BOARD MEETING DATE: September 7, 2007 AGENDA NO. 39

PROPOSAL:	Annual Status Report on Rule 1113 – Architectural Coatings
SYNOPSIS:	This final annual report for Rule 1113 describes program achievements with respect to the Workplan Objectives established by the Board in 1999. Rule-compliant architectural coatings are available in the marketplace and continue to demonstrate quality performance. Findings of the technology assessment for the Flat coatings category limit, whose future compliance date is July 1, 2008, are discussed.

COMMITTEE: Stationary Source, July 27, 2007

RECOMMENDED ACTION: Receive and file.

Barry R. Wallerstein, D.Env. Executive Officer

EC:LT:LL:DB:HF

Background

Architectural coatings are the single largest source category of volatile organic compound (VOC) emissions under the regulatory authority of the South Coast Air Quality Management District (AQMD) and one of the largest non-mobile source of VOC emissions in the South Coast Air Basin (Basin). The VOC emissions from architectural coatings are a significant source of ozone formation in the Basin and continue to be a critical component for attainment of Federal and State standards. In 1997, architectural coatings were responsible for 50.9 tons of VOC emissions per day in the Basin on an annual average basis. Although the population has grown, as has the usage of architectural coatings, the 2005 annual average emissions were 38.8 tons per day, and are forecast to be reduced to 23.1 tons per day by the year 2010 according to the 2007 Air Quality Management Plan (AQMP). Through the

regulatory limits adopted in Rule 1113, the AQMD has made great strides in reducing emissions from architectural coatings, thereby decreasing ground level ozone formation and improving the overall quality of the air and the health of the greater than 16 million people residing in the AQMD.

To assist with the implementation of Rule 1113 – Architectural Coatings, the Board approved a Workplan on August 13, 1999 that required submittal of annual status reports through the year 2007, to provide the Board with a summary of technical assessments, new developments in coatings technology, market trends and outreach and training programs. The first report, submitted on July 21, 2000, has been followed each year by new information on the implementation of future VOC limits, the averaging compliance option, and other related programs. In addition to rule requirements for technology assessments of specific coating categories, a Board approved resolution in December 2002, ensured the continuance of annual reports with a focus on the progress towards achieving the 2006 VOC limits found in the rule. This is the seventh and final such report that staff will have presented to the Board.

The main focus of this final annual report, provided in Attachment B, is to furnish the latest information on the availability and performance of Flat coatings which are subject to a future compliance limit of 50g/l on July 1, 2008. The results of surveys, internet data searches, laboratory testing and evaluation of coatings, in-situ coating performance reviews and available compliance options built into the rule are some of the topics covered in this report.

Flat Coating Technology Assessment

Staff relied on a number of key sources of data and information for determining the availability and performance of Flat coatings formulated to meet the future VOC limit of 50g/l. These include:

1. Flat Coating Laboratory Performance Study. Staff has contracted with industry experts to conduct laboratory studies to assess the performance characteristics of Flat coatings to determine whether key characteristics are compromised when formulated to comply with the future VOC limit of 50g/l. A review of these studies supports staff conclusions that overall, future-compliant and even super-compliant coatings meet or exceed expected characteristic performance standards when compared to products that have a much higher VOC content.

On the whole, results of the recent architectural coatings laboratory-based evaluation by the University of Missouri at Rolla, continues to support staff's conclusions. Commercially available interior and exterior Flat coatings that meet the 2008 VOC limit of 50g/l have performance characteristics that are similar to and in many cases better than their

higher-VOC counterparts. The results of the findings are summarized in the report with the empirical data and are available for review in Appendix B.

- 2. Compliant Products Found in Internet Searches. Staff continues to search for and find future compliant and super-compliant Flat coatings listed by large and small manufacturers on their websites. Staff verifies product characteristics by examining Technical Data Sheets and Material Safety Data Sheets for each coating listed, as well as discussing the performance capabilities with manufacturers. (See Appendix A.)
- **3. Store Shelf Survey.** Staff conducted a survey of local store inventories in the first quarter of 2007. The primary purpose of the survey was to obtain a snapshot of the currently available architectural products being sold at various points of distribution. A secondary benefit of the survey was to alert store owners to the future rule requirements. This limited survey indicates that products meeting the current and future VOC limit are currently available and being sold to consumers in all categories, including Flat coatings.
- 4. Meetings with Local Manufacturers (Large and Small). Staff continues to visit local paint manufacturers individually to inquire about their successes and any failures in formulating Flat coatings to meet the July 2008 VOC limit of 50g/l. Manufacturers indicate that compliant products are available and that they exhibit acceptable performance characteristics for their markets.
- **5. Further Studies.** Additional studies include staff's documentation of low-VOC flat coating projects at a local university, addition of more flat coatings to the list of manufacturers producing super-compliant coatings, and research of articles on new technologies in low-VOC coatings.

Additional Technical Programs and Studies

1. Draft California Air Resources Board (CARB) 2005 Architectural Coatings Survey. The most recent sales data provided by the coating manufacturers and included in the latest draft CARB survey, indicate an increase in the overall sales volume of lower-VOC products in many categories in comparison to the sales data from previous CARB surveys. The information contained in the most recent draft CARB survey represents sales data from 2004; this is four years prior to the lower-VOC limit for Flat coatings taking effect. This data demonstrates that manufacturers are developing and marketing coatings compliant with the future VOC limits in Rule 1113.

- 2. CARB/AQMD Reactivity Study. Staff will continue to monitor reactivity-related research and assess the reactivity and availability of solvents typically used in the formulation of architectural coatings
- **3.** Alternate Means of Compliance Provided by the Rule. By examining the number of manufacturers who have taken advantage of alternate means of compliance allowed by Rule 1113, staff has concluded that these flexibilities in the rule have allowed manufacturers additional time for product reformulation. These alternate methods include the averaging compliance and sell-through options, as well as the small container exemption.
- **4. Past Studies.** Staff also summarizes previous technology assessments conducted relative to coatings research and VOC limits within Rule 1113.
- **5. Future Programs.** Staff will continue to research new technologies in the development of lower-VOC products and continue the strong working relationship with members of the coatings industry. Among the future plans are a Roundtable discussion on reactivity, an Architectural Coatings Technology Symposium, and a Clean Coating Certification Program.

Conclusions

As detailed in this report, AQMD staff research of technical information from many coating manufacturers, coating performance studies, assessments of sales data, marketing brochures, Material Safety Data Sheets and other sources, clearly shows an ever-increasing number and volume of products that perform well and meet the future proposed limits.

Attachments

- A. Key Contacts
- B. Annual Status Report on Rule 1113- Architectural Coatings

ATTACHMENT A

KEY CONTACTS LIST

The following lists of key contacts are individuals that the AQMD has had direct contact with over the years. AQMD staff appreciates all of their help and assistance with the implementation of Rule 1113.

KEY CONTACTS LIST					
Kevin R. Merlo	Air Products Polymers				
Christine Stanley	Ameron Protective Coatings Systems				
John Woods	Ameron Protective Coatings Systems				
Norm Mowrer	Ameron Protective Coatings Systems				
Brian Turk	BASF				
Kathy Allen	Bayer Material Science				
Michael Butler	BEHR Process Corporation				
Parker Pace	BEHR Process Corporation				
Kip Cleverly	Benjamin Moore Paints				
Ron Widner	Benjamin Moore Paints				
Gerald Thompson	BonaKemi USA, Inc.				
Dane Jones, Ph.D.	Cal Poly, SLO				
Max Wills, Ph.D.	Cal Poly, SLO				
Andy Rogerson	Caltrans				
Monique Davis	CARB				
Jim Nyarady	CARB				
Christian Hurley	CARB				
Barry Barman	CSI Services, Inc.				
Bud Jenkins	CSU Pomona				
Charles Milner Ph.D.	CSU Pomona				
Dennis St. Laurent	CYTEC				
Lloyd Haanstra	Deft Coatings				
Randall J, Brady	Deft Coatings				
Marc N. Hiraoka	Disneyland Resort				
Raymond Russell	Diversified Coatings, Inc.				
Robert Wendoll	Dunn-Edwards Paints				
Gil B. Mislang	Dunn-Edwards Paints				
Kevin McCreight	Eastman Chemical Company				
Ronald J. Regan	Eastman Chemical Company				
Joseph Tashjian	Ellis Paint Company				
Howard Berman	DUTKO Worldwide				
Robert Henderson	EPMAR				
Dave/Adam Fuhr	Fuhr International				
Richard Hart	Hart Polymers				
Jim Kantola	ICI Dulux Sinclair				
Jeffrey P. Mulford	Lifeguard				

KEY CONTACTS LIST, CONT'D						
David Sibbrel	Life Paint Company					
Daniel B. Pourreau, Ph.D	Lyondell					
Barry Law	Master Painters Institute®					
Bob Coleman	Merecole, Inc.					
Tony Khalil	Monopole, Inc.					
Stephen Murphy	Murphy Industrial Coatings					
Carol Kaufman	MWD					
John Wallace	MWD					
David Darling	National Paint & Coatings Association					
Tony Olson	NBC Universal					
Dinkar Naik	Pacific Polymers					
Michelle Richards	Paramount Studios					
Robert Gross	PPG Industries, Inc.					
Claude Florent	Rainguard					
Aqua Mix	Real Bourdage					
Brough Richey, Ph.D.	Rohm and Hass Company					
Clare Doyle	Rohm and Hass Company					
William H. Hill	Rohm and Hass Company					
Madelyn Harding	Sherwin-Williams Company					
Albert G. Silverton	Silvertown Products, inc.					
Darin A. Shields	Specialty Polymers, Inc.					
Tony Hobbs	Tnemec Corporation					
Kathryn Sandefur	UMR Coatings Institute					
Michael R. Van De Mark, Ph.D.	UMR Coatings Institute					
Don Sudduth	UV Chemistry Company, Inc					
Duncan Gamble	UV Chemistry Company, Inc.					
Hamid Pourshirazi	Vista Paint					
Jerome Fischer	Vista Paint					
John Long	Vista Paint					

ATTACHMENT B

ANNUAL STATUS REPORT ON RULE 1113 – ARCHITECTURAL COATINGS

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

ANNUAL STATUS REPORT ON RULE 1113 – ARCHITECTURAL COATINGS

Dated: September 7, 2007

Deputy Executive Officer

Planning, Rule Development, and Area Sources Elaine Chang, DrPH

Assistant Deputy Executive Officer

Planning, Rule Development, and Area Sources Laki Tisopulos, Ph.D., P.E.

Planning and Rules Director, Area Sources

Planning, Rule Development, and Area Sources Lee Lockie, M.S.

Author:	Heather Farr	Air Quality Specialist
Reviewed by:	William Wong Naveen Berry David De Boer	Senior Deputy Counsel Program Supervisor Senior Staff Specialist
Contributors:	Dan Russell Don Hopps Alireza Nazemi	Air Quality Specialist Air Quality Specialist Student Intern

SOUTH COAST AIR QUALITY MANAGEMENT AQMD

GOVERNING BOARD

Chair: WILLIAM A. BURKE, Ed.D. Speaker of the Assembly Appointee

Vice Chair: S. ROY WILSON, Ed.D. Supervisor, Fourth District Riverside County Representative

MEMBERS:

MICHAEL D. ANTONOVICH Supervisor, Fifth District Los Angeles County Representative

BILL CAMPBELL Supervisor, Third District Orange County Representative

JANE W. CARNEY Senate Rules Committee Appointee

RONALD O. LOVERIDGE Mayor, City of Riverside Cities Representative, Riverside County

JOSEPH K. LYOU, Ph.D. Governor's Appointee

GARY OVITT Supervisor, Fourth District San Bernardino County Representative

JAN PERRY Councilmember, 9th District Cities Representative, Los Angeles County, Western Region

MIGUEL PULIDO Mayor, City of Santa Ana Cities Representative, Orange County

TONIA REYES URANGA Councilmember, City of Long Beach Cities Representative, Los Angeles County, Eastern Region

DENNIS YATES Mayor, City of Chino Cities Representative, San Bernardino County

EXECUTIVE OFFICER

BARRY R. WALLERSTEIN, D.Env.

ACKNOWLEDGEMENT

AQMD staff would like to recognize the contributions of and thank the past and current Rule 1113 Technical Advisory Committee (TAC) members for the valuable input and guidance they provided in designing and executing past technology assessments. Staff would especially like to recognize posthumously, former TAC member Dr. John A. Gordon, for his dedication, wealth of knowledge and integrity. Dr. Gordon was instrumental in introducing the concept of forming a committee comprised of members of industry, academia, and AQMD staff which became the TAC. Staff is looking forward to continuing the productive working relationship with the TAC in the future, including relying on NPCA to facilitate participation in the upcoming AQMD Architectural Coatings Technology Symposium.

Barry Barman	CSI Services, Inc.
Charles Milner Ph.D.	CSU Pomona
Christian Hurley	CARB
David Darling	National Paint & Coatings Association
Jim Nyarady	CARB
Madelyn Harding	Sherwin-Williams Company
Raymond Russell	Diversified Coatings, Inc.
Robert Henderson	EPMAR
Robert Wendoll	Dunn-Edwards Paints
Stephen Murphy	Murphy Industrial Coatings
Bud Jenkins	CSU Pomona
David/Adam Fuhr	Fuhr International

Current Technical Advisory Committee Members:

TABLE OF CONTENTS

Purpose of	of this Report1
Backgrou	ınd 1
Technica	1 Committees
Flat Coat	ing Technology Assessment
A. B. C. D. E. F. G. H.	Flat Coating Laboratory Performance Study
Additiona	al Technical Programs and Studies
A. I.	Draft CARB 2005 Architectural Coatings Survey
B. C. I.	CARB/AQMD Reactivity Study
II.	Sell Through Option
III.	Small Container Exemption
D. E. I.	Summary of Past AQMD Sponsored and Other Coating Studies
II.	Architectural Coatings Technical Symposium 2008
III.	More Robust Enforcement Program
IV.	Clean Coatings Certification Program
V.	Test Methodology for VOC Analysis
VI.	Proposed Coating Registration
VII.	Other Future Activities
Conclusio	ons

Appendices

Ā.

Future Compliant Flat Coatings List UMR Coatings Institute Flat Coatings Assessment В.

PURPOSE OF THIS REPORT

This report is the final annual progress report required in accordance with the 1999 Board approved Workplan for Implementation of Rule 1113 – Architectural Coatings. The report includes the findings of the required technology assessment for the Flat coatings category, future activities to encourage technology advancements by coating manufacturers and actions to enhance on-shelf and in-use compliance with the rule. This report also includes the following:

- Information on the increasing number of compliant and super-compliant products already available in the market;
- A detailed report including empirical data for the most recent laboratory study;
- Progress on the reactivity and availability assessment of solvents found in architectural coatings, and
- Conclusions to be drawn from the technology assessment.

As part of the Flat coating technology assessment, the South Coast Air Quality Management District (AQMD) contracted with the University of Missouri – Rolla Coatings Institute (UMR) to conduct the most recent laboratory study. This report includes the results of the completed testing, staff conclusions and recommendations.

