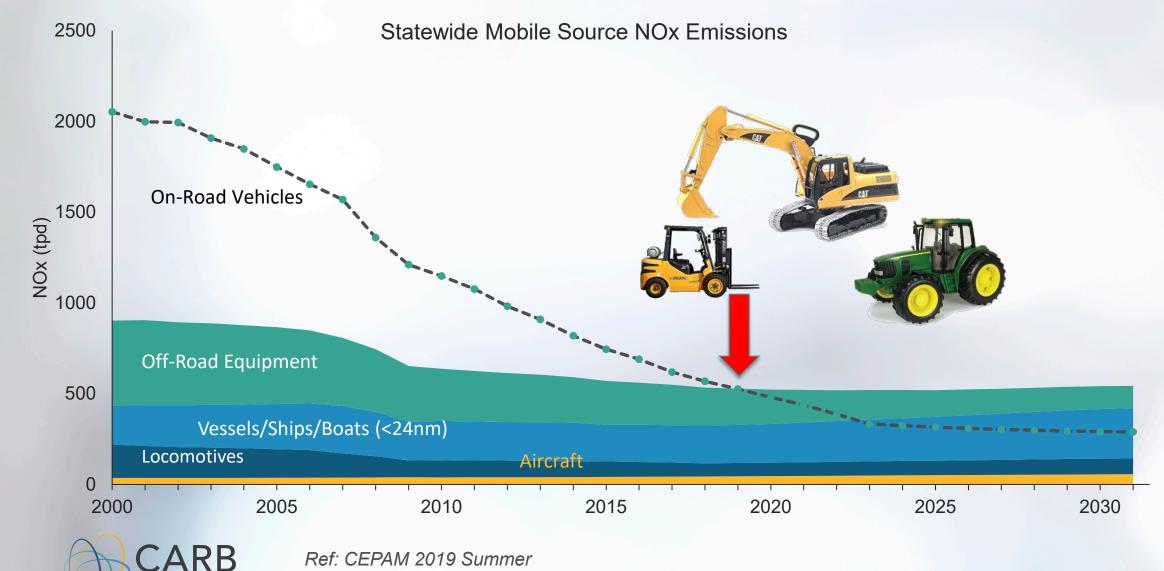
- Assembly Bill 617 directs CARB to identify community level strategies
- Communities seek rapid transition to zero-emissions

Zero-Emission Key to California's Future

- Multiple criteria, air toxics, and climate pollutant emissions reduction plans
- Core strategies
 - Zero-emissions everywhere feasible
 - Cleaner fuels and cleaner combustion everywhere else