BACKGROUND

Architectural coatings are the single largest source category of volatile organic compound (VOC) emissions under the regulatory authority of the AQMD and one of the largest nonmobile source of VOC emissions in the South Coast Air Basin (Basin). The VOC emissions from architectural coatings are a significant source of ozone formation in the Basin and continue to be a critical component for attainment of Federal and State standards. In 1997, architectural coatings were responsible for 50.9 tons of VOC emissions per day in the Basin. Although the population has grown, as has the usage of architectural coatings, the 2005 annual average emissions were 38.8 tons per day, and the emissions are forecast to be reduced to 23.1 tons per day by the year 2010 according to the 2007 Air Quality Management Plan (AQMP). Through the regulatory limits adopted in Rule 1113, the AQMD has made great strides in reducing emissions from architectural coatings, thereby decreasing ground level ozone formation and improving the overall quality of the air and the health of the greater than 16 million people residing in the AQMD.

To assist with the implementation of Rule 1113 – Architectural Coatings, the Board approved a Workplan on August 13, 1999 that required submittal of annual status reports through the year 2007 summarizing technical assessments, new developments in coatings technology, market trends and outreach and training programs. The first report, submitted on July 21, 2000, has been followed each year by new information on the implementation of future VOC limits in the rule. In addition to rule requirements for technology assessments of specific coating categories, a Board approved resolution in December of 2002, ensured the continuance of annual reports with a focus on the

progress towards achieving the 2006 VOC limits found in the rule. This is the seventh and final such report that staff will have presented to the Board.

The focus of this annual report is to provide the latest information on the availability and performance of Flat coatings which are subject to a future compliance limit of 50g/l on July 1, 2008. The results of surveys, internet data searches, laboratory testing and evaluation of coatings, in-situ coating performance and available compliance options built into the rule are some of the topics covered in this report. The information contained in this report also includes the following:

- Technical information from Technical Data Sheets (TDS), Material Safety Data Sheets (MSDS), and technical papers that demonstrate that Flat coatings meeting the future VOC limits are in use and available to all consumers.
- Product surveys and laboratory test results that show an increase in availability of quality compliant and super-compliant coatings meeting the 2008 VOC limit for Flat coatings.
- Information gathered from meetings with manufacturers with respect to their preparation for making compliant flat coatings.

TECHNICAL COMMITTEES

To assist with the assessments included in this annual report, AQMD staff relies upon technical expertise and valuable feedback on all aspects of architectural coatings from a Technical Advisory Committee (TAC). The TAC was first formed in February 1998 to provide technical oversight of the Phase II Assessment Study and future technology assessments, including selection of coatings, relevant testing, and the report formats. The current makeup of the TAC includes representatives of several large and small manufacturing companies, the California Air Resources Board (CARB), the National Paint and Coatings Association (NPCA), a consulting and engineering firm, a painting contractor and several members from academia. This past year, the TAC assisted staff designing and implementing the laboratory performance study for flat coatings and in developing a performance ranking system for the Flat coating technology assessment based on discussions and recommendations from the ad hoc committee for architectural coatings.

In addition to the TAC, in early 2005, at the request of Governing Board Chairman William Burke, an ad hoc committee was formed for the purpose of providing an open forum to discuss key regulatory issues relative to the coatings industry. This committee is made up of AQMD Board Members Michael Antonovich and Jan Perry, AQMD Management representatives Dr. Barry Wallerstein and Dr. Laki Tisopulos, and industry representatives Christine Stanley of Ameron and Ron Widner of Benjamin Moore. Steve Sanchez of U.S. Can Company is an industry alternate. One key recommendation of this committee was for staff to work closely with the TAC to develop the performance ranking and scoring system as a basis for judging the quality of coatings with respect to key performance characteristics.

FLAT COATING TECHNOLOGY ASSESSMENT

A. Flat Coating Laboratory Performance Study

The requirements under Rule 1113 state that a technology assessment for Flat coatings shall be completed prior to July 1, 2007. In February 2007, the AQMD contracted with University of Missouri - Rolla Coatings Institute (UMR) to conduct laboratory tests on recently developed and commercially available Flat coatings.

The results of this most recent architectural coatings laboratory evaluation have shown that the 2008 VOC limit of 50g/l for Flat coatings is technically feasible and that many already commercially available compliant products have performance characteristics that are similar to and in many cases better than their higher-VOC counterparts. The findings are summarized on the following pages, with the empirical data available for review in Appendix B of this report.

The flat coatings included in the UMR study were selected and approved by the TAC and AQMD staff. A total of twenty Flat coatings were tested; eight of the coatings selected have a VOC content greater than 50g/l but less than or equal to 100g/l. The remaining twelve coatings have a VOC content meeting our future limit of less than or equal to 50g/l. The coatings were separated into the following categories: seven interior, seven exterior and two interior/exterior coatings and tested for a range of properties and then ranked according to the test results. The coatings that were tested are not coatings that are solely available in the AQMD. Depending on the manufacturer, some are marketed and sold throughout California if not throughout the country. The following pages summarize the UMR testing results.

Included with this study are the results of the weighting and rating system developed by the TAC as a result of the ad hoc committee discussions. The rating was designed to be a numerical representation of how well the coating performed for each individual test. The weighting factor was designed to assign the importance of each test relative to industry expectations for the different characteristics of Flat coatings. The concept of this rating and weighting system is to condense the results of the performance test of each coating to a single number. This then allows for a direct comparison on the overall performance of the coatings. Table 1 shows the system that was developed.

Property	Standard Test	Weighting Factor (1-10) ¹					
Interior and Exterior							
VOC Content	Method 24 & ASTM D 6886	Pass/Fail					
Gloss at 60° & 85°	ASTM D523	Pass/Fail					
Stability - Viscosity Change	ASTM D1849	8					
Stability - Overall Character ¹	ASTM D1849	8					
Stability -pigment / colorant float	Industry Protocol	8					
Open Time / Wet Edge	Industry Protocol	9					
Freeze/thaw resistance	ASTM D2243	5					
Flow & Leveling	ASTM D4062	N/A					
Sag Resistance	ASTM D 4400	N/A					
Dry Time	ASTM D5895	N/A					
Hide	Spectrophotometer	10					
Adhesion	ASTM D3359	10					
	Interior Only						
Scrub Resistance	ASTM D2486	8					
Stain Resistance ²	ASTM D4828	8					
Touch up	ASTM D3928	9					
	Exterior Only						
Tannin Stain Blocking	ASTM D6686	6					
Alkalinity Resistance	Industry Protocol	7					

Table 1Weighting System for Flat Coating Laboratory Performance Study

N/A = not applicable

1. Skinning, pressure, corrosion of the container, and odor of spoilage.

2. Modified to reflect common materials to architectural coatings.

Performance Summary

One of the coatings selected to be included in this study, Coating E, tested outside of the AQMD definition of a Flat coating even though it was listed by The Masters Painters InstituteTM (MPI) at a gloss level 1, which is stricter than the Rule 1113 definition of a Flat coating. This coating has been re-categorized by MPI since our coating selection began and is in a category consistent with the gloss level tested at UMR. All of the following calculations, tables and charts exclude this coating.

Stability

The stability of the coatings was analyzed by ASTM D 1849, in this test the coatings are held at an elevated temperature for 30 days. Two different parameters are evaluated, the change in viscosity and the overall character rating which is a measure of the separation, can corrosion, skinning, and odor. Both of these parameters were assigned an 8 on the weighting scale indicating equal importance. While the overall character average for the \leq 50g/l coatings was lower than the \leq 100g/l coatings (7.3 to 5.8), the viscosity change was just the opposite with the average of the \leq 50g/l coatings outperforming the \leq 100g/l coatings (7.0 to 4.0). The four lowest rated coatings for viscosity change are the \leq 100g/l coatings, leading AQMD staff to conclude that the stability of the coatings is independent of the VOC level.

Further, the differences in the overall character ratings for the coatings were primarily due to in-can settling. Upon stirring the coatings, they were restored to an acceptable homogeneous state.

Staff conclusion: Overall character average rating was lower for the low-VOC coatings tested; however, they were restored to an acceptable level after stirring. Average viscosity change showed low-VOC coatings outperforming higher-VOC coatings.

Pigment Float

The pigment float test also measures stability, in this test the coatings are held at an elevated temperature for 10 days and then the separation and settling of the pigment is measured. Pigment float was assigned an 8 on the weighting scale. The testing that was conducted by UMR showed no discernable difference between any of the coatings in regard to pigment float.

Staff conclusion: All coatings performed well.

Open Time/Wet Edge

The open time or wet edge test measures the time in which a coating remains in a fluid state such that a brush can go over the surface without leaving brush marks. This is an important characteristic for the application of coatings. In the past, this characteristic was commonly cited as problematic for low-VOC coatings. Open time/wet edge was assigned a 9 on the weighting scale. The UMR testing revealed that although four of the \leq 50g/l coatings ranked lower compared to the other coatings tested, all of the coatings actually performed quite well. The testing was conducted in a laboratory setting under ambient conditions which do not represent the more extreme conditions that at times exist in the Basin. The ranking system that the TAC developed was based on a 0 to 10 scale for open time from 0 to 10 minutes. Three of the coatings scored an 8 and one coating scored a 9 with the remaining being at 10 or 10+ for greater than ten minutes of open time. All but two of the coatings that scored less than a 10 were coatings that AQMD staff would define as super-compliant coatings because they have a VOC content of

 \leq 10g/l. One of the super-compliant coatings tested (Coating N) scored a 10+ proving that even a coating with virtually zero-VOCs can have an open time equal to or better than a higher-VOC coating.

Staff conclusion: Although all coatings performed well, some of the super-compliant coatings scored slightly lower than their higher-VOC counterparts.

Freeze/Thaw

The freeze/thaw test measures how many times a coating can endure a freeze/thaw cycle and still remain a viable coating. This is a parameter that tends to be inferior for low and ultra low-VOC coatings. Fortunately due to the favorable and mild climatic conditions, freeze/thaw is not a major issue in the Basin; however, it was deemed important enough by several TAC members that it was included in the laboratory performance study. Manufacturers cite freeze/thaw as an issue when shipping coatings in or out of the Basin and also wanted the test to be included because other air quality agencies look to the AQMD technology assessments in establishing their VOC limits. Freeze/thaw was assigned a 5 on the weighting scale. The statistical evaluation that follows this discussion contains data both with and without the freeze/thaw results included.

In this technology assessment, the interior coatings at $\leq 100g/l$ performed almost as poorly as the $\leq 50g/l$ coatings with only one of the higher-VOC coatings passing a single freeze/thaw cycle. The higher-VOC exterior coatings performed considerably better with only one of the $\leq 100g/l$ unable to pass even a single freeze/thaw cycle while the other three passed all 5 cycles. However, the UMR tests also indicated that two of the $\leq 50g/l$ scored quite well, with Coating H passing four of the five cycles and Coating I passing all five of the cycles. This is evidence that formulators have made progress in addressing freeze/thaw issues in Flat coatings with a VOC of $\leq 50g/l$.

Staff conclusion: 75% of low-VOC coatings failed after 1st cycle; however, 1 of the low-VOC coatings passed 4 cycles and 1 passed all 5 cycles.

Adhesion

The adhesion test measures how well a coating will stick to a substrate and was assigned a 10 on the weighting scale. The substrate used to test the exterior coatings was glass and the substrate used to test the interior coatings was a Leneta test chart, which are sealed paper charts used to test coatings in laboratory settings. Three out of the seven $\leq 50g/l$ interior and interior/exterior coatings tested on Leneta charts exhibited poor adhesion, in that there was adhesion failure not substrate failure on the cross hatch adhesion test. The remaining four low-VOC coatings performed comparably to the $\leq 100g/l$ coatings, including Coating N which is a super-compliant coating with a VOC content measured at only 3g/l.

Based on discussions with the TAC and UMR after the testing was completed, the Leneta cards may not have been the best substrate for testing the adhesion of interior coatings. Most of the coatings experienced substrate failure; the paint adhered to the Leneta card but the top layer of the Leneta card was removed during the test. This is a substrate failure and not a coating failure but it makes distinguishing adhesion differences between those coatings impracticable.

Staff conclusion: Only 3 out of 7 low-VOC coatings showed adhesion failure, others performed comparably.

Scrub Resistance

The scrub test measures how many times a brush can cycle back and forth over a coating before the paint film is removed. This test is designed to mimic the erosion that occurs when walls are washed or scrubbed. This coating characteristic was only tested on the interior coatings where the TAC committee concluded it is more critical; it was assigned an 8 on the weighing scale. The repeatability and reproducibility of this test is fairly high for an ASTM test method (30 and 50%, respectively) and the differences in replicate test panels for this test were at times significant. Coating M at $\leq 100g/l$ performed far superior to the rest of the Flat coatings tested for scrub resistance. It surpassed 2106 scrub cycles, almost twice as many as the next best performer. The next best performer was Coating T, one of the $\leq 50g/l$ coatings, and it lasted for 1231 scrub cycles. Further, several of the super-compliant coatings performed quite well with a scrub resistance at the median of the test results, around 900 scrub cycles. From these results it is clear that low-VOC coatings can be formulated to have good scrub resistance.

Staff conclusion: The best score was one of the higher-VOC coatings with the next best being a low-VOC coating. Several of the super-compliant coatings performed at the median of the test results, around 900 scrub cycles.

Alkalinity Resistance

Concrete masonry surfaces are naturally alkaline which can lead to color change. The alkalinity resistance test measures how well a coating will withstand this alkaline environment such as fresh concrete, stucco or other masonry and is an important characteristic for coatings designed to be applied to those substrates. Not all exterior coatings are specified for application to masonry; hence not all are designed to be resistant to an alkaline environment. Alkalinity resistance was assigned a 7 on the weighting scale.

This test is extremely aggressive in that the coatings are not given time to fully cure and form a film before being immersed in water and exposed to UV. There is no ASTM test method, so the test method was provided by Dunn Edwards along with the necessary panels and pigment additives for the testing. Although there is no repeatability or reproducibility data for this test, the members of the TAC came to a consensus that it is an appropriate method to measure alkalinity resistance. For this test, fresh concrete panels were painted with coatings that contain two different pigment packages; one that is alkali-resistant and one that is alkali-sensitive. The panels are initially pink and then change to yellow if the coatings are unable to withstand the alkalinity. The result of this test was that all of the coatings experienced a severe color change to yellow, either entirely or in splotches. In evaluating the results, the different degree of failure is being rated.

This test is essentially evaluating the ability of the coatings to stabilize the pigments that were used. An additional variable to this test is the ability of each coating to stabilize the particular pigment independent of the alkalinity. The change in color of the coatings does not necessarily indicate film failure. A more accurate measurement of coating failure would be loss of adhesion resulting from the alkaline environment.

Of all of the coatings, two of the $\leq 100g/l$ and one of the $\leq 50g/l$ coatings performed moderately better than the rest based on the visual rating conducted by UMR. According to the TDS, these three coatings are the only ones in this study that were specifically designed for masonry tilt-up construction. Additionally, the remaining coatings all list properly prepared concrete, masonry and stucco on their TDS as recommended uses, but they do not recommend and were not formulated to withstand the demanding alkaline environment of freshly poured concrete. Further, all of the coatings tested specify an alkaline resistant primer when the coatings are to be applied to concrete and masonry, including the coatings that had relatively lower delta E readings. However, under the Dunn Edwards test method, no primers were used. In addition, as stated earlier, the coatings were not fully cured as recommended by the manufacturer. Thus, this test has limitations and does not represent recommended painting practices.

The two worst performers were the dual-use interior/exterior low-VOC coatings. These two coatings tended to perform worse than the coatings that were specifically designed for exterior exposures, but performed quite well compared to the coatings designed for interior applications.

Staff conclusion: All coatings failed this stringent test. This test does not follow recommended painting practices and only a few of the tested coatings were specifically designed to withstand an alkaline environment. Coating manufacturers specify an alkaline resistant primer which was not used in the testing.

Tannin Blocking

The tannin blocking test measures the ability of a coating to resist tannin bleed-through from the wood. This is an important characteristic for coatings applied to wood and was assigned a 6 on the weighting scale. On average the \leq 50g/l coatings performed twice as well on Tannin Blocking than their higher-VOC counterparts. Tannin Blocking was given a rating of 6 by the TAC committee making it a characteristic considered almost as important as alkalinity resistance (weighted as 7). The top three performers for this coating characteristic were the \leq 50g/l coatings.

Staff conclusion: Low-VOC coatings outperformed the higher-VOC coatings.

Statistical Analysis

The following tables show how each coating was rated and then the final result once the weighting factors were applied. Table 2 contains the results of the exterior coatings and Table 3 contains the results of the interior coatings. Both tables contain the two interior/exterior coatings. The totals at the bottom were calculated with and without the freeze/thaw results because AQMD staff does not consider this to be an important characteristic in the Basin.

			Exterio	: ≤100g/I			Exterio	r ≤50g/L	ı	Ext ≤50	/Int g/L
Property	Weighting Factor	А	В	С	D	F	G	Н	I	S	Т
VOC Content	Pass/Fail	80	91	100	90	46	35	45	46	0	50
Gloss 60°	Pass/Fail	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Sheen 85°	Pass/Fail	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
					Rating () - 10 fr	om wors	t to best)			
Stability - Viscosity Change	8	6	8	0	8	4	10	9	8	5	9
Stability - Overall Character	8	8	6	8	8	8	6	6	6	6	4
Colorant /Pigment Float	8	9	9	9	9	9	9	9	9	9	9
Open Time/Wet Edge	9	10	10	10	10	10	10	10	10	10	10
Freeze/Thaw	5	8	8	0	8	0	2	6	8	0	0
Flow & Leveling ¹	N/A	0	0	0	0	0	0	0	0	0	0
Sag ¹	N/A	12	12	12	12	12	12	12	12	12	12
Dry Time ¹	N/A										
Hide	10	6	6	6	6	8	4	6	6	6	4
Adhesion	10	3	4	2	4	2	2	4	4	2	3
Tannin Stain Blocking	6	9	3	4	2	13	8	10	11	7	7
Alkalinity Resistance	7	0	1	0	1	0	1	0	0	0	0
	Total	59	55	39	56	54	52	60	62	45	46
Adjusted for Weig	ghting Factor	458	439	330	449	436	415	472	480	372	378
Withou	t Freeze/thaw	418	399	330	409	436	405	442	440	372	378
		Maximum Possible Score: 678									

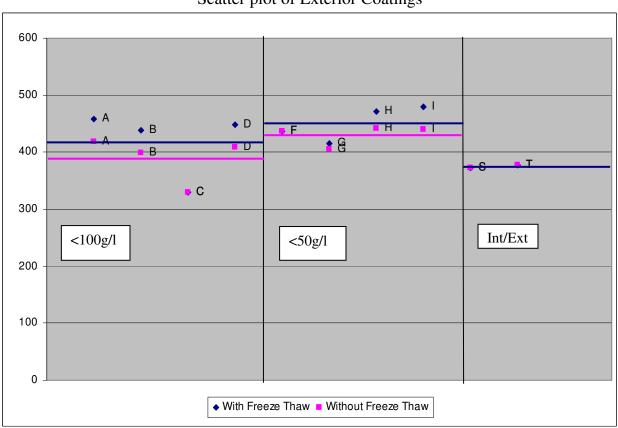
Table 2Exterior Flat Coating Performance Summary

N/A = not applicable

1. Flow and leveling, sag and dry time were not included in the totals for the coatings performance.

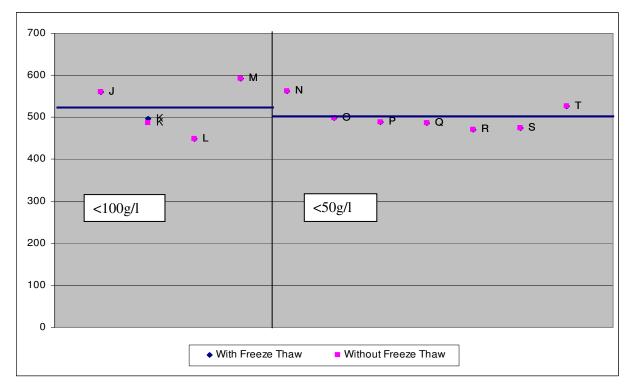
ANNUAL STATUS REPORT ON RULE 1113

			Interior	≤100g/L	,		Inte	erior ≤50)g/L			t/Int)g/L
Property	Weighting Factor	J	К	L	М	N	0	Р	Q	R	s	Т
VOC Content	Pass/Fail	100	95	92	91	0	<10	<15	0	37	0	50
Gloss 60°	Pass/Fail	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Sheen 85°	Pass/Fail	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
					Ratii	ng (0 - 1	0 from v	worst to	best)			
Stability - Viscosity Change	8	1	0	0	9	9	7	8	7	1	5	9
Stability - Overall Character	8	10	8	6	4	6	6	4	6	6	6	4
Colorant/Pigment Float	8	9	8	8	9	9	8	9	9	9	9	9
Open Time / Wet Edge	9	10	10	10	10	10	9	8	8	8	10	10
Freeze/Thaw	5	0	2	0	0	0	0	0	0	0	0	0
Flow & Leveling ¹	N/A	5	1	0	0	0	3	0	0	0	0	0
Sag ¹	N/A	10	12	12	12	12	12	12	12	12	12	12
Dry Time ¹	N/A											
Hide	10	8	6	6	6	8	6	6	6	8	6	4
Adhesion	10	4	4	3	5	4	3	3	2	4	4	5
Scrub Resistance	8	6	4	3	10	3	3	4	4	3	1	6
Stain Resistance	8	7	6	5	6	6	6	5	5	5	3	4
Touch up	9	10	10	10	10	10	10	10	10	10	10	10
	Total	65	58	51	69	65	58	57	57	54	54	61
Adjusted for Weig	ghting Factor	561	496	448	592	562	499	488	486	470	474	526
Withou	t Freeze/thaw	561	486	448	592	562	499	488	486	470	474	526


Table 3Interior Flat Coating Performance Summary

Maximum Possible Score: 780

N/A = not applicable


1. Flow and leveling, sag and dry time were not included in the totals for the coatings performance.

Graph 1 and 2 give a visual depiction of the final score, with and without freeze/thaw. The horizontal lines represent the average scores for each category; a separate average line was not included on the interior plot for the two interior/exterior coating because the average remained the same with or without the inclusion of those coatings.

Graph 1 Scatter plot of Exterior Coatings

Graph 2 Scatter plot of Interior Coatings

Comments

AQMD staff worked closely with TAC members prior to the start, during and following the completion of the UMR Flat coatings technological assessment. Several meetings were scheduled at the AQMD and many conference calls were conducted prior to and during the study, including extensive e-mail correspondence.

UMR's Project Manager, Dr. Michael R. Van de Mark, prepared a Draft Final report in June of 2007, which staff distributed to the TAC members for review and comment. Staff received only one comment letter dated July 18, 2007 from NPCA. In the letter, NPCA asserted that the test results for performance characteristics that included stability, open time, freeze/thaw, adhesion, scrub resistance and alkalinity resistance, demonstrated that the lower-VOC coatings did not perform as well as their higher-VOC counterparts and recommended revising the current VOC limits. NPCA also stated that Flat coatings formulated to meet the 50g/l limit are unique and may not perform adequately in other regions of California and the rest of the country.

AQMD staff has reviewed the comments from NPCA and strongly disagrees with NPCA's overall conclusions. A thorough evaluation of the performance testing results summarized in prior sections of this report indicates the comparable overall performance between low-VOC coatings and their higher-VOC counterparts. Moreover, the similarity in the overall performance between the two sets of coatings becomes even more evident if one utilizes the weighting and rating scale developed by the TAC. Based upon this empirical data, AQMD staff believes that the lower-VOC coatings perform equal to and in some instances better than their higher-VOC counterparts. Further, staff disagrees with the claim of NPCA regarding the coatings inability to perform outside of the Basin. The coatings tested are not solely available in the Basin. Depending on the manufacturer, some are marketed and sold throughout California and a few are sold throughout the country. However, relative to the freeze/thaw issue, AQMD staff recognizes that some areas outside of Southern California may have problems associated with this coating characteristic. As mentioned previously, a few of the low-VOC coatings did perform well in the freeze/thaw testing, demonstrating technology improvements relative to this coating characteristic. Regardless of the interpretation of the results however, the AQMD focuses its technology assessments on environmental conditions in the Basin and does not state that these conclusions necessarily apply to areas outside of the AQMD. Thus staff recommends maintaining the VOC limits adopted by the Board in the AQMD.

NPCA also commented in the letter that higher-VOC coatings are necessary for applications under ambient conditions of high heat and low humidity. This concern had been introduced during earlier meetings with the TAC, which AQMD staff attempted to address. A considerable effort went into developing a draft protocol and cost analysis including the hiring of a paint contractor, for performing a field study to evaluate the applicability of future compliant Flat coatings under non-ideal application conditions, such as, high heat accompanied by low humidity, representative of desert areas and low temperatures accompanied by high humidity typically found in coastal areas. However, the focus of the TAC was diverted to the laboratory performance study, and this study

was not pursued. AQMD staff has received feedback from a member of the TAC committee who has performed field application of ultra-low VOC flat coatings under hot dry conditions. There was no report of application problems under these conditions. Details on this project can be found in section E. Cal. Poly Pomona's House Painting Project. Further, AQMD staff supports the results of the laboratory studies as a reliable reflection of performance of the coatings in the field. In addition, staff supports testing coatings according to the manufacturers' recommendations, and not under extreme conditions.

As discussed earlier in this report, AQMD staff continues to evaluate field applied applications of low-VOC coatings that include flats in all areas of the Basin and have not encountered any negative application comments to date. Staff is committed to a continued effort in the analysis of coating application and performance over the long-term at projects throughout the Basin using low-VOC flat coatings. Manufacturers and applicators are encouraged to contact AQMD staff in order to document projects as they occur.

Conclusions

The overall results show that the lower-VOC coatings, even the super-compliant coatings tested, performed comparably to their higher-VOC counterparts. As with all architectural coatings, some coatings are formulated for, and therefore perform better in certain areas; however, overall the coatings at the 50g/l limit or less performed very well.

B. Compliant Products Found in Internet Searches

Staff analyzed the TDS and the MSDS published by coating manufacturers to assess the availability of Flat coatings at the future VOC limit of 50g/l. Table 4 summarizes the internet-based search for available coatings with more complete details of those findings presented in Appendix A of this report. The TAC has also contributed to and reviewed this list for accuracy.

Coating Category	No. of Products	Exterior(E), Interior(I), Dual(D)	Substrates
Flats	113	23-Е 80-І 10-D	Formulated for use on most substrates, commonly used on plaster, drywall, concrete block, wood, brick and stucco.

Table 4Internet Search for Available Future Compliant Flat Coatings $\leq 50g/l$

In addition to TDS and MSDS review, staff continues to visit sites where architectural coatings are applied, and has conducted follow-up visits to previously documented applications of low- and near zero-VOC coatings. The data gathered is used to

substantiate the availability, use and especially the continued performance of low-VOC coating products.

C. Store Shelf Survey

In early 2007, AQMD staff conducted a survey of coatings being offered for sale at a variety of stores, including 'big box' stores, company owned stores and small paint and hardware stores in order to assess availability of coatings meeting current and future VOC limits.

Table 5 shows the availability of Flat coatings with their respective percentage compliance for 'big box' stores and company owned stores. Many of the smaller paint stores do not have a high turnover of products, so they are less likely to stock the latest paint formulations. Flexibility written into Rule 1113 allows for a 3 year sell-through of coatings manufactured prior to the implementation of a lower-VOC limit; therefore, it is not uncommon to find older paints on store shelves that exceed the current VOC limit. The numbers listed in the table below do not necessarily represent unique coatings and no attempt was made to eliminate duplicate coatings surveyed at different stores, and simply provides a snapshot of available coatings.

Flat Coatings	All Stores Surveyed	Big Box Stores	Company Owned Stores
Number of Compliant Coatings	28	9	7
Number of Coatings Surveyed	175	40	26
Percentage Compliance	16%	23%	27%

 Table 5

 Store Shelf Survey of Available Future Compliant Flat Coatings ≤50g/l

This shelf survey indicates a higher percentage of compliance for Flat coatings than the 2005 Draft CARB Architectural Coating Survey, especially for the big box stores and company owned stores. As indicated earlier in this report, CARB's draft survey found the number of future compliant Flat coatings at 15% in the year 2004.

D. Meetings with Manufacturers

AQMD staff met with several large and small paint manufacturers during 2006 and 2007 to discuss issues that they were experiencing and recent technological advances in coatings formulations. The discussions included many of the coating categories listed on the Table of Standards, including Flat coatings. No major technological difficulties were mentioned in regard to formulating Flat coatings at the future limit of 50g/l. Freeze/thaw was cited as one area that needs improvement, though it is a characteristic that is not considered critical, especially in Southern California. The manufactures were cautiously optimistic due to recent technological advances in this area. Based on these meetings, AQMD staff believes that manufacturers will not experience any hardships in bringing quality Flat coatings to the marketplace meeting the July 2008 VOC limit.

E. Cal Poly Pomona's House Painting Project

California Polytechnic University (Cal Poly) in Pomona has a Paint and Coatings Institute within their Chemistry Department where students learn about, formulate and test near zero-VOC containing coatings. Starting in 2004, the Paint and Coatings Institute, under the direct supervision of the professors, teamed up with a Pomona based charitable organization that provides assistance to needy families in the community, to identify annually a neglected home in need of paint. The students then volunteer their time to paint the selected house which serves not only to help a needy family, but also gives the students an opportunity to test their paints in a real life situation, far different from testing the paint on small panels in a laboratory setting. This project has become an annual event resulting in four houses now painted with near zero-VOC coatings. The professors are able to monitor the environmental exposure over time for any signs of weathering, UV deterioration, dirt pick up, and color or gloss loss.

AQMD staff had an opportunity to document the most recent project during the preparation and painting phases and viewed the previous three projects dating back to 2004. Each project underwent minimum surface preparation that included the use of a garden hose and a broom, with the most recent jobs utilizing a small pressure washer. The houses were in very poor condition with peeling paint, weathered wood, and deteriorating stucco. Although each project was completed by students and teachers, equipped with only brushes and rollers and no primers were used, the previously painted homes have held up well over the years. Also, the painting was conducted in Pomona, California during the summer when the ambient conditions are typically hot and dry. The professors did not observe any application problems such as brush marks or lap marks, even with untrained applicators.