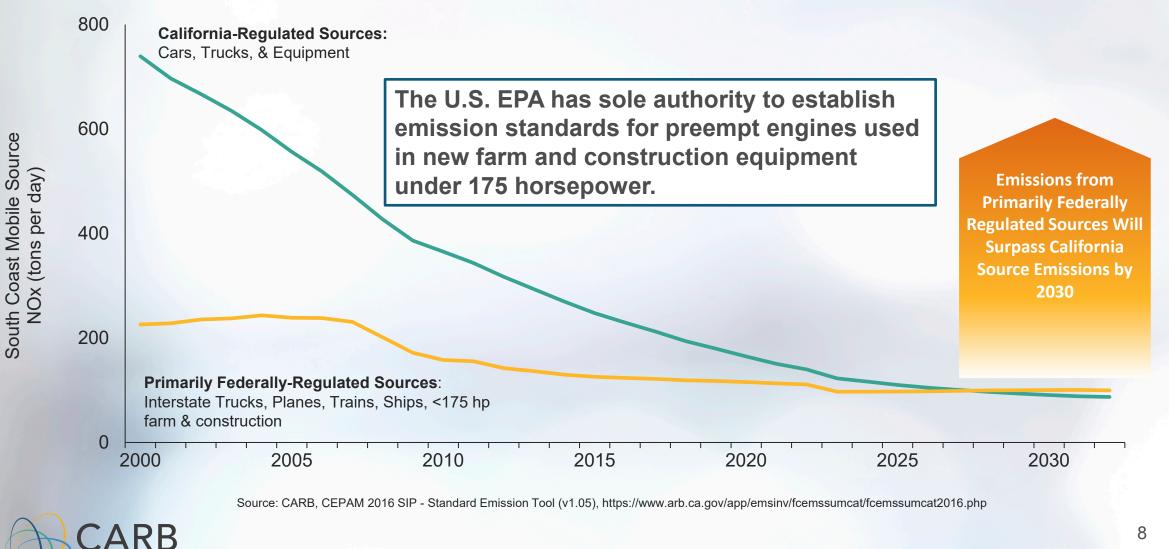
Executive Order N-79-20

ZE off-road equipment by 2035* – Full transition to

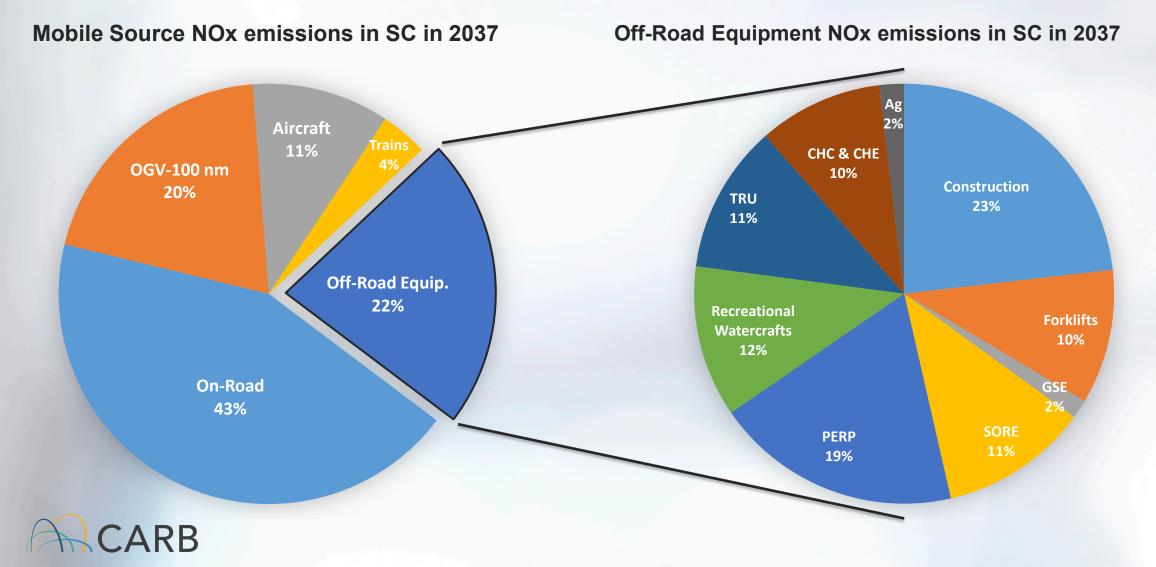

100% ZEV sales by 2035 Full transition to ZEV short-haul/drayage trucks bv 2035 Full transition to ZEV buses & heavy-duty long-haul trucks by 2045*

Transition of all off-road equipment operations to zero-emission where feasible by 2035

Strategies, in coordination with other State agencies, U.S. Environmental Protection Agency and local air districts, to achieve 100 percent zero-emission from off-road vehicles and equipment operations in the State by 2035.

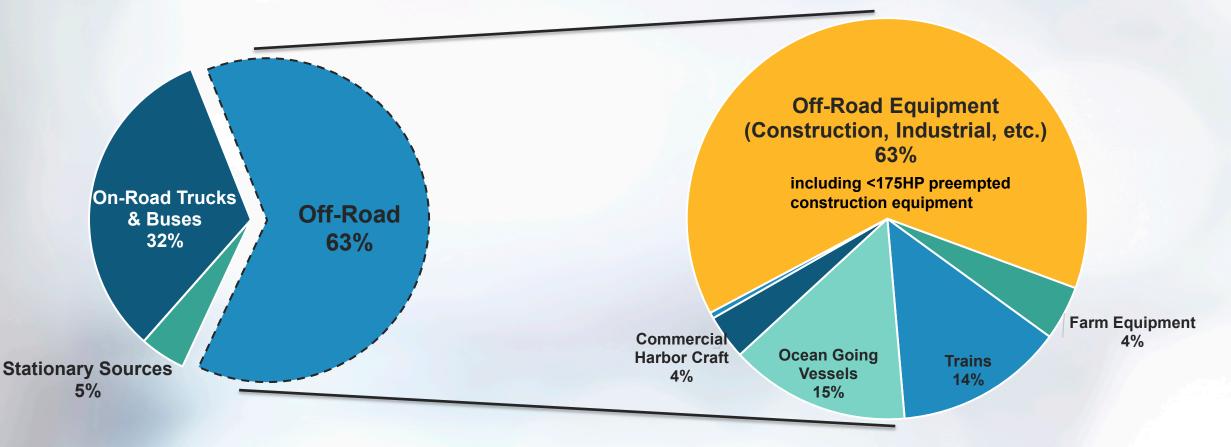


Growing Importance of Off-Road



Ref: CEPAM 2019 Summer

Controlling Federal Sources is Critical to Achieving our Clean Air and Climate Targets



Off-Road NOx Emission Contribution

Off-Road Diesel PM Emission Contribution

Diesel PM emissions in SC in 2020

Zero-Emission Technology

Low HP Construction & Agricultural equipment

- Most current commercialized electric equipment are under 150 HP
- Mobile battery solutions may play key role in solving infrastructure limits

- Under 100 hp tractors and forklifts have potential for electrification
- Federal preemption to set emission standards for preempt engines used in new farm and construction equipment under 175 horsepower.

Portable equipment

- Portable diesel-fueled engines with a rated brake horsepower of 50 and greater (≥ 50 bhp)
- Fuel cells have shown long term potential, additional research and demos needed

Cargo Handing Equipment

TRUs

- Electric Top-pick and yard tractors at ports and intermodal railyards
- Battery electric forklifts
 - Hydrogen fuel cell forklifts show potential as well
- In-use emission regulation
- Full electrification of truck TRUs by 2034 (regulatory proposal)
- Full electrification of trailer TRUs (2020 MSS proposal)

Hybridization

 Demo hybrid auxiliary engine

 If we include hybrid auto carrier and Roro vessels, the OGV sector has a potential to reduce diesel use by 35%

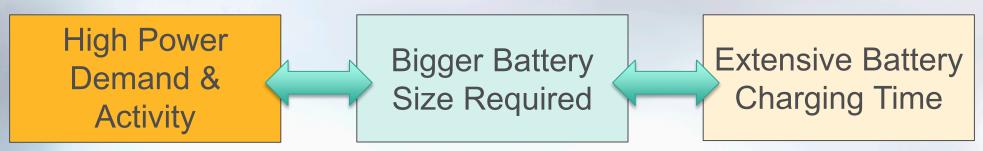
Clean Off-Road Equipment Voucher Incentive Project
Hybrid RTG cranes offer 40% fuel savings

- Demonstration projects for fuel cellpowered line-haul and switcher locomotives in 2025
- Battery electric demo starts in 2021 (switcher) and 2022 (line haul)
- SBCTA Fuel-cell MU passenger locomotive demo in 2022
- Caltrans aims to reduce 35% of the total fuel usage per passenger train mile by 2030