The coatings formulations used are from manufacturer donations, are relatively simple, and contain no tannin blocking or rust preventative additives. Each painting project viewed by staff continues to exhibit good adhesion, flexibility and show no signs of dirt pick up or other failures. In a few locations on the houses where the substrate was failing and no preparatory work was done, there are signs of adhesion failure due to the distressed condition of the stucco prior to painting. Remarkably, even with minimal preparation and non-professional application, these near zero-VOC coatings are performing very well.

F. Super-compliant Coatings

Architectural coating manufacturers continue to improve the coating characteristics of their products while lowering the VOC content by introducing new types of resins and other paint constituents that are extremely low in VOC and even approach zero-VOC. Table 6, updated from previous annual reports to the Board, reflects a portion of super-compliant coatings currently available. Staff has given the nomenclature "Super-compliant coatings" to those coatings that are well below the current and/or future limits for the applicable coatings categories as set forth in the Table of Standards and are indicated by the manufacturer as having less than 10g/l of VOC. These also include those coatings that meet future limits in advance of their effective date. This list can be found at:

http://www.aqmd.gov/prdas/brochures/Super-Compliant_AIM.pdf.

Manufacturer	Type of Coatings	Interior	Exterior	Phone Number
Alistagen Corporation	PSU, F	YES	NO	866-280-0001
http://www.caliwel.com				305-936-8691
American Formulators Mfg	F, NFE, NFSG	YES	NO	619-239-0321
http://www.safecoatpaint.com				
Anchor Paint	WPC/MS	NO	YES	918-836-4626
http://www.anchorpaint.com				
Benjamin Moore & Co	PSU, F, NFS, NFE, NFSG	YES	NO	201-573-9600
http://www.benjaminmoore.com Cloverdale Paint Inc	DOLL NE DA	VEG	VEG	(04.50((0(1
http://www.cloverdalepaint.com	PSU, NF, IM	YES	YES	604 596 6261
Coronado Paint Co	F, NF, PSU	YES	NO	386-428-6461 x115
http://www.coronadopaint.com	1,11,150	1125	NO	300-420-0401 XIII3
Diamond Vogel	F, NF, P	YES	NO	800-728-6435
http://www.diamondvogel.com	1,111,1	125	110	000 / 20 0 155
Dunn Edwards	F, NF	YES	NO	888-337-2468
http://www.dunnedwards.com	-,	125	110	000 007 2100
E-3 Coatings, Inc	S	NO	YES	530-308-2189
http://www.envirolast.com				
Frazee Industries	PSU, F, NFS, NFE, NFSG	YES	NO	858-626-3490
http://www.frazeepaint.com				
Fuhr International, LLC	PSU, F, NF	YES	YES	800-558-7437
http://www.fuhrinternational.com				816-809-4403
ICI Paints	PSU, F, NFS, NFE, NFSG**	YES	YES	440-826-5519
http://www.iciduluxpaints.com Pro painters				
http://www.devoecoatings.com IM coatings				
http://www.duspec.com MSDS & PDS				
http://www.glidden.com_Retail for homeowners				
http://www.ici.com_Corporate				
Kryton	WPS	YES	YES	246-437-3202
http://www.kryton.com				
Miller Paint	PSU, F, NFE, NFS	YES	NO	503-407-2532
http://www.millerpaint.com				
Monopole Inc.	IM, WPS, WPC/MS	YES	YES	818-500-8585
http://www.monopoleinc.com			NG	000 444 0707
PPG Industries - Architectural Finishes	PSU, F, NFE, NFSG	YES	NO	800-441-9695
www.pittsburghpaints.com		MEG	MEG	056 001 7010
Polibrid Coatings	F, NF, PSU	YES	YES	956-831-7818
http://www.polibrid.com Richards Paints	E NED NEC	YES	NO	800-432-0983
	F, NFR, NFS	1ES	NO	800-432-0983
http://www.richardspaint.com/ Rodda Paints	PSU, F, NFE, NFS	YES	NO	503-737-6031 x6051
http://www.roddapaint.com/	F30, F, ME, MF3	1125	NO	JUJ-737-0031 X0031
Sampson Coatings, Inc.	PSU, F, NF	YES	YES	804-359-5011
http://www.sampsoncoatings.com	130,1,11	11.5	1125	004-339-3011
Samuel Cabot, Inc	WPS	NO	YES	800-877-8246
http://www.cabotstain.com	WIS	no	115	000-077-02-0
Seal-Krete Inc.	PSU, F	YES	YES	800-323-7357 x541
http://www.seal-krete.com	150,1	125	125	000 525 7557 8511
Sierra Performance by Rust-Oleum	PSU, F, NF	YES	YES	800-553-8444
http://www.rustoleum.com	150,1,10	125	125	000 000 0111
Silvertown Products	S, CWF	NO	YES	909-986-7061
http://www.rhinoguard.com				
Spectra-Tone Paint	F, NFE, NFSG	YES	NO	800-272-4687
http://www.spectra-tone.com/				
TPR ² - Thermal Product Research	NF-FR, PSU-FR	YES	YES	203-756-8772
http://www.tpr2.com/				
Tried & True Wood Finishes	CWF	YES	NO	607-387-9280
http://www.triedandtruewoodfinish.com				
VOC Free	FLOOR SEALER, PSU, F, NF	YES	YES	201-457-1221
No Website				1

 Table 6

 Super-compliant Architectural Coating Manufacturers*

Table 6 Cont'd Super-compliant Architectural Coating Manufacturers*

Industrial Maintenance Coatings					
Manufacturer	Type of Coatings	Interior	Exterior	Phone Number	
Ameron, Intl. http://www.ameroncoatings.com/welcome.cfm	VARIOUS SYSTEMS	YES	YES	800-926-3766	
Duromar http://www.duromar.com/	VARIOUS SYSTEMS	YES	YES	781-826-2525	
JFB Hart Polymers http://www.jfbhartcoatings.com/	VARIOUS SYSTEMS	YES	YES	630-574-1729	
Novocoat (Formerly) Superior Environmental Products, Inc http://www.novocoat.com	VARIOUS SYSTEMS	YES	YES	972-490-0566	
Pacific Polymer http://www.pacpoly.com/	VARIOUS SYSTEMS	YES	YES	800-888-8340	
Specialty Products Inc. http://www.specialty-products.com	VARIOUS SYSTEMS	YES	YES	253-983-7530	
United Coatings http://www.unitedcoatings.com/	VARIOUS SYSTEMS	YES	YES	800-541-4383	

CWF	Clear Wood Finish
F	Flats
NF	Non-flat
NFS	Non-flat - satin
NFE	Non-flat - eggshell
NFSG	Non-flat - semi-gloss
PSU	Primers, sealers, and undercoaters
S	Stains
WPS	Waterproofing Sealer
WPCMS	Waterproofing Concrete/Masonry Sealers

* Super-compliant coatings are defined as those coatings that have a VOC content less than the VOC content limits set forth for the current and/or future limits in the Table of Standards found in paragraph (c)(2) of Rule 1113 and specify a VOC content less than 10 g/L.

** Not available for exterior use.

This is not an all-inclusive list of super-compliant coatings available from manufacturers/suppliers who have informed SCAQMD that they can provide the super-compliant products listed.

The SCAQMD in no way endorses any of these companies nor does it certify their ability to meet the requirements of Rule 1113 Architectural Coatings. If you want your company included in this page, please send your request to <u>hfarr@aqmd.gov</u> or call Heather Farr at (909) 396-3672.

G. Master Painters Institute® (MPI)

MPI is a Canadian based organization founded to develop performance-based standards in conjunction with paint manufacturers and paint technologists. The performance based standards are widely accepted and are approved by the US Navy, Army, and Air Force as well as other US and Canadian agencies. MPI develops lists of approved products in almost 200 categories. In 2005, MPI developed a Green Performance Standard (GPS-1) which sought to consider not only the VOC content of a coating but also the performance of the coating. More recently, MPI developed a more stringent Green Performance Standard (GPS-2) for coatings with a maximum VOC content of 50g/l. MPI's Green Performance Standards and approved product lists are the only green certification program to include performance based testing along with VOC content. The MPI approved product lists are an excellent resource for high quality coatings that have been tested in a laboratory using widely accepted test methods with regard to each category type. MPI has 10 categories for Flat coatings¹ containing 61 approved products meeting the AQMD's future VOC limit of 50g/l and they have a category for Institutional Low Odor/VOC Interior Latex (MPI#143) for coatings with a VOC content less than 10g/l containing 26 approved products.

The lists of products meeting MPI Green Performance Standards can be found at:

www.specifygreen.com

H. Papers Presented at Recent Conference in 2007

In addition to the articles researched relative to the development of lower-VOC architectural coatings, recent papers and presentations made at coatings symposiums indicate the availability and support from resin and additive suppliers of low-VOC coating components that meet or are lower than future VOC limits in Rule 1113.

The Federation of Societies for Coatings Technology (FSCT) sponsors an annual event that is the largest North American exposition in the coatings industry, the International Coatings Expo (ICE). Included in the exposition is a technical forum featuring three days of lectures. Both the 2006 and the upcoming 2007 forums feature a track that focuses exclusively on green chemistry and include the developments of innovative resins and additives that enable formulating of low-VOC to near zero-VOC coatings.

The upcoming Western Coatings Symposium sponsored by the Los Angeles Society for Coatings Technology also features a lecture series on green chemistry including new resin and additive technologies. Clearly there is an increasing interest in green coatings to meet regulations, but also as a tool for marketing coatings.

¹ Gloss level 1 defined as a coating that registers a gloss of <5 at 60° and <10 at 85° meeting the Rule 1113 definition of a Flat coating.

ADDITIONAL TECHNICAL PROGRAMS AND STUDIES

A. Draft CARB 2005 Architectural Coatings Survey

Rule 1113 requires AQMD technology assessments to consider any applicable CARB surveys on architectural coatings. Approximately every four or five years since 1976, CARB has conducted architectural coating surveys. The survey methodology serves as a tool to obtain information such as VOC content and sales volume of coatings from manufacturers that offer products for sale in California. Draft data obtained from the 2005 Architectural Survey represents a comprehensive evaluation of sales data and coating chemistries from the 2004 calendar year based on the latest information available from participating manufacturers. A more thorough evaluation of the CARB survey will be conducted once the survey is finalized and the data is released this fall.

The sales data obtained for 2004 separates architectural coatings statewide into 48 categories, identifying more than 111 million gallons of architectural coatings sold in California in 2004, with 88% of that volume coming from waterborne products, an increase from the 83% reported in 2000. However, waterborne products contributed to only 48% of the total emissions, while the remaining 12% solvent-based volume reported, contributed to 52% of the total emissions. The sales of architectural coatings in the AQMD are based on an estimated population representing 45% of all coatings sold statewide. Table 7 summarizes the use and contribution of waterborne and solvent-based coatings from the most recent CARB survey.

Survey Results	Waterborne	Solvent-Based
Total Volume (%)	88	12
Total Emissions (%)	48	52
Annual Volume (Gal/Yr)	97,365,588	13,311,087
AQMD Annual Volume (Gal/Yr)	43,814,515	5,989,989

Table 7CARB Survey - California

When comparing this recent data relative to the overall sales volume of lower-VOC products with data from previous CARB surveys, sales information indicates an increase in manufactured products that meet or are lower than current VOC limits in Rule 1113.

CARB has also calculated the associated emissions using this data. Table 8 shows coating volume and emission trends. Please note that the surveys have varied in content and format; therefore, it is not always possible to make a direct comparison between results from different survey years.

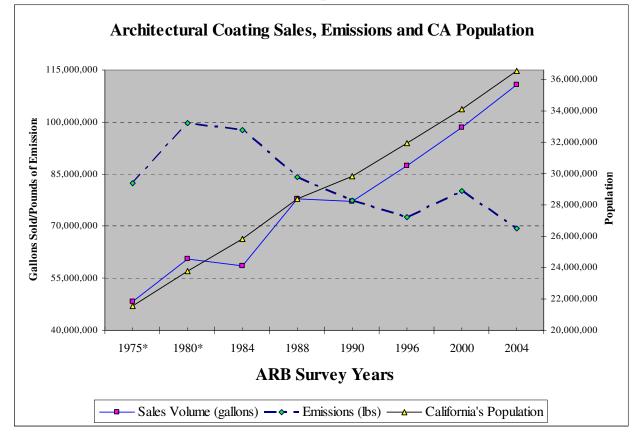
Survey Year	Sales Volume (gallons)	Emissions (lbs) ¹	California's Population ²	Pounds of VOC Emissions per capita	# of Surveys Mailed Out	# of Companies Reporting Sales
1975*	48,206,000	82,490,000	21,538,000	3.8	N/A	N/A
1980*	60,489,756	99,791,000	23,782,000	4.2	N/A	N/A
1984	58,481,000	97,747,000	25,816,000	3.8	~400	143
1988	77,876,000	84,096,000	28,393,000	3.0	N/A	130
1990	77,056,000	77,380,000	29,828,000	2.6	N/A	174
1996	87,496,000	72,562,000	31,963,000	2.3	>700	152
2000	98,455,172	80,081,000	34,099,000	2.3	700	183
2004	110,676,675	69,423,000	36,522,000	1.9	900	197

 Table 8

 CARB Architectural Coatings Volume and Emissions Trends

* Incomplete surveys

N/A = Not Available


1. Thinning and clean-up or additive emissions not included because CARB changed the methodology for calculating cleanup solvents in 2004.

2. Population data from CA Department of Finance, Demographic Research Unit, Dec. 2006.

3. Staff is studying whether the sales volume increase is attributed to population increase, larger average gross living area of homes, and more frequent turnover of single family residences and apartments.

The trends shown in Table 8 are illustrated in Graph 3, showing that overall emissions continue to decline despite increased production and sales of coatings in the state.

Graph	3
-------	---

While California's population and sales volume of coatings grew significantly over the last 29 years, statewide VOC regulations requiring lower-VOC limits have managed to reduce the emissions from architectural coatings to lower than the 1975 emission levels. Regulations began having an effect on architectural coating emissions by 1984. Emissions continued to decline through the real estate recession until 1996, and resumed their increase from that point until 2000. As predicted in the 2006 Annual Report, emissions declined from 2000 to 2004, most likely reflecting the effect of regulatory action. The next CARB survey should begin to show the effects of the recent VOC reductions in Rule 1113.

I. Flat Coatings Data from Draft CARB 2005 Architectural Coatings Survey

Table 9 summarizes information extracted from the 2004 sales data on Flat coatings. The information contained in the most recent CARB survey represents sales data from 2004, four years prior to the lower-VOC limit taking effect. This data demonstrates that manufacturers are developing and marketing coatings compliant with the future VOC limits in Rule 1113.

Coating Category	Total Products Listed	Total 2004 Sales Volume (gallons)	# of Products Meeting Future VOC Limits	Sales Volume meeting Future VOC Limits	% of Products Meeting Future VOC Limits	% of Sales Meeting Future VOC Limits
Flats	2,438	36,699,154	360	2,390,135	15%	7%

Table 9CARB 2004 Sales Results – California (excludes quart containers or smaller)

The sales volume of products meeting the future VOC limit for Flat coatings decreased slightly from the last survey conducted by CARB for the calendar year 2000. That survey indicated 8% future complying market share with the 2008 limit, while the 2004 sales data indicates 7%. The future complying market shares obtained from the CARB surveys represent coatings sold throughout California. AQMD staff has always assumed that the percent complying market share is higher in the South Coast Air Basin where stricter limits require the use of lower-VOC coatings. As this data cannot be extracted from the CARB surveys, there is a clear need for survey data of coatings sold throughout the AQMD.

B. CARB/AQMD Reactivity Study

As a part of the 1999 amendments to Rule 1113 – Architectural Coatings, the AQMD Board approved a resolution directing staff to assess the reactivity and availability of solvents typically used in the formulation of architectural coatings. As a part of that effort, staff has also been assessing interactions between architectural coating and mobile emission sources on particulate matter (PM) formation.

The Reactivity Research Working Group (RRWG) is a public-private partnership with a charter to conduct research on reactivity-based controls to determine whether it is feasible as an alternative compliance option. As a member of RRWG, AQMD staff has coordinated their current efforts with CARB, as well as recommendations by the RRWG. As part of the collaborative effort, a study was completed in 2005 using an environmental chamber at the University of California at Riverside (UCR). The study used the chamber to evaluate mechanisms for photochemical O_3 formation under low NO_x conditions (Carter 2004) and for other projects. A final report has recently been released and the CARB and AQMD will continue to address the possibility of an alternate ozone control strategy. However, to date, industry has not reached consensus on the methodology to potentially implement such an approach. Staff plans to conduct a Technology Roundtable in the fall of 2007 to discuss the strengths, weakness, and potential next steps for a reactivity-based ozone control strategy.

Staff will continue to monitor all reactivity-related research and plans to work closely with CARB staff and industry on additional studies, including the Paints and Coatings Environmental Study currently under development at CE-CERT.

C. Alternate Means of Compliance

I. Averaging Compliance Option

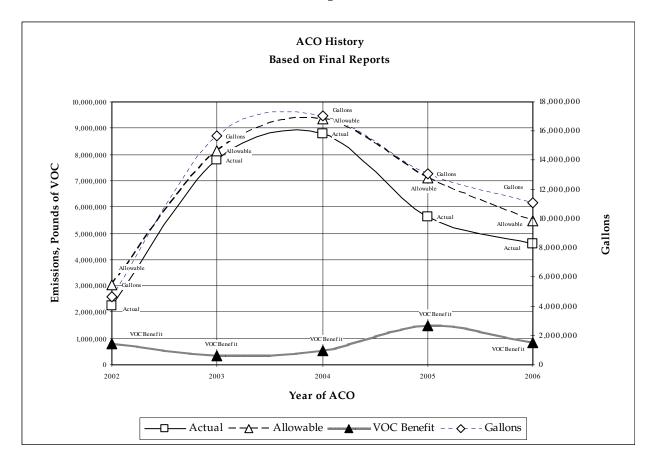
History

The averaging compliance option (ACO) program was developed to provide flexibility to manufacturers by allowing additional time to reformulate certain coatings that would be affected by upcoming VOC limit reductions in Rule 1113. This provision allows a coating manufacturer the option to continue selling higher-VOC coatings in certain categories by offsetting those emissions with low-VOC coatings such that the total emissions are less than the allowable emissions.

The ACO program was started in July 2001. Table 10 provides an overview of the ACO program, including the number of participating manufacturers and the coating categories averaged.

Year of ACO Period	Number of Manufacturers	Coating Categories Allowed for Averaging
2002 *	3	F
2003	8	
2004	9	FL, PSU, QDE, QDPSU, RPC, SP, STN, WS, IMC, NF
2005	8	
2006	10	Same as above plus**: FRC, FRP, HGNF, MPC,
2007	12	RP, SS, STNi, CWF-V, WCMS, CWF-SSsc, CWF-Vsc

Table 10ACO Period and Number of Coating Manufacturers


*2002 is actually the July 1, 2001 through June 30, 2002 ACO period **Effective July 1, 2006

	KEY
CWF-SSsc = Clear Wood Finish-	PSU = Primers, Sealers, Undercoaters,
Sanding Sealer (small container size),	QDE = Quick-dry Enamels,
CWF-V = Clear Wood Finish-Varnish,	QDPSU = Quick-dry Primers, Sealers,
CWF-Vsc = Clear Wood Finish-Varnish	Undercoaters,
(small container size),	RP = Roof Primers, Bituminous,
$\mathbf{F} = Flat Coatings,$	RPC = Rust Preventative Coatings,
FL = Floor Coatings,	SP = Specialty Primers,
FRC = Fire Retardant-Clear Coating,	SS = Sanding Sealers,
FRP = Fire Retardant-Pigmented	STN = Stain,
Coatings,	STNi = Stains, Interior,
HGNF = High Gloss Non-flat Coatings,	WCMS = Waterproofing Concrete
IMC = Industrial Maintenance Coatings,	Masonry Sealers,
MPC = Metallic Pigmented Coatings,	WS = Waterproofing Sealers
NF = Non-flat Coatings	

AQMD staff has completed audits on four ACO programs and determined all were in compliance. Three of the audits were for the July 1, 2001 to June 30, 2002 period and the fourth audit was for the 2003 calendar year. Staff is currently auditing the remainder of the ACO plans and is working with the coating manufacturers to complete the process.

Statistics

The ACO program has been available to manufacturers since 2001, enabling staff to analyze statistics related to the coatings. Graph 4 shows a cumulative overview of the gallons sold, the actual emissions, and the allowable emissions for coating manufacturers that have participated in the averaging compliance option to date. The graph shows a timeframe ranging from 2002 to 2006 (year 2007 data is not yet available); the year 2002 includes the averaging period July 1, 2001 through June 30, 2002.

Graph Discussion

Graph 4 shows trend lines for actual emissions, allowable emissions, VOC benefit and gallons. There is a marked increase from the year 2002 to 2003. This is because the year 2002 included three coating manufacturers, while the year 2003 included eight coating manufacturers. The increase is also due to additional coatings categories being allowed in the ACO program. The year 2003 was a milestone in Rule 1113, since multiple coating categories had VOC limit reductions starting on January 1, 2003. The trend lines increase slightly from the year 2003 to 2004 because there were nine coating manufacturers averaging for 2004, an increase of 12.5%. The trend lines between the year 2004 and the year 2005 show a large decrease. There were nine coating manufacturers reporting in 2004 and eight coating manufacturers reporting in 2005. The

area between the actual emissions and the allowable emissions show that the year 2005 had a larger gap (greater emission reduction benefit) than the year 2004. This shows that the coating manufacturers have continued to reformulate coatings to meet the upcoming VOC limits. There were three coating categories that had VOC reductions for year 2005 but they were not used in any of the ACO programs. The trend lines between the year 2005 and 2006 show another decrease, but the area between the actual emissions and the allowable emissions is less for 2006 than 2005. The year 2006 affected several coating categories, additional VOC limit reductions began in the middle of the year on July 1, 2006. Many coating manufacturers had to eliminate their supply of the higher-VOC products. The reduction of actual emissions from 2004 to 2006 calculates to 47.5% even though year 2006 had one more coating manufacturer averaging than year 2004.

The VOC benefit trend line in Graph 4 reflects the emission reduction benefit in any prior year. This is the difference between the allowable emissions and the actual emissions. The allowable emissions are the maximum that can be emitted at the regulatory limits, while the actual emissions are those that were emitted based on sales of coatings in the manufacturers ACO reports. The difference demonstrates that through the ACO program, the actual emissions were significantly lower than the allowable emissions. Table 11 shows Graph 4 in tabular format.

Year	Volume (gal/yr)	Actual (lbs/yr)	Allowable (lbs/yr)	VOC Benefit (lbs)
2002	4,679,617	2,241,674	3,053,318	811,644
2003	15,698,206	7,775,839	8,120,810	344,971
2004	17,075,532	8,787,633	9,337,542	539,908
2005	13,095,173	5,614,696	7,093,904	1,479,208
2006	11,080,033	4,616,066	5,467,371	851,304
			Total Benefit	4,027,035

Table 11Annual Summary of ACO Plans

The data shows that the coating manufacturers are reformulating their products and meeting the VOC requirements in Rule 1113. Many of the large manufacturers continue to use the ACO and utilize new low-VOC coating products that are used to offset their sales of higher-VOC products. In addition, as the VOC limits of several coating categories have been reduced through rule amendments, most of these same categories are also included in the ACO projection, allowing the manufacturers to offset the higher-VOC coatings with the new low-VOC coatings. In 2007, there are twelve coating manufacturers participating in the ACO program.

ACO – Conclusion

The manufacturers have expressed the benefits of utilizing the ACO, since it provides them with compliance flexibility by allowing them to continue marketing some niche higher-VOC products and offsetting them with low-VOC products. Similarly, recent court decisions have also supported the ACO and recognized this provision as an "escape clause" that provides manufacturers with compliance flexibility, while retaining the more stringent limits.

Staff recognizes that the ACO cannot be used by all manufacturers, but will continue the provision for other manufacturers who have demonstrated its benefits.

II. Sell Through Option

As mentioned in previous reports to the board, another compliance option available to architectural coating manufacturers allows the sale or application of a coating manufactured prior to the effective date of the corresponding standard in the Table of Standards for up to three years after the effective date of the standard. This sell-through provision applies to all coatings listed in the Table of Standards and any effective dates applicable to the specific coating. Many manufacturers continue to take advantage of this available option in order to allow them additional time to reformulate their products just prior to the effective date change in the limits. This allows the manufacturers to eliminate any potential losses in revenue due to excess stock of non-compliant coatings.

III. Small Container Exemption

Another compliance option is the small container exemption which provides regulatory relief to the manufacturers provided they submit an annual report within three months of the end of each calendar year for their products that are sold in quart size containers or less in select categories. If a manufacturer fails to submit their annual report, the manufacturer cannot claim the exemption for the previous year. The number of reporting manufacturers selling coatings within the jurisdiction of the AQMD under this exemption has increased over the years. Table 12 below shows the trend.

	2000	2001	2002	2003	2004	2005	2006
Number of Companies Reporting	12	13	15	24	29	30	34

 Table 12

 AQMD Small Container trends, 2000-2006, Companies Reporting

Staff has been actively tracking the statistics of the small container exemption under Rule 1113. These reporting requirements assist AQMD staff in tracking the excess emissions that result from the small container exemptions and assist in tracking other coating categories of interest. In the last rule amendment, the exemption was removed for Clear Wood Finishes as the reporting requirement revealed a sharp increase in sales, indicating a possible circumvention of the VOC limit for that category.

ANNUAL STATUS REPORT ON RULE 1113

In 2006, the small container exemption resulted in excess emissions of approximately 1.1 tons per day; a slight decrease from 2005 where there was approximately 1.5 tons per day of excess emissions. Table 13 displays the data from the year 2000 through 2006. The table also summarizes the total volume of coatings sold under the small container exemption in Rule 1113.

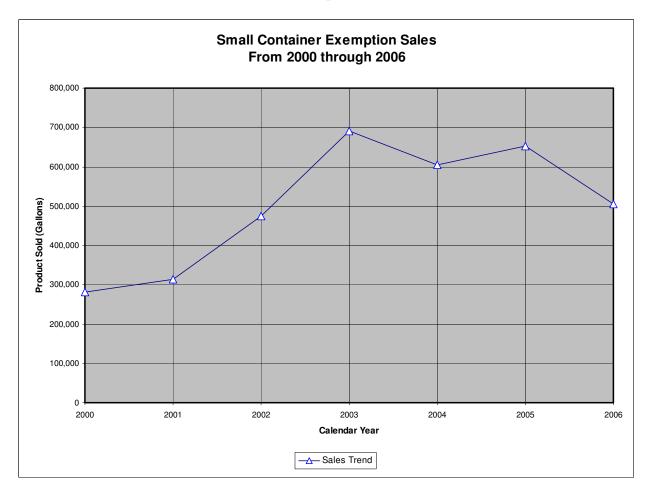

Coating Category	2000	2001	2002	2003	2004	2005	2006
Faux Finishes	128	190	0	9,943	6,202	4,615	5,032
Flat	246	4,813	24,613	10,645	6,358	5,678	728
Floor	0	70	0	1,709	840	980	1,054
Industrial Maintenance	641	0	169	21,998	364	2,355	1,950
Lacquers	237	1,333	1,964	745	2,404	2,860	2,068
Mastic Coating	0	0	0	35	0	0	0
Metallic Pigmented	0	101	0	1,487	154	63	76
Multi-Color	109	0	0	0	0	0	0
Non-Flat	13,819	19,748	9,503	98,753	36,640	14,945	28,164
Non-Flat High Gloss							5,856
PSU	18,864	13,225	26,197	25,043	21,904	21,658	18,533
QD-E	0	0	0	4,605	4,683	1,722	2,550
QDPSU	1,335	1,651	327	4,465	14,826	24,265	26,755
Roof Coating	0	0	0	32,969	9	0	0
Rust Preventative	0	0	0	70	107	68,826	50,107
Sanding Sealer	583	735	4,061	2,825	3,654	3,686	2,332
Stain	120,299	141,650	220,058	250,243	270,601	246,868	224,711
Traffic Coating	0	0	0	7,250	0	0	0
Varnishes	125,764	130,197	186,557	217,289	235,140	253,906	125,056
Waterproofing Sealers	197	48	1,798	1,478	92	45	29
WCMS	0	0	0	229	17	1,932	11,349
Total:	282,221	313,760	475,247	691,781	603,995	654,404	506,349

Table 13 AQMD Small Container Trends, 2000-2006, Product Category Sales Reported in Gallons

One can see from Table 13 that the total sales for each year increased except for year 2004 and 2006. Interpreting the data in 2006 was complicated by several changes in Rule 1113. Due to the elimination of the small container exemption for the Clear Wood Finishes, manufacturers were only required to report small container sales for Clear Wood Finishes up to June 30, 2006. This resulted in an expected decrease in reported sales. If it is assumed that the sales volume of Clear Wood Finish for the full calendar year is double what was reported, then the gallons sold under the exemption would increase to approximately 635,000, which is still a decrease from 2005.

Sales of Flat coatings, under the small container exemption have decreased sharply since 2002. During the 2006 calendar year only 727 gallons were reported sold. This indicates that manufacturers do not need this exemption to produce compliant Flat coatings or to produce niche products requiring higher-VOC formulations.

Graph 5 presents the totals shown in Table 13 in graphical format.

Graph 5

D. Summary of Past AQMD Sponsored and Other Coating Studies

To address concerns by industry representatives and coating manufacturers that lowering the allowable VOCs in products to meet the future limits may compromise coating characteristics such as applicability and durability; staff has contracted with industry experts and conducted several studies over the years. Staff also continues to review those completed by other agencies and the industry.

Prior reports and summaries submitted to the Board regarding architectural coatings include coating technology assessments and product availability studies that indicated the availability of compliant coatings in the specific categories studied. A review of those studies supports staffs contention that low-VOC and super-compliant coatings meet or exceed expected characteristic performance standards compared to products that have much higher-VOC content. For a summary of past studies refer to the 2006 Annual Status Report for Rule 1113 which can be found at:

http://www.aqmd.gov/hb/2006/060126a.html

E. Future Program Activities and Studies

AQMD staff will continue to review and maintain a current database of compliant and super-compliant products in all coating categories for additional products with VOCs less than current and future rule limits. As technology improves and VOCs in all categories get closer to zero, staff will continue to evaluate the feasibility of further reductions in the VOC content of all architectural coating categories as currently listed in the Table of Standards in Rule 1113. Voluntary use of available low-VOC or near zero-VOC technology is evidence that the coatings are performing at or above industry expectations.