• Hybrid Tug, Ferry, and Excursion units comprise 49% of the total diesel consumption of the sector

- In-use short run ferries become zero-emission by 2028 (9% of ferries)
- Potential for all tugs to go to dieselelectric (~20% efficiency gain) by 2030, all excursion vessels go to plug-in hybrid by 2030

Construction & Agricultural Equipment



- Many construction and agricultural demo cases have shown common hybrid modules used with a similar range of horsepower
- On average, 25% of efficiency improvement due to hybridization
- 400 ~ 600 hp construction and agricultural equipment types may find interim solution in hybridization

Key Technical Barriers for Off-Road Electrification

- Pace of commercialization
 - o Technology readily available
 - Some equipment types commercially available, others in demonstration phase
- Limited access to charging infrastructure
- Operational limitations

Existing Market Potential for Zero-Emission Construction Equipment

- Various construction equipment types have demonstrated a high potential of clean technology adoption according to previous and on-going demo projects.
- Similar horsepower ranges to electrified on-road heavy-duty applications; some transferability of technologies
 - Semi-truck HP range: 400~600HP
 - 175 HP and lower CE types \rightarrow higher electrification potential
- Additional demonstration projects for higher horsepower ranges are key

Hybrid Construction Equipment Demonstrations

Caterpillar's large hybrid excavator

- Caterpillar hybrid excavator (336F H, 2014)
- 30% fuel savings compared with the similarly sized baseline machine without hybrid technology.

Volvo CE's electric hybrid wheel loader

- Volvo Construction Equipment hybrid electric wheel loader (LX1, 2016)
- 50~55% fuel efficiency improvement

ARB

• 33~35% GHG emission reduction compared to Volvo CE's diesel-powered base model.

Examples of Zero Emissions Construction Equipment (1)

- PON/CAT Z-line 323F excavator
- Full battery electric
- 164 hp
- 300 kWh energy storage
- Units in service in Norway and Netherlands
- Purchasable today

https://www.pon-cat.com/no/pon-equipment/nyheter/z-line

Examples of Zero Emissions Construction Equipment (2)

- JCB 220X
- Hydrogen Fuel Cell 20 ton excavator prototype
- In proving grounds testing for >18 months

https://www.jcb.com/en-gb/news/2020/07/jcb-leads-theway-with-first-hydrogen-fuelled-excavator

Examples of Zero Emissions Construction Equipment (3)

- Volvo EX02
- Fully electric compact excavator prototype
- 38 KWh energy storage
- Enough to operate the machine for eight hours in an intense application

https://www.volvoce.com/global/en/this-is-volvo-ce/whatwe-believe-in/innovation/prototype-electric-excavator/

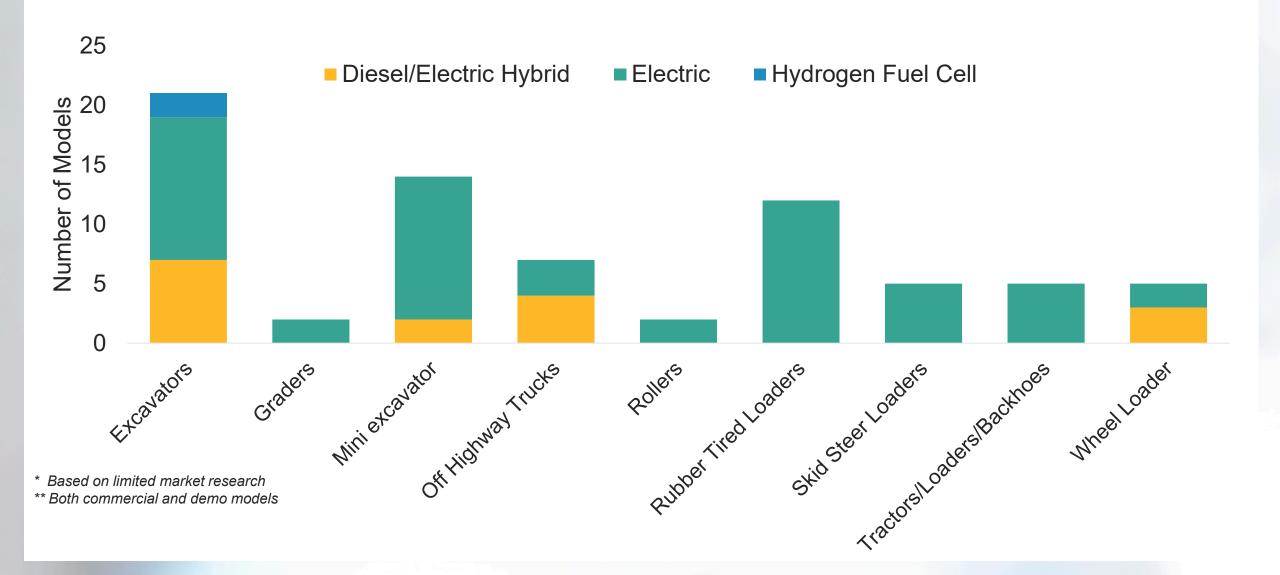
Examples of Zero Emissions Construction Equipment (4)

- CASE Project Zeus Backhoe
- Battery powered electric backhoe
- 90 KWh energy storage
- Capable of typical 8hr workday
- Purchasable today

Link 1: https://www.constructionequipment.com/case-580-evfully-electric-backhoeloader?oly enc id=8464A9098134D5C

Link 2: https://www.casece.com/northamerica/enus/resources/articles/media-case-unveils-project-zeus-580ev-first-fully-electric-backhoe-loader

Examples of Zero Emissions Construction Equipment (5)