Staff will be involved in the following activities over the next year:

I. <u>Technology Roundtable on Reactivity Fall 2007</u>

As a part of the 1999 amendments to Rule 1113 – Architectural Coatings, the AQMD Board approved a resolution directing the staff to assess the reactivity and availability of solvents typically used in the formulation of architectural coatings. To assist in the assessment, a Technology Roundtable will be held in the fall of 2007 to discuss the strengths, weakness, and potential next steps for a reactivity-based ozone control strategy.

II. Architectural Coatings Technical Symposium 2008

Staff will hold an Architectural Coatings Technical Symposium (ACTS) in 2008 as an outreach to manufacturers, contractors, architects and painters. The goal is to provide an open forum of communication and to exchange information among all parties impacted by Rule 1113.

III. More Robust Enforcement Program

As VOC limits continue to decrease, AQMD will enhance enforcement efforts by continuing a strong field presence at construction sites, points of distribution, and other architectural coating projects.

IV. <u>Clean Coatings Certification Program</u>

The 2007 AQMP contains a control measure (#CTS-02) to implement a certification program for coatings with low-, ultra low- or near zero-VOC content. The intent is to positively influence the manufacturing, marketing, and consumer purchase decisions towards products that produce fewer emissions. This suggested control measure could potentially foster the marketing of cleaner technologies by encouraging manufacturers to lower their VOC content to levels below what traditional control rules mandate, in an effort to reduce the overall VOC emissions in the Basin.

V. <u>Test Methodology for VOC Analysis</u>

EPA Method 24 and SCAMQD Method 304² are rigorous test methods that provide accurate and reliable results when measuring the volatile organic compounds (VOC) in many architectural coatings, but there is inherent variability when employing Method 24 to analyze the VOC content of low-VOC waterborne coatings. The AQMD has invested a significant effort in working with industry, CARB, US EPA, and academic institutions in identifying a superior alternative to Method 24.

Specifically, the AQMD has spent considerable effort investigating ASTM Method D6886 as an alternate to Method 24 for the analysis of low-VOC waterborne coatings. Method D6886 appears to be an improvement to Method 24 because it directly measures the VOC content of a coating yielding far greater precision. AQMD staff will continue to investigate this new method and if it proves to be a reliable alternative to current Method 24, staff will seek EPA approval for incorporating Method D6886, or an equivalent method, into AQMD 304 for the analysis of low-VOC waterborne coatings.

VI. Proposed Coating Registration

AQMD staff will be proposing a rule for architectural coatings to require registration of all architectural coatings manufactured, supplied, sold, or offered for sale for use within the South Coast Air Basin. For over 30 years the AQMD has regulated architectural coatings, mainly relying on California Air Resources Board (CARB) architectural coating surveys for sales and emission data relative to rule and Air Quality Management Plans development. The data provided by CARB relates to all of California, and the South Coast Air Basin portion of the sales and emissions are typically estimated by population demographics, which may or may not estimate the correct emission inventory from the sale and use of architectural coatings. The data is often three to six years old and may not reflect newer technologies recently released into the consumer market, particularly lower-VOC containing products. With the adoption of this proposed rule, staff will have the

² EPA Method 24 and AQMD 304 are not identical but they use the same principles, cite the same ASTM methods, and are included in Rule 1113.

most current and reliable architectural coating information for compliance, Rule Development and Air Quality Management Plans.

In addition to the registration aspect, the proposed rule is also intended to recover program costs associated with the AQMD's architectural coatings program. The current Rule 1113 program is extensive and includes staff assigned to inspections, planning and rule development, laboratory services, legal, administrative, and monitoring and analysis as well as support personnel

VII. Other Future Activities

- 1. Further Evaluation of the Final 2005 CARB Architectural Coatings Survey for Year 2004 Sales
- 2. Updates of Low- and Super-Compliant- VOC Product Availability Lists
- 3. Compliance Audits of Averaging Compliance Plans

CONCLUSIONS

AQMD's performance studies and research of technical information from many coating manufacturers, coating studies, assessments of sales data, marketing brochures, Material Safety Data Sheets and other sources, clearly shows an ever increasing number and volume of products that meet the future proposed limits, or are well below current limits.

The completion of the most recent technology assessment by the University of Missouri-Rolla-Coatings Institute demonstrates that the 2008 limit for Flat coatings is feasible. Field and product availability surveys also demonstrate that there currently are more than adequate replacement products for the higher-VOC Flats, many of which are well below the current lowest effective limit of 50 g/l VOC.

APPENDIX A

Internet Search of Future Compliant Flat Coatings

			F	lats (≤ 5	0 g/l)	
Coating Company and Product Name	Interior Exterior	VOC content (g/l)	Solids (% by volume)	Coverage (sq ft/gal)	Coating Characteristics	Dry time
Alistagen Caliwel with BNA Antimicrobial Interior Latex Covering	Interior	0		250	Protects surface coating from microorganisms such as odor-causing bacteria, mold, mildew algae and fungi for years after application.	15 min touch 4 hr recoat
American Formulating & Manufacturing Safecoat Flat Zero VOC 1411	Interior	0	33	350	Premium quality, fast curing paint designed for interior surfaces where a flat finish and superior film formation properties are needed.	1 hr touch 4 hr recoat
American Pride Paint Interior Flat Latex Paint 100 Line	Interior	0	38	400	This product can be used in occupied areas without typical odor complaints because of the very low odor during application and drying.	2 hr touch Overnight recoat
Benjamin Moore M59 220 Latex Fire Retardant Coating	Interior	0	48	150-300	A premium quality decorative, intumescent, fire retardant paint for interior ceilings, walls and trim.	1 hr touch 4 hr recoat
Benjamin Moore MoorGard® N103 100% Acrylic Low Lustre Latex House Paint	Exterior	37	43	300-400	Protective exterior coating that will remain looking freshly painted years after the job is finished and can be applied at a wider temperature range.	2-4 hr touch 4 hr recoat
Benjamin Moore Moorcraft Super Spec® 100% Acrylic Latex Low Lustre House Paint N185	Exterior	48	34	350-475	100% acrylic exterior latex house paint with a low lustre finish. This product is suitable for use on a wide variety of exterior surfaces and for application at temperatures as low as 40°F.	1 hr touch 4 hr recoat
Benjamin Moore Pristine Eco® Spec Interior Latex Flat 219	Interior	0	34	400-450	A low odor, low VOC, 100% acrylic latex flat that provides high hiding, excellent touch up, and a uniform flat finish.	1 hr touch 2 hr recoat
Benjamin Moore MoorLife® N105 100% Acrylic Flat Latex House Paint	Exterior	46	42	300-400	Protective coating that will remain looking freshly painted years after the job is finished and can be applied at a wider temperature range.	2-4 hr touch 4 hr recoat
California Paints Fres~Coat Low VOC Low Odor Flat with Microban 63391	Interior	15	32	250-350	Provides excellent hide, minimizes surface imperfections, has excellent color retention and is washable with Microban® that will inhibit the growth of stain and odor causing bacteria, mold & mildew.	1 hr touch 2 hr recoat
Cloverdale Paint Horizon Interior Flat Latex Wall Paint 90763	Interior	<1	40	317-420	Designed to significantly reduce odor and polluting vapors. A durable finish that hides small surface imperfections due to its smooth appearing flat wall finish.	30 min touch 3 hr recoat
Columbia Professional High-Build Interior Latex Flat 02-558	Interior	50	38-40	100	Provides excellent high build properties, fills and seals porous surfaces, minimizes surfaces imperfections, and offers very good low temperature low flexibility.	2 hr touch 24 hr recoat

Flats (≤ 50 g/l)										
Coating Company and Product Name	Interior Exterior	VOC content (g/l)	Solids (% by volume)	Coverage (sq ft/gal)	Coating Characteristics	Dry time				
Columbia Paint Professional Interior Latex Flat Primer Finish 02-737	Interior	22	28-30	320	Good hiding and touch-up, dries to smooth uniform flat finish with easy application and clean up.	.5 - 1 hr touch 2 - 4 hr recoat				
Columbia Paint Professional Pro-Choice Interior Latex Flat Primer Finish 02-790	Interior	47	24-26	325	Dries to a durable flat finish. Offers excellent touch up, is easy to apply by brush, roller and cleans up easily with soap and water. Dries rapidly and has low odor.	.5 - 1 hr touch 2 - 4 hr recoat				
Columbia Paints PURECOAT Low Odor Acrylic Flat 05-578	Interior	0	34-36	360	Features very good flow and leveling, water clean up, good hiding, excellent spatter resistance, and adhesion to a variety of properly prepared glossy surfaces. Fortified with Microban® Antimicrobial Protection.	0.5-1 hr touch 4-6 hr recoat				
Coronado Paint Air Care Odorless Acrylic Flat	Interior	0	35.5	450	It is spatterless during application, flows easily, has excellent hiding power, dries quickly and cleans up readily with soap and water and can withstand repeated washings.	30 min touch 4 hr recoat				
Devoe Paint Wonder-Pure™ No-VOC/Odor Interior Flat Wall Paint DR 31XX	Interior	0	34	400	Virtually no odor, quick drying and recoat, uniform appearance, excellent touch-up, super hide, washable and scrubbable.	.5 - 1 hr touch 2 hr recoat				
Diamond Vogel Health Kote Interior Latex Flat DF-1591	Interior	0	39	626	High quality low odor, Zero VOC product that dries to a durable velvety flat finish and has excellent washability and easy cleaning.	1 - 2 hr touch 4 -6 hr recoat				
Dunn-Edwards Ultra-Scrub™ Interior Srubable Latex Flat Paint W 6400	Interior	50	36	300-375	Providing a tough, durable finish that is extremely washable. Excellent touch up qualities, very good hide, and is self priming on new drywall.	30 - 60 min touch 2 - 4 hr recoat				
Dunn-Edwards Flex-Tex® Texture Coating Medium W 322	Exterior	50	48	40-50	Quality medium textured coating that provides good flexibility and good weather resistance.	1 - 2 hr touch 4 -6 hr recoat				
Dunn-Edwards Athletic Field Striping W 5361	Exterior	0	37	12-15 gal per field	Produces a hard breathable film that is resistant to the blistering effects from the sun.	30 - 60 min touch 2 - 4 hr recoat				
Dunn-Edwards Dura-Tilt® Latex Tilt-Up Flat Plat W 6310	Exterior	35	36	200-375	Extremely flat finish that has excellent touch up, good hide and good alkali resistance.	20 - 30 min touch 1 - 2 hr recoat				
Dunn-Edwards Flex-Tex® Coating Fine W 320	Exterior	50	49	40-50	Quality fine-textured coating that provides good flexibility and weather resistance.	1 - 2 hr touch 4 -6 hr recoat				

			F	lats (≤ 50) g/l)	
Coating Company and Product Name	Interior Exterior	VOC content (g/l)	Solids (% by volume)	Coverage (sq ft/gal)	Coating Characteristics	Dry time
Dunn-Edwards Acri-Flat® Exterior Acrylic Wood Stain & Masonry Flat Paint W 704 V	Exterior	45	41	300-400	Provides dependable performance, excellent color retention and good grain-crack resistance for long term exterior durability.	1 - 2 hr touch 4 -6 hr recoat
Dunn-Edwards Quik-Wall® Interior Washable Latex Flat Paint W 6401	Interior	50	43	250-350	Heavy bodied washable flat wall paint that offers good hide and very good touch up properties.	30 - 60 min touch 2 - 4 hr recoat
Dunn-Edwards Super-Wall® Interior Latex Flat Paint W 6402	Interior	50	35	250-350	Professional heavy bodied interior washable latex flat paint that provides excellent touch up and good hide.	30 - 60 min touch 2 - 4 hr recoat
Dunn-Edwards Flex-Tex® Elastomeric Coating Smooth W 321	Exterior	45	48	75-100	Quality, smooth elastomeric coating that provides very good flexibility alkali resistance.	1 - 2 hr touch 24 hr recoat
Dunn-Edwards Super-Wall® Ready-To-Use Interior Latex Flat Paint W 6403	Interior	50	30	200-300	Interior washable latex flat paint that provides excellent touch up and good hide.	30 - 60 min touch 2 - 4 hr recoat
Dunn-Edwards Exterior Paint Tan W 5995	Exterior	35	36	200-400	Has good hide and applies easily.	20 - 30 min touch 1 - 2 hr recoat
Dunn-Edwards Ready-To-Use Nevada Ext Flat W 6267	Exterior	40	33	300-340	Easy to apply, touches up well and provides good weather resistance.	2 hr touch 4 hr recoat
Dunn-Edwards Walltone® Interior Latex Flat W 420	Interior	35	36	250-350	Quality interior latex flat paint designed for use in apartments, condos, rental, and commercial properties that are repainted frequently.	30 - 60 min touch 2 - 4 hr recoat
Dunn-Edwards Exterior Paint Gray W 5996	Exterior	30	38	200-400	Has good hide and applies easily.	20 - 30 min touch 1 - 2 hr recoat
Dunn-Edwards EnduraWall® Elastomeric Wall Coating Smooth W 370	Exterior	40	50	40-100	Provides superior protection against wind-driven rain, and moisture by bridging hairline cracks and other small cracks with outstanding resistance to ultra violet and dirt pick up, easy touched.	1 - 2 hr touch 24 hr recoat
Dunn-Edwards VersaFlat® Int/Ext Latex Flat Paint W 6240	Int/Ext	35	36	200-375	Extremely flat finish that has excellent touch up, good hide and good alkali resistance.	20 - 30 min touch 1 - 2 hr recoat

			F	lats (≤ 50	0 g/l)	
Coating Company and Product Name	Interior Exterior	VOC content (g/l)	Solids (% by volume)	Coverage (sq ft/gal)	Coating Characteristics	Dry time
Dunn-Edwards Acoustikote® Latex Flat Ceiling Paint W 615	Interior	0	34	150-300	Has a good hide and little effect upon the sound deadening qualities of acoustical surfaces. Applies easily and dries fast.	.5 - 1 hr touch 1 - 2 hr recoat
Dunn-Edwards Ecoshield™ Low-Odor / Zero- VOC Interior Latex Flat Paint W 601	Interior	10	40	350-400	Very low odor and no added solvents, provide a durable, washable film and has excellent hide and good adhesion. Applies easily and low odor.	.5 - 1 hr touch 2 - 4 hr recoat
Duron Paints & Wall Coverings Genesis Odor Free Interior Acrylic Latex Flat	Interior	35	35	400	Excellent hiding, easy to apply, resists household dirt, stain absorption & will withstand light to moderate hand washings.	30 min touch 4 hr recoat
EVR-GARD Coatings 100 Vinyl Acrylic Int/Ext Flat	Int/Ext	0	72	200-350	Economical product designed to cover most surfaces in one coat.	1 hr touch 4 - 6 hr recoat
EVR-GARD Coatings 400 Elast-A-Bond Vinyl Acrylic Coatings	Int/Ext	0	36	200-400	To resist blistering and peeling, but also exhibits extremely fine weather resistance. Superior hiding power, durability, ease of application and rapid drying.	1 hr touch 4 - 6 hr recoat
Farrell-Calhoun, Inc. 200 Line 100% Acrylic Exterior Latex Flat House Paint	Exterior	52.7	41	300-400	Excellent flexibility & resistant to cracking, blistering, and mildew. Outstanding adhesion, color and gloss retention and blocking resistance.	30 min touch 2 - 4 hr recoat
Farrell-Calhoun, Inc. 300 Line Interior Premium Flat Latex Wall Paint	Interior	35	37	300-400	Soft pleasing appearance, unsurpassed washability and resistance. Outstanding touch-up.	30 min touch 4 hr recoat
Farrell-Calhoun, Inc. 400 Line Vinyl Acrylic Interior Flat Latex Wall Paint	Interior	37	30	300-400	Superior hiding & ease of application. Outstanding touch-up. Good flow and leveling, low odor, non-splattering.	30 min touch 4 hr recoat
Frazee Paint 018 Envirokote Interior Low Odor-Low VOC Flat Finish	Interior	<10	41	200-400	Top of the line interior flat paint ideal for use where low odor and reduced chemical exposure are desired.	30 min touch 3 - 4 hr recoat
Fuhr ZVOC® Interior Acrylic Latex Paint 6100	Interior	0	41	100	Excellent wet adhesion, blister resistance, superior touch up qualities, along with a low, non-obtrusive odor & enamel holdout on wood, as well as great color retention and full scrub potential.	20 min touch 30 min recoat
Fuller O'Brien Crown Coat™ Interior-Exterior Flat Latex Finish FOB 802-10	Int/Ext	18	24	400	Self-sealing, has good touch-up and mild odor, and cleans up with water.	30 min touch 2 hr recoat