- Volvo L25
- Electric Compact Wheel Loader
- 39 KWh energy storage
- Enough to operate the machine for eight hours
- Expected charging time of 2 hours (Off board charging time 400 VAC 32A)

https://www.volvoce.com/united-states/enus/products/electric-machines/I25-electric/#overview

Current Technology Availability: Construction

Assessing Electrification and Hybridization Potential

Hybridization

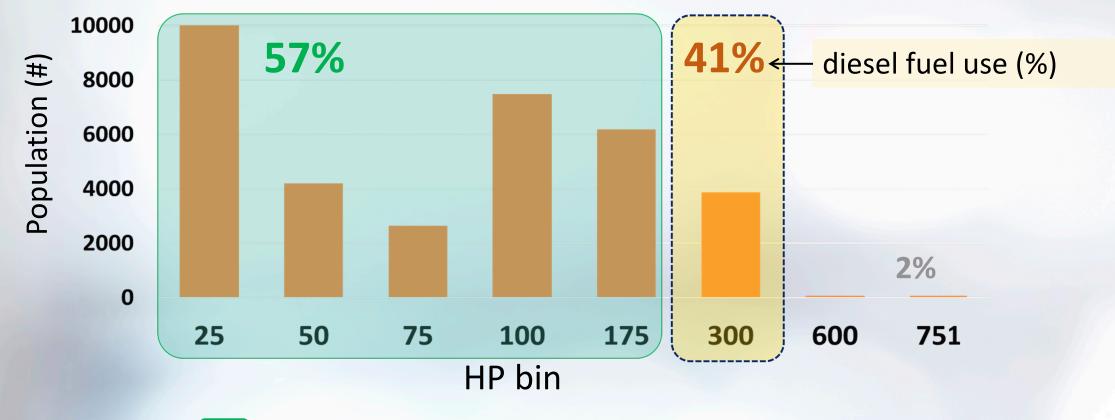
 Current commercially available technologies and demonstration projects provide application horsepower ranges

Electrification

- Horsepower ranges of currently available commercial models and demos
- Review of current battery capacity and charging times
- Research on daily and maximum power use from different construction and off-road applications
- Determining where current battery technology could meet power requirements

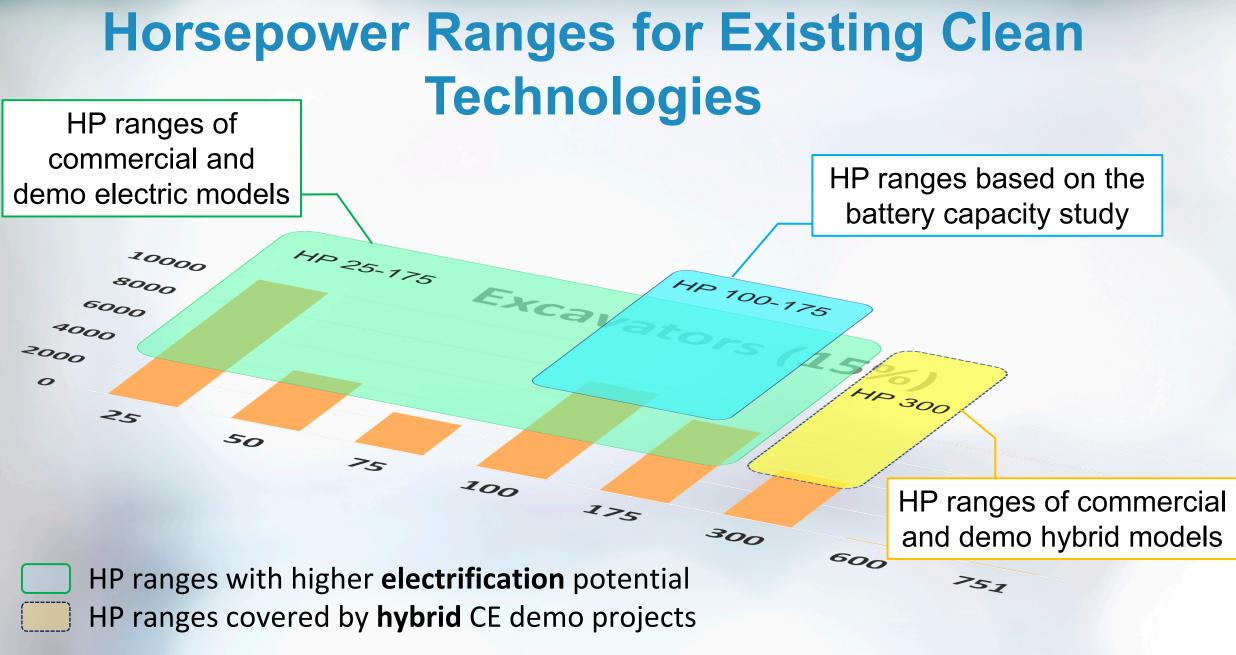
AN EXAMPLE OF ELECTRIFICATION FEASIBILITY ASSESSMENT

1. Assess power needs from ECU data, including peak power and daily energy use

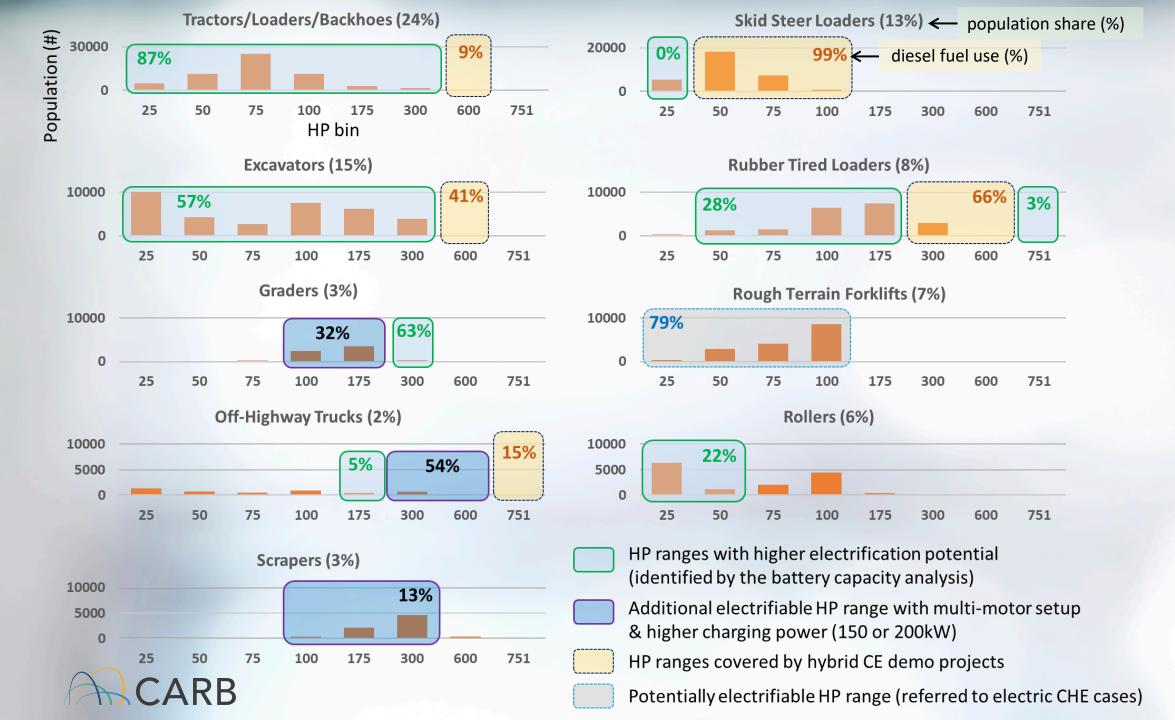

Equipment Type	Equip. ID	HP Bin of the equipment	Total Operating Hours (hrs)	Mean Daily Fuel Use (gal/day)	Hours per Day
Excavator	3	175	256.1	20.21	1.75
Grader	4	300	13.3	0.98	0.15
Off-Highway Tractor	9	600	223.7	137.04	7.99

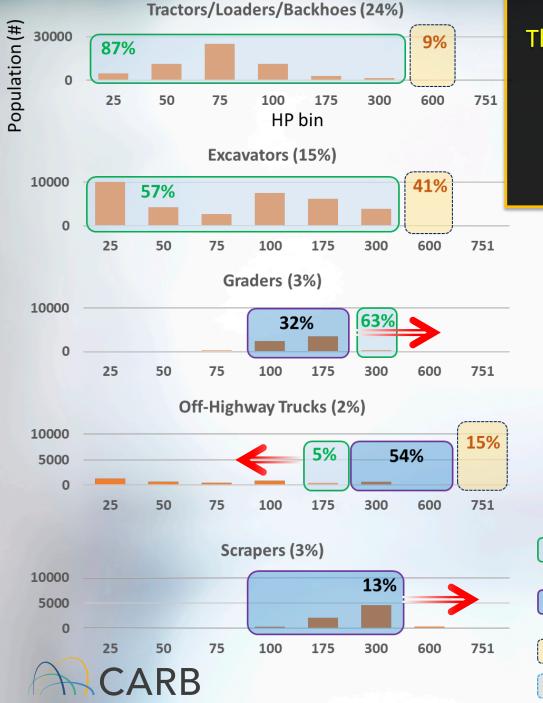
2. Determine battery size and charging times required to meet demand (in some cases, *current* technology has prohibitive battery size or charging needs for full electrification)

Equipment	Battery S	ize (kWh)	Charging Time with 50 kW Charger (Hour)			
Туре	Minimum	Maximum	For Minimum Battery Size	For Maximum Battery Size		
Excavator	387	420	8	8		
Grader	54	60	1	1		
Off-Highway Tractor	2,283	2,711	46	54		

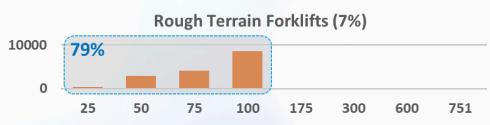

Horsepower Ranges for Existing Clean Technologies

Excavators (15%) ← population share (%)




HP ranges with higher **electrification** potential

HP ranges covered by hybrid CE demo projects


CARB

Skid Steer Loaders (13%) ← population share (%)
The coverage of HP ranges do not exclusively determine the feasibility of ZE and hybrid construction equipment. HP ranges can definitely expand to adjacent areas with innovative power supply solutions and advanced battery technology

10000 -		28%				66%	3%	
0 -								
	25	50 75	100	175	300	600	751	

HP ranges with higher electrification potential (identified by the battery capacity analysis)

Additional electrifiable HP range with multi-motor setup & higher charging power (150 or 200kW)

HP ranges covered by hybrid CE demo projects

Potentially electrifiable HP range (referred to electric CHE cases)