			F	lats (≤ 50	0 g/l)	
Coating Company and Product Name	Interior Exterior	VOC content (g/l)	Solids (% by volume)	Coverage (sq ft/gal)	Coating Characteristics	Dry time
Fuller O'Brien Crown Coat™ Interior Flat Latex Wall Paint FOB 600-XX	Interior	18	25	350-400	Excellent hiding properties & low odor. It is fast drying and has good washability and stain resistance.	30 min touch 2 - 4 hr recoat
Hallman Lindsay CLASSIC BUILDER SKIM-KOTE Level 5 Surface 371	Interior	21	59	150	It provides an excellent primed surface or can be left unpainted on ceilings as a finish coat.	1 to 24 hr touch 2 - 24 hr recoat
Hallman Lindsay CLASSIC BUILDER Smooth Flat Hi-Build 353-2	Interior	15	33	160	Economical choice for either a one-coat prime and finish that provides a high-build finish with good touch- up and sealing properties.	1 hr touch overnight recoat
Hallman Lindsay COMFORT KOTE Low-Odor Latex Flat 261	Interior	3	37	350	Provides excellent hiding and touch-up in addition to good stain removal and washability where old odor is important.	2 hr touch 4 hr recoat
Hallman Lindsay FARM & RANCH Acrylic Flat Exterior 202	Exterior	26	38	400	High hiding, quality exterior finish featuring outstanding color retention, durability and shaking resistance.	1 hr touch 2-4 hr recoat
Hallman Lindsay MASONRY KOTE 100% Acrylic Flat Masonry Paint 165	Exterior	28	35	400	Provides outstanding color and gloss retention, early moisture resistance and good mildew resistance.	1 hr touch overnight recoat
Hallman Lindsay MASTER BUILDER Latex Flat Wall Paint 364	Interior	23	31	350	Provides good coverage, appearance and application properties with high-hide and excellent touch up.	1 hr touch 4 hr recoat
Hallman Lindsay PRO HIDE Latex Flat Wall Paint 269N	Interior	25	28	400	High production flat coating with excellent touch-up designed for superior appearance and hiding.	1 hr touch 4 hr recoat
Hallman Lindsay PRO KOTE Latex Flat Wall Paint 264	Interior	22	32	400	Provides high-hiding finish with excellent touch-up when applied by brush, roll and/or spray.	1hr touch 4 hr recoat
Hallman Lindsay STRIPE KOTE Athletic Field Marking 305	Exterior	14	44	250-300	Mon-toxic, non-poisonous, non-irritating and harmless to grass or sod.	2 hr dry time
Hallman Lindsay WOODTONE Acrylic Solid Hide Stain 186	Exterior	49	36	400	Designed for both new and repaint work exhibiting outstanding color retention, blocks tannin discoloration, and resists mildew and blistering.	2 hr touch overnight recoat

Flats (\leq 50 g/l)										
Coating Company and Product Name	Interior Exterior	VOC content (g/l)	Solids (% by volume)	Coverage (sq ft/gal)	Coating Characteristics	Dry time				
ICI Glidden MP 6400 Flat Latex Wall & Ceiling Paint	Interior	25	22	400	Fast drying matte finish minimizes surface imperfections & offers one-coat possibilities.	30 min touch 2 hr recoat				
ICI Glidden Professional Finishes Ultra- Build Interior Latex Flat GL8020	Interior	36	15	400	Easy to apply, dries in as little as 30 minutes to a smooth, uniform appearance.	30 min touch 2 hr recoat				
ICI Paints Ultra-Wall® Latex Flat Interior Wall Paint 1230-xxxx	Interior	50	28	400	Designed as a high hiding product with very good touch-up when applied by brush roller or spray that forms a spatter free uniform finish.	30 min touch 2 - 4 hr recoat				
ICI Paints Dulux® LIFEMASTER™ Flat Interior Latex Enamel 9100- xxxx	Interior	0	35	400	Premium quality acrylic that brings increased washability and durable yet extremely uniform surfaces.	30 min touch 4 hr recoat				
ICI Paints Speed-Wall® Latex Flat Interior Wall Paint 1250-xxxx	Interior	18	25	400	Delivers high production with excellent hide, easy application, quick drying and recoat when applied by brush, roller or spray.	30 min touch 2 hr recoat				
ICI Paints Speed-Wall® Latex Matte Flat Interior Wall Paint 1251-xxxx	Interior	33	25	400	Delivers high production with good hide and excellent tough-up ability with easy application, quick drying and recoat.	30 min touch 2 hr recoat				
ICI Paints Ultra-Hide® High-Build Latex Flat Interior Primer/Finish 1260-xxxx	Interior	46	32	205-257	Quickly and easily applied by airless spray and dries to a uniform flat finish which minimizes surface imperfections with excellent touch-up and superior uniformity.	30 min touch 4 hr recoat				
ICI Paints Ultra-Hide® Speed-Wall® Latex Flat Interior Wall Paint 6400-xxxx	Interior	24	23	400	Delivers high production with excellent hide, easy application, quick drying and recoat when applied by brush, roller or spray.	30 min touch 2 hr recoat				
ICI Paints Speed-Cote™ Exterior Latex Flat Masonry Finish 2240-xxxx	Exterior	22	24	400-500	Uniform flat finish, easy application, quick drying and recoat, low odor.	1-2 hr touch 4 hr recoat				
Kelly-Moore Paints™ 119 KEL-PRO Interior Latex Flat Wall	Interior	39	27	200-300	Designed to provide an economical and decorative flat finish for wall and ceiling surfaces.	1 hr touch 4 hr recoat				
Kelly-Moore Paints [™] 1500 ENVIRO-COTE Interior Acrylic Flat Wall Paint	Interior	<15	42	350-450	A premium quality interior acrylic flat wall paint featuring low odor and low VOC.	1 hr touch 4 hr recoat				

Flats (≤ 50 g/l)									
Coating Company and Product Name	Interior Exterior	VOC content (g/l)	Solids (% by volume)	Coverage (sq ft/gal)	Coating Characteristics	Dry time			
Kelly-Moore Paints [™] 485 EZY-COAT Interior Acrylic Flat Wall Paint	Interior	33	32	250-350	Designed to provide a decorative flat finish for interior wall and ceiling surfaces, excellent touch up and uniformity.	1 hr touch 4 hr recoat			
MAB Paints Enviro-Pure Latex Flat	Interior	10	40	640	Designed for very low odor during application and drying and features water clean-up, two coat application in one day and self priming on drywall.	1 hr touch 5-6 hr recoat			
McCormick Paints Natural Odor Free Interior Latex Flat Wall Paint 39 Series	Interior	0	40	400	This unique product technology is designed for painting in areas where minimal disruption of work or household routine is desired.	30 min touch 4 hr recoat			
Miller Paint Co. Super Premium Flat 4780	Interior	46	34	400-500	High quality acrylic wall paint that offers an elegant finish formulated to give rich color and maximum coverage and hid.	30 min touch 4 hr recoat			
Miller Paint Co. Acro Flat 6450	Interior	0	30	300-350	Formulated for exceptional wall coverage and durability. Acro is enhanced to fight the growth of mold, bacteria and mildew.	30 min touch 4 hr recoat			
Miller Paint Co. Acro Flat 6350	Interior	0	39	300-350	Formulated for exceptional wall coverage and durability. Acro is enhanced to fight the growth of mold, bacteria and mildew.	30 min touch 4 hr recoat			
Miller Paint Co. Premium Flat 3780	Interior	48	33	400-500	This product offers an elegant finish with exceptional coverage, rich lasting color and very low odor.	30 min touch 4 hr recoat			
PPG Pittsburgh™ Paints Builder's Spec™ High Build Interior Flat Latex 57-610 Series	Interior	32	28	400-500	Formulated to meet the application and touch-up requirements of the new home construction market. Excellent dry hide.	30 min touch 4 hr recoat			
PPG Pittsburgh™ Paints Interior Hi Build Touch Up Flat Pastel UC65307	Interior	17	28	400-500	High build finish, good touch up, soap and water clean- up.	4 hr recoat 30 days recoat			
PPG Pittsburgh [™] Paints Pure Performance® Interior Flat Latex 9-100 Series	Interior	0	40	350-400	It is formulated to provide excellent hiding, touch up and application properties in addition to minimal odor, zero VOC's, and anti-microbial properties.	1 hr touch 4 hr recoat			
PPG Pittsburgh™ Paints Speed Finish Plus™ Interior Flat Wall and Ceiling Paint 8- 112 Series	Interior	47	30	350-450	Designed as a good-hiding latex paint with excellent touch-up properties.	30 min touch 4 hr recoat			

Flats (≤ 50 g/l)							
Coating Company and Product Name	Interior Exterior	VOC content (g/l)	Solids (% by volume)	Coverage (sq ft/gal)	Coating Characteristics	Dry time	
PPG Pittsburgh [™] Paints Speedcraft® Interior Wall & Ceiling Flat Latex 5-70 Series	Interior	32	29	400-500	It has good adhesion, application and touch-up properties on walls, ceilings and trim surfaces.	30 min touch 4 hr recoat	
PPG Pittsburgh™ Paints SpeedPro® Interior Wall & Ceiling Flat Latex 14-110 Series	Interior	38	28	400-500	Formulated to be used in commercial markets where application speed and good quality are needed.	30 min touch 4 hr recoat	
PPG Pittsburgh™ Paints Speedhide® Ultra Interior Wall Flat Latex 100% Acrylic 6-700	Interior	51	34	350-400	Designed as a high hiding product with excellent touch- up properties. The uniform, flat finish has excellent scrubability and stain resistance.	30 min touch 4 hr recoat	
PPG Pittsburgh™ Paints Interior Ceiling Paint Flat Latex 50-35	Interior	42	29	400-500	A high hiding latex designed specifically for finishing interior ceilings.	30 min touch 4 hr recoat	
PPG Pittsburgh [™] Paints Speedhide® Interior Fire Retardant Flat Latex 42-7	Interior	32	50	150-335	It is formulated to meet the performance requirements of professional application. The paint film intumesces when exposed to flame or high temperatures.	30 min touch 4 hr recoat	
PPG Pittsburgh™ Paints Speedhide® Interior Low Odor Wall Flat Latex UC80021	Interior	17	31	400-500	Ideal for use anywhere that odor is a concern during application and drying; it has excellent hiding and excellent touch-up properties.	30 min touch 4 hr recoat	
PPG Pittsburgh™ Paints Speedhide® Interior Wall Flat Latex 6-70 Series	Interior	24	32	400-500	An excellent hiding latex with excellent touch-up properties that dries to a flat finish to help hide tape joints and surface imperfections	30 min touch 4 hr recoat	
PPG Pittsburgh™ Paints GLB2005 Interior Flat Wall and Ceiling Paint	Interior	48	34	300-440	An excellent hiding latex with superior touch-up properties that dries to a dead flat finish to help hide tape joints and surface imperfections.	30 min touch 4 hr recoat	
Rodda Paint Interior Flat Wall Paint - White Base 33663	Interior	46	35	300	A flat finish, latex resin emulsion formulated to protect and beautify interior surfaces.	1.5 hr touch 2 hr recoat	
Rodda Paint Horizon Flat Interior Wall Paint 513501	Interior	<5	40	320	Provides a durable, low odor / low VOC enamel finish; has very low odor during application and drying	30 min touch 2 hr recoat	
Sherwin Williams® Duration® Interior Latex Matte A96-100 Series	Interior	37	40	350-400	Low odor, low VOC coating stands up to the wear and tear of daily lining and high traffic areas.		

Flats (≤ 50 g/l)							
Coating Company and Product Name	Interior Exterior	VOC content (g/l)	Solids (% by volume)	Coverage (sq ft/gal)	Coating Characteristics	Dry time	
Sherwin Williams® Harmony® Interior Latex Flat B5 Series	Interior	0	42	350-400	Provides a durable, low-odor, antimicrobial, interior paint formulated without silica.	1 hr touch 4 hr recoat	
Sherwin Williams® #6057 ISOWALL Interior Latex Washable Flat Paint	Interior	48	32	200	Provides a heavy bodied, self-primed, waterborne flat designed to hide wall imperfections and give good durability.	30 min touch 2 hr recoat	
Sherwin Williams® AcryShell 100% Acrylic Exterior Latex Flat B42WT6007	Exterior	42	29	400	AcryShell is ideal for professional use.	1 hr touch 4 hr recoat	
Sherwin Williams® CAL-SCRUB Interior Scrubbable Flat B30WJ551	Interior	50	38	400	An upgraded interior flat wit exceptional scrub resistance.	1 hr touch 4 hr recoat	
Sherwin Williams® ColorAccents™ Interior Latex Flat Y10 Series	Interior	50	34	350-400	Provides bright and deep colors for walls, trim, or ceilings with superior resistance to burnishing and marring.	1 hr touch 4 hr recoat	
Sherwin Williams® ProMar™ 700 Interior Latex Flat B30W7700	Interior	41	26	350-400	Economical, interior latex flat wall paint .	1 hr touch 4 hr recoat	
Sherwin Williams® ProTouch™ Interior Latex Flat B30W351	Interior	49	31	350-400	This product provides good washability and durability as well as excellent touch-up.	1 hr touch 4 hr recoat	
Surface Protection Industries High Hide Set White 5006- 0001	Interior	<50		250-400	Formulated to provide excellent hiding and tinting, with good adhesion, hold out and toughness.	30 min recoat	
Surface Protection Industries Studio White 5050-1	Int/Ext	14		250-400	Provides excellent whiteness and very good hide with toughness, adhesion, hold-out, controlled penetration and color acceptance.	30 min recoat	
Surface Protection Industries Vara-Bond Series 85	Int/Ext	8		250-400	Versatile paint formulated to be tough, durable and economical; weather resistant, moisture and permeable.	30 min recoat	
Surface Protection Industries Vara-Bond Water Base Flat Latex 8507-00	Int/Ext	11		250-400	Versatile paint formulated to be tough, durable and economical; weather resistant, moisture permeable and elastic.	30 min recoat	