Potential Fuel Savings

Construction & Mining Equipment Type	Horsepower Range		Fuel Use by Segment (gpy)		Fuel Share (%)		Baseline Fuel	Alt. Fuel Use	Fuel Reduction	% of Reduced
	Electrification	Hybridization	Electrification	Hybridization	Elec.	Hybrid.	Use (gpy)	(gpy)	(gpy)	Fuel Use
Crawler Tractors	-	-	-	-	0%	0%	15,853,308	15,853,308	-	0%
Excavators	25-300	600	16,332,089	11,607,735	57%	41%	28,525,577	3,487,686	25,037,891	88%
Graders	300 (100-175)	-	6,708,850		95%	0%	10,731,276	572,943	10,158,333	95%
Off-Highway Tractors	175 (300-600)	751 <	7,108,569	-	59%	15%	36,179,004	10,920,025	25,258,980	70%
Rollers	25-50	-	1,071,497	-	22%	0%	4,931,572	3,860,075	1,071,497	22%
Rough Terrain Forklifts	25-100	-	4,246,152	-	79%	0%	5,353,663	1,107,512	4,246,152	79%
Rubber Tired Loaders	50-175 & 751<	300-600	13,583,010	28,796,492	31%	66%	43,489,540	8,309,160	35,180,379	81%
Scrapers	(100-300)	-	-	-	13%	0%	28,325,209	24,659,142	3,666,067	13%
Skid Steer Loaders	25	50-100	-	5,111,444	0%	99%	5,185,890	1,352,307	3,833,583	74%
Tractors/Loaders/Backhoes	50-300	600 (300-600)	34,508,455	3,743,397	87%	9%	39,626,931	2,310,928	37,316,003	94%
Diesel use of the TOP 10 equipment types (gpy) (87% of the entire sector)						218,201,971	72,433,086	145,768,885	67%	
Diesel use of the entire Construction and Mining sector (gpy)						251,421,757	105,652,873	145,768,885	58%	

If the entire population of the target segments are fully electrified or hybridized • (i.e., by 2050), it is expected to achieve 58% fuel savings CARB

Need for Zero-Emission Infrastructure Planning

- A reliable infrastructure system is essential for zero emission technologies
 to achieve widespread growth
- Infrastructure needs, charging standards/connections, and power capacity needs vary widely, and are under various stages of development by source category
- In some off-road applications such as construction or agriculture, access to the grid may be nonexistent
- Innovative solutions are needed to overcome these barriers: mobile and ground power units
- Collaborate and engage facilities, utilities, and other agencies in zeroemission planning discussions

Mobile Battery Solution for Construction Equipment

- Much of the equipment is too heavy to make re-charging trips every day
- Various construction sites may not have stationary power supply
- Mobile batteries provide on-site charging solutions
- 7 mobile and ground power units are available through CORE

Mobile battery pack on wheels

Potential Mobile Power Supply Solutions

- Portable hydrogen fuel cell power generator
- Charging service van
- Portable off grid solar chargers
- Efficient fast charging strategy for peak-shaving in a limited grid connection condition
- Battery and tank swapping technologies

The Olav Vs Gate construction site in Oslo, Norway, is a zero-emissions project with ZERON ZE85US (9t) and ZE160LC (17.5t) electrified excavators built by NASTAAS. Courtesy of NASTAAS

Potential Strategies

Voucher Incentives for Clean Off-road Equipment

Expand eligibility for voucher incentives through Clean Off-Road Equipment. Funding for zero-emission off-road construction equipment.

Zero-Emission Forklift Requirements

(Board Date: 2022)

In-Use Requirements for forklifts to transition to zero emissions. Zero emissions equipment is option for replacement.

In-Use Off-Road Diesel Vehicle Amendments (Potential Board Date: 2023) Focused on phasing out Tier 0 to Tier 2 equipment

Potential Strategies (continued)

Green Fleet Recognition Program (Action by: 2025)

Voluntary program for recognition of cleanest fleets, with an emphasis on zero emissions. Would allow public agencies and partnerships to choose fleets with minimal environmental impact.

Off-Road Tier 5 Engine Standards (Potential Board Date: 2024)

New NOx, PM, and GHG standards, and considering off-road diesel OBD requirements. May include powertrain certification, and/or credits.

Targeted Zero-Emission Off-Road Equipment Production (Potential Board Date: 2025)

Manufacturer requirements for production of zero-emission off-road equipment. Sales/production mandate levels based on the projected feasibility of zero-emission technology in the various off-road equipment types.

Strategies Timeline

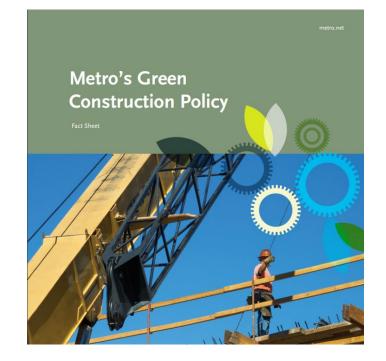
Questions, Comments, Feedback

Jun Park Air Resource Engineer Off-Road Diesel Analysis Section junhyeong.park@arb.ca.gov

Cory Parmer Manager Off-Road Diesel Analysis Section Cory.Parmer@arb.ca.gov

Metro's Green Construction Policy: Program Overview

April 7th, 2021


Shannon Walker, ENV SP Senior Environmental Specialist, LA Metro

About the GCP

Why was the GCP created?

- Air quality impacts human health.
- The U.S. EPA and the International Agency for Research on Cancer (IARC) have classified diesel exhaust as a potential human carcinogen.
- Diesel engines are a major source of harmful air pollutants.
- Increased planned construction activity from passing of Measure R in 2008.

GCP Purpose and Goal

Purpose

 To identify and mitigate diesel exhaust emission impacts on human health and the environment to the greatest extent feasible.

Application

- Applies to on-road vehicles, off-road equipment, and portable generators used for Metro Construction Projects and at Metro Rights-of-Way.
- Part of the requirements for funding capital projects for other jurisdictions when applying for transportation funds.

Goal

 To reduce harmful diesel exhaust emissions such as Particulate Matter (PM), Nitrogen Oxides (NO_x), and Carbon Dioxide equivalent (CO₂e) while minimizing impact to construction project costs and schedules.

GCP Regulatory Compliance

California Air Resources Board (CARB) Compliance

- Truck and Bus Regulations
- Off-Road Diesel Regulation
- Large Spark Ignition Fleet
- DOORS Reporting
- PERP

Metro Construction Specifications

• The GCP was incorporated into Metro Construction Specifications in May 2012.

Off-Road Diesel-Powered Construction Equipment

≥ 50 BHP, Must Meet Tier 4 Off-Road Emission Standards

Key Requirements

On-Road Diesel-Powered Vehicles GVWR ≥ 19,500 lbs. Must Meet EPA 2010 or greater On-Road Emission Standards

Portable Generators ≥ 50 BHP, Permitted/Registered w/ BACT for PM Emissions

Additional Requirement: Renewable Diesel

- Mandated use of Bulk Renewable Diesel (R-99) in lieu of Petroleum Diesel (exceptions may apply based on start date of project).
- Aligned with Department of General Services (DGS) MM 15-07.

Best Management Practices

- Use electric power instead of diesel power (when available).
- Limit idling to five (5) consecutive minutes.
- Maintain 1000 feet between Truck Traffic and Sensitive Receptors.

Exceptions

- Construction equipment that is part of a small fleet (less than or equal to 2,500 HP).
- Construction equipment required for use at locations defined as "gassy" per Cal/OSHA (must contain lowest emitting MSHA-approved engines or technically feasible)
- On-road equipment or vehicles part of a small fleet (fleet size of 1-3 vehicles); must comply with CARB requirements for small fleets.
- The Contractor has attempted to lease the vehicle or equipment that would comply with this policy, but that vehicle or equipment is not available for lease or short-term rental within 200 miles of the project site
- Exceptions are valid for one year from time of equipment use on-site updated exception letters must be annually resubmitted to Metro for review.

Conformance

- Metro conducts periodic inspections of sites and construction equipment.
- Metro provides assistance to help contractors to meet requirements.

Key Submittals

- Certification of Compliance
- Construction Equipment Information List
- Monthly Fuel Use Log for all equipment used on-site.
- CARB Registration or SCAQMD Permits for Portable Equipment
- Notification within 14 days of new equipment and/or vehicles

GCP On-Site Inspections


CARB EIN numbers

Gross Vehicle Weight Rating

Portable Equipment Registration Program

GCP Training

On-Site Training for Contractors

- Training is provided to contractors on Metro's GCP specification and applicable CARB regulations regularly and often.
- Training is always available on an as-needed basis and is determined by the project's assigned Metro Environmental PM.
- For all segments pertaining to CARB, a CARB representative conducts the training.

GCP Emissions Impacts

Emissions Calculations

- Fuel usage as reported by each project is compiled to calculate annual emissions of NO_x, PM, and CO₂e.
- Emissions are compared between baseline emissions (Tier 2) and specific/actual emissions (Tier 4).

448 * 1 * × ✓ &																	
A	1	B	с	D	E	F	G	н	1	L	м	N	0	р	Q	R	s
							MY	нр				CO2e Base				800 B (73)	
Inventory RCC 010064		llons 45	EIN TF9N38	Contractor RCC	Inventory Number 010064	Equipment Type Tractors/Loaders/Backhoes	2014	107	Tier T4I	Nox Base (T2) 7.62	Nox Specific 4.26	(2005) 1.045.57	CO2e Specific 952.26	PM10 Base (T2) 0.23	PM10 Specific	ROG Base (T2) 1.14	ROG Spe 0.17
3 RCC 020187		20	AH4W98	RCC	020187	Excavators	2014	167	T41	20.31	4.26	2,788.19	2.548.75	0.63	0.02	3.03	0.17
4 RCC 020203		50	MG6J83	RCC	020203	Excavators	2015	65	T4	9.69	5.59	1,161.75	1.008.65	0.89	0.04	0.35	0.44
5 RCC 020210		40	DW8W96	RCC	020203	Excavators	2017	316	T4I	52.56	32.17	7.899.87	7.197.62	1.22	0.02	1.25	1.2
6 RCC 020213		75	WY3U85	RCC	020210	Excavators	2015	425	T41	11.59	7.10	1.742.62	1.598.49	0.27	0.03	0.28	0.2
7 RCC 020215		46	M88866	RCC	020215	Excavators	2011	159	T41	24.71	13.81	3,392.30	3.085.52	0.76	0.05	3.69	0.2
8 RCC 020215		608	MU6L34	RCC	020215	Excavators	2014	271	T4	102.91	6.45	14.126.82	12.807.26	2.18	0.22	2.73	1.2
9 RCC 020238		101	XH9Y74	RCC	020238	Excavators	2014	57	T4	38.94	22.46	4.670.22	4.159.67	1.57	0.07	1.39	0.7
0 RCC 020239		26	F\$8\$86	RCC	020238	Excavators	2013	159	T4I	4.40	2.46	604.11	549.48	0.14	0.01	0.66	0.1
1 RCC 020233		.24	BR3D79	RCC	020233	Excavators	2014	159	T41	20.99	11.73	2.881.13	2.620.58	0.65	0.05	3.14	0.4
2 RCC 020245		92	MD6894	RCC	020245	Excavators	2014	57	T4	17.82	10.28	2,137.61	1.884.34	0.72	0.03	0.64	0.4
3 RCC 030058		25	GH8C88	RCC	030058	Tractors/Loaders/Backhoes	2014	88	T4I	4.84	2.79	580.87	534.59	0.20	0.01	0.17	0.0
4 RCC 030061		22	DU6N46	RCC	030061	Tractors/Loaders/Backhoes	2015	167	T4	37.58	2.35	5,158.16	4,617.04	1.16	0.08	5.61	0.4
5 RCC 030065		40	HG5B87	RCC	030065	Tractors/Loaders/Backhoes	2015	303	T4	37.10	2.55	5,576.38	5.022.66	0.86	0.09	0.88	0.4
6 RCC 030066		33	LG9D43	RCC	030066	Tractors/Loaders/Backhoes	2015	190	T4	39.44	2.47	5,413,74	4.854.81	0.84	0.09	1.05	0.4
7 RCC 030080		10	LB4N96	RCC	030080	Tractors/Loaders/Backhoes	2015	190	T4	18.62	1.17	2,555,84	2.291.97	0.39	0.04	0.49	0.2
8 RCC 030082		95	NH9A55	RCC	030082	Tractors/Loaders/Backhoes	2016	183	T4	33.01	2.07	4,530.81	4.021.38	0.70	0.07	0.87	0.4
9 RCC 150026		5	MF5S98	RCC	150026	Skid Steer Loaders	2013	82	T4I	0.97	0.56	116.17	106.23	0.04	0.00	0.03	0.0
0 RCC 150027	1	72	VR4C53	RCC	150027	Skid Steer Loaders	2014	82	T41	33.32	19.22	3,996,40	3.636.09	1.35	0.06	1.19	0.6
1 RCC 150028		96	SL4R54	RCC	150028	Skid Steer Loaders	2014	82	T4I	18.60	10.73	2.230.55	2.029.45	0.75	0.04	0.67	0.3
2 RCC 150029	1	29	DW6F38	RCC	150029	Skid Steer Loaders	2017	82	T4	24.99	1.37	2,997.30	2,628.25	1.01	0.05	0.89	0.2
3 RCC 150046	1	44	HT5X54	RCC	150046	Skid Steer Loaders	2015	72.9	T4	27.90	16.09	3.345.83	3.011.98	1.13	0.05	1.00	0.5
4 RCC 150080	2	20	RV6G56	RCC	150080	Skid Steer Loaders	2018	73.2	T4	3.87	2.24	464.70	400.75	0.16	0.01	0.14	0.0
5 RCC 270027	4	39	KF6V79	RCC	270027	Cranes	2010	911	T2	67.86	67.86			1.58	1.58	1.61	1.6
6 RCC 270200	7	17	BG9Y38	RCC	270200	Cranes	2007	911	T2	110.83	110.83			2.57	2.57	2.63	2.6
7 RCC 270201	1,3	325	EX8D57	RCC	270201	Cranes	2016	811	T4	204.81	121.05		1	4.76	0.92	4.86	2.7
8 RCC 290205	2	205	CX5B94	RCC	290205	Cranes	2014	260	T4	34.70	2.17	4,763.16	4,329.66	0.74	0.08	0.92	0.4
9 RCC 290206	2	23	YF5L67	RCC	290206	Cranes	2014	260	T4	37.74	2.36	5,181.38	4,709.83	0.80	0.08	1.00	0.4
0 RCC 310109	1	15	EU7H53	RCC	310109	Rough Terrain Forklifts	2014	130	T4I	2.54	1.42	348.52	316.51	0.08	0.01	0.38	0.0
1 RCC 310115	4	47	RE7C66	RCC	310115	Rough Terrain Forklifts	2015	130	T4	7.96	0.50	1,092.04	981.65	0.25	0.02	1.19	0.1
2 RCC 310116	2	21	TW9D99	RCC	310116	Rough Terrain Forklifts	2015	130	T4	3.55	0.22	487.93	438.61	0.11	0.01	0.53	0.0
3 RCC 310117	7	79	YG5L34	RCC	310117	Forklifts	2014	130	T41	13.37	7.48	1,835.56	1,668.88	0.41	0.03	2.00	0.2
4 RCC 310148	3	30	AD7X66	RCC	310148	Forklifts	2017	74	T4	5.81	3.35	697.05	610.48	0.23	0.01	0.21	0.1
5 RCC 310207	1	10	YF6H57	RCC	310207	Forklifts	2014	130	T41	18.62	10.41	2,555.84	2,323.75	0.57	0.04	2.78	0.4
6 RCC 310208	5	55	CD5E63	RCC	310208	Rough Terrain Forklifts	2014	130	T41	9.31	5.20	1,277.92	1,160.52	0.29	0.02	1.39	0.2
7 RCC 310308	5	50	NA4R63	RCC	310308	Forklifts	2017	74	T4	9.69	5.59	1,161.75	1,017.47	0.39	0.02	0.35	0.1
8 RCC 319329		152	GV6F35	RCC	319329	Forklifts	2015	122	T4	42.65	2.67	5,855.20	5,269.46	1.32	0.09	6.37	0.5
9 RCC 319330		36	PM6D77	RCC	319330	Forklifts	2013	130	T4I	6.09	3.41	836.46	764.36	0.19	0.01	0.91	0.1
0 RCC 320506		58	AC5F83	RCC	320506	Aerial Lifts	2016	59	T4	11.24	6.48	1,347.62	1,200.39	0.45	0.02	0.40	0.2
1 RCC 370019		180		RCC	370019	Pumps	2015	400	T4	58.74	4.03	8,829.26	8,829.26	1.36	0.14	1.39	0.7
2 RCC 370020	8	85		RCC	370020	Pumps	2016	68	T4	16.47	9.50	1,974.97	1,974.97	0.67	0.03	0.59	0.3

GCP Emissions Impacts

Emissions Impacts

- It is estimated that the use of renewable diesel across multiple construction projects in 2019 resulted in a GHG emissions reduction of 98% compared to petroleum diesel, preventing 2,421 MTCO₂e of GHG emissions.
- Similarly, it is estimated that the deployment of renewable diesel at Metro projects reduces PM emissions by ~25-35% and NO_x emissions by ~10% on projects by deploying renewable diesel, compared to petroleum diesel (based on CARB estimates).

Thank you.

Contact Information:

Sustainability at LA Metro sustainability@metro.net metro.net/projects/sustainability