Flats (≤ 50 g/l)						
Coating Company and Product Name	Interior Exterior	VOC content (g/l)	Solids (% by volume)	Coverage (sq ft/gal)	Coating Characteristics	Dry time
Surface Protection Industries VYN-WALL 69-01	Interior	14		250-350	Combines quality and moderate coat with good film toughness, excellent coverage and adhesion to many surfaces.	30 min recoat
Teifs Professional Coatings PC1100 Interior Flat Wall #335	Interior	19		350-400	Interior flat latex designed for the professional contractor. Provides performance.	1 hr touch 4 hr recoat
Tibbetts - Newport Corp. 900 Acra Kote Flat	Int/Ext	35		300-350	Provides excellent hide, washability, spot resistance and easy application.	1 hr touch 2 hr recoat
Tibbetts - Newport Corp. 1500 WALL KOTE	Interior	15		300-400	Offers an economical and durable finish with fast dry with good washable properties	1 - 2 hr touch 4 hr recoat
Tibbetts - Newport Corp. 1900 ACRA-VEL	Interior	<50		300-400	Velvet flat finish with fast drying and good washable properties offering a long lasting low maintenance finish.	1 - 2 hr touch 4 hr recoat
Tibbetts - Newport Corp. 3600 DECOBOND	Int/Ext	<50		300-400	Offers an economical and durable finish with good hide and easy application	1 hr recoat
Tibbetts - Newport Corp. Permanox Stain Flat	Exterior	7		300-350	Delivers maximum protection with a breathable finish that applies easily, dries fast and cleans-up easily with water	2 - 4 hr touch 4 hr recoat
Vista Paint 1000 Duraglide	Int/Ext	50	41.8	300-400	A fortified vinyl acrylic exterior and interior flat. Excellent touch-up, outstanding hid and good washability.	1 hr touch 4 hr recoat
Vista Paint 2000 Duratone	Exterior	17	43.6	350-420	100% acrylic exterior flat that produces a tough flexible film with outstanding resistance to fading and chalking.	1 hr touch 4-6 hr recoat
Vista Paint 6100 Carefree Earth Coat Flat	Interior	2	40	350-400	Environmentally preferable odor free, low VOC interior acrylic flat with exceptional hide, touch-up with superior adhesion, resistant to scuffing, staining and abrasion.	45 min touch 6 hr recoat
Vista Paint 2800 Coverall Exterior Flat	Exterior	46	42	300-400	Provides a tough, flexible matte flat finish with outstanding resistance to chalking and fading.	1 hr touch 4 hr recoat

Flats (≤ 50 g/l)							
Coating Company and Product Name	Interior Exterior	VOC content (g/l)	Solids (% by volume)	Coverage (sq ft/gal)	Coating Characteristics	Dry time	
Vista Paint 3600 Coverall Maintenance Flat	Interior	49	38	350-500	Provides an outstanding hide, coupled with excellent touch-up characteristics.	1 hr touch 2 hr recoat	
Vista Paint 013Acoustic Kote	Interior	31	29	50-400	A high-hiding, non-bridging vinyl flat for acoustical ceilings.	30 min touch 4 hr recoat	
Vista Paint RC10 Latex Roll Coat	Interior	26	37	600	Water-based latex, very low VOC formulated for roll coating applications.	45 -60 min dry time	

APPENDIX B

UMR Coatings Institute - Flat Coating Laboratory Performance Study

FINAL REPORT Flat Coatings Technology Assessment

RFP # P2007-22

Michael R. Van De Mark and Kathryn Sandefur UMR Coatings Institute, University of Missouri – Rolla BOM#2, 1870 Miner Circle, Rolla, MO 65409-1020

August 10, 2007

Table of Contents

Executive Summary	. 1
Introduction	. 1
Task 1 - Testing Protocol	. 1
Tests for General Properties of All Paints	
Tests for Interior Flat Paints	
Tests for Exterior Flat Paints	. 1
Tests for General Properties Summary	. 2
Appearance	. 2
Gloss	, 3
Stability	, 4
Stability – Syneresis	, 6
Open Time/Wet Edge	
Freeze-thaw Resistance	. 8
Flow & Leveling	. 9
Sag Resistance	. 9
Mechanical Dry Time	10
Hide1	
Tests for Interior Flat Paints Summary	
Adhesion	12
Scrub Resistance	13
Stain Resistance	14
Touch-Up1	
Tests for Exterior Flat Paints Summary1	19
Adhesion	19
Tannin Stain Blocking	20
Alkalinity Resistance	21
Test Results	
Tests for General Properties of All Paints	
Tests for Interior Flat Paints	36
Tests for Exterior Flat Paints	45

Executive Summary

Introduction

This study was a critical component of the ongoing technology assessment for Rule 1113 – Architectural Coatings. The assurance that performance of paints is not hindered by lower VOC requirements is an important aspect of the rule. Of particular interest were the physical properties of twenty flat coatings in interior and exterior paint categories. Nine interior, nine exterior, and two interior/exterior coatings were tested. A series of general tests for all the paints and some specific tests for the two categories were performed.

Task 1 - Testing Protocol

Tests for General Properties of All Paints								
Property	Standard	Number of Replicates	Substrate	Film Thickness/ Bar Type				
Appearance	Observation	1 gallon as received						
Gloss	ASTM D523-89	2	Leneta Card	3mil/Bird bar				
Stability	ASTM D1849-95	1	N/A	3mil/Bird bar				
Stability - Syneresis	Rohm&Haas Method 807	3	N/A	N/A				
Open Time/Wet Edge	Rohm&Haas Method 301	3	Plastic	7 mil/Dow bar				
Freeze-Thaw Resistance	ASTM D2243-95	3	Leneta Card	3 mil/Bird bar				
Flow & Leveling	ASTM D 4062-99	3	Leneta Card	NPCA bar				
Sag Resistance	ASTM D4400-99	3	Leneta Card	Anti-sag meter				
Dry Time - Mechanical	ASTM D5895-03	3	Glass	3mil Cube				
				Applicator				
Hide	Spectrophotometer	3	Leneta Card	3mil/Bird bar				

ests for General Properties of All Paints

Tests for Interior Flat Paints

Property	Standard	Number of Replicates	Substrate	Film Thickness/ Bar type
Adhesion	ASTM D 3359	3	Leneta Card	3mil/Bird bar
Scrub Resistance	ASTM D2486-00	3	Plastic	7 mil/Dow bar
Stain Resistance	ASTM D4828 mod.	3	Plastic	7 mil/Dow bar
Touch-Up	ASTM D 3928	3	Drywall	Brush/Roller

Tests for Exterior Flat Paints

Property	Standard	Number of Replicates	Substrate	Film Thickness/ Bar type				
Adhesion	ASTM D 3359	3	Glass	3mil/Bird bar				
Tannin Stain	Prior SCAQMD	3	Cedar	Brush				
Blocking	Study Protocol							
Alkalinity Resistance	Dunn Edwards	3	Concrete	Brush				
	Method							

Tests for General Properties Summary

<u>Appearance</u> – The coatings were evaluated upon receipt for general appearance including odor of spoilage, skinning, pressure, can corrosion, etc.

	Appearance Summary
	Observations – 1 gallon can as received:
	Notes on Odor, Skinning, Pressure, Can Corrosion
А	None
В	Very Trace Can Corrosion
С	None
D	None
E	None
F	None
G	Trace Can Corrosion
Н	Very Slight Separation
1	None
J	None
К	None
L	None
М	1 ³ / ₄ inch medium yellow separation layer with darker spots
N	None
0	None
Р	None
Q	None
R	Very Slight Separation
S	Trace Can Corrosion
Т	None

Gloss Summary* 60°Mean 60°SD 85°Mean 85°SD 1.9 0.1 0.8 0.1 А 2.2 В 2.7 0.1 0.1 2.3 0.1 2.5 0.1 С 2.1 0.1 0.1 1.6 D 8.7 E** 0.1 28.0 0.2 2.5 0.1 2.7 0.1 F 1.7 0.1 0.6 0.1 G 1.9 0.1 1.1 0.1 Н 2.0 0.1 1.0 0.1 Т J 2.5 0.1 4.4 0.1 2.0 2.0 0.1 0.1 Κ 2.1 3.2 0.1 0.1 L 1.9 0.1 1.1 0.1 Μ 2.3 4.9 0.1 0.1 Ν 2.4 2.0 0.1 0.1 Ο Ρ 2.3 0.1 2.3 0.1 2.1 2.8 0.1 0.1 Q 3.0 0.1 1.3 0.1 R S 2.3 0.1 1.9 0.1 1.9 0.1 1.3 0.1 т

 $\underline{\text{Gloss}}$ – ASTM D 523 was used with a BYK-Gardner micro-TRI-gloss meter calibrated just prior to use. Measurements were taken for 60° and 85°.

*Average values

**The gloss readings for coating E exceed the Rule 1113 definition of a flat coating therefore, according to the Rule 1113, this coating is considered a non-flat coating and the data concerning this coating is not applicable to the flat coatings study.

Stability – ASTM D 1849 was used with one pint sample of each being kept at 125 °F for 30 days, followed by evaluation as indicated in the ASTM method. Gloss measurements were also taken of the samples during evaluation. The change in viscosity of the samples was rated from 0-10 with rating of 0, 2, 4, 6, 8, and 10 for changes in viscosity (KU) of 10 or higher, 8, 6, 4, 2, and 0 respectively. The overall character (separation, skinning, pressure, can corrosion, and odor of spoilage) of the coating was also put into a 0-10 scale with ratings of 0, 2, 4, 6, 8, and 10 for complete failure, considerable, moderate, slight, very slight, and none, respectively.

-	Stability Summary							
	Stormer	Stormer	Viscosity	Overall Character	Character			
	(original)	(post-test)	Rating	Rating				
А	97	101	6	8	Separation - spots			
В	94	96	8	6	Separation – thin layer $< 1/8$ "			
С	102	114	0	8	Separation – spots			
D	101	103	8	8	Separation - spots			
Е	103	108	5	4	Separation $-\frac{1}{4}$ " layer			
F	108	114	4	8	Separation – spots			
G	115	115	10	6	Separation – thin layer $< 1/8$ "			
Н	104	103	9	6	Separation – thin layer $< 1/8$ "			
I	100	102	8	6	Separation – thin layer $< 1/8$ "			
J	95	104	1	10	No failure			
К	110	120	0	8	Separation – spots			
L	107	124	0	6	Separation – thin layer $< 1/8$ "			
М	100	101	9	4	Separation $-\frac{1}{4}$ " layer			
Ν	102	101	9	6	Separation – thin layer $< 1/8$ "			
0	97	94	7	6	Separation – thin layer $< 1/8$ "			
Р	102	104	8	4	Separation $-\frac{1}{4}$ " layer			
Q	109	112	7	6	Separation – thin layer $< 1/8$ "			
R	117	126	1	6	Separation – thin layer $< 1/8$ "			
S	99	94	5	6	Separation – thin layer $< 1/8$ "			
Т	99	100	9	4	Separation $-\frac{1}{4}$ " layer			

C4 - 1. 11:4- C

	60°Mean	60 SD	85°Mean	85 SD
А	1.9 / 1.9	0.1 / 0.1	0.8 / 0.8	0.1 / 0.1
В	2.7 / 2.6	0.1 / 0.1	2.2 / 2.3	0.1 / 0.1
С	2.3 / 2.3	0.1 / 0.1	2.5 / 2.7	0.1 / 0.1
D	2.1 / 2.1	0.1 / 0.1	1.6 / 1.7	0.1 / 0.1
Е	8.7/9.7	0.1/0.2	28.0/29.3	0.2/0.2
F	2.5 / 2.5	0.1 / 0.1	2.7 / 2.8	0.1 / 0.1
G	1.7 / 1.7	0.1 / 0.1	0.6 / 0.6	0.1 / 0.1
н	1.9 / 1.9	0.1 / 0.1	1.1 / 1.0	0.1 / 0.1
1	2.0 / 2.0	0.1 / 0.1	1.0 / 0.9	0.1 / 0.1
J	2.5 / 2.4	0.1 / 0.1	4.4 / 4.7	0.1 / 0.2
К	2.0 / 2.1	0.1 / 0.1	2.0 / 2.0	0.1 / 0.1
L	2.1 / 2.1	0.1 / 0.1	3.2/3.2	0.1 / 0.1
М	1.9 / 2.0	0.1 / 0.1	1.1 / 1.3	0.1 / 0.1
Ν	2.3 / 2.2	0.1 / 0.1	4.9 / 5.0	0.1 / 0.1
0	2.0 / 2.0	0.1 / 0.1	2.4 / 2.4	0.1 / 0.1
Р	2.3 / 2.3	0.1 / 0.1	2.3 / 2.4	0.1 / 0.1
Q	2.1 / 2.1	0.1 / 0.1	2.8 / 2.8	0.1 / 0.1
R	3.0 / 2.9	0.1 / 0.1	1.3 / 1.3	0.1 / 0.1
S	2.3 / 2.3	0.1 / 0.1	1.9 / 2.0	0.1 / 0.1
Т	1.9 / 1.9	0.1 / 0.1	1.3 / 1.3	0.1 / 0.1

Stability Summary - Gloss Measurements (Before/After)

<u>Stability – Syneresis</u> – Rohm&Haas Method 807 was used. 40mm pieces of graph paper were attached to the back of 1 oz. vials and the vials were filled with paint to the top of the graph paper. The vials were put in an oven at $60 \,^{\circ}{\rm C}$ (140 $^{\circ}{\rm F}$) for 10 days and the separation and settling were evaluated. The separation was evaluated by measuring the clear liquid on top of the coating in mm and putting these values into a 0-10 scale in which the ratings are 0, 2, 4, 6, 8, and 10 for 10mm, 8mm, 6mm, 4mm, 2mm, and 0mm, respectively.

Stability – Colorant/pigment float – Syneresis*							
	Separation, mm	Rating	Settling				
А	0.75	9	None				
В	1.0	9	Soft Pack				
С	0.5	9	Hard Pack				
D	1.0	9	Soft Pack				
E	2.0	8	Soft Pack				
F	0.5	9	Soft Pack				
G	1.0	9	Soft Pack				
Н	1.0	9	Soft Pack				
1	0.5	9	Soft Pack				
J	1.0	9	Hard Pack				
К	2.0	8	Soft Pack				
L	2.0	8	Hard Pack				
М	1.0	9	None				
Ν	1.0	9	Soft Pack				
0	2.0	8	Soft Pack				
Р	1.0	9	Soft Pack				
Q	1.0	9	Soft Pack				
R	0.5	9	Soft Pack				
S	1.0	9	None				
Т	1.0	9	None				

Stability - Colorant/pigment float - Syneresis*

*Average Values

<u>Open Time/Wet Edge</u> – Rohm&Haas Method 301A was used. The coatings were drawndown on plastic scrub panels and horizontal squiggles were made at 2 minute intervals. The squiggle was painted over with a set number of strokes (5 full) immediately after being made and the panels were allowed to dry 24 hours before evaluation to determine which squiggle was first visible. The time before the squiggle was first visible was recorded. A 0-10 rating system was then applied to the results with ratings of 0, 2, 4, 6, 8, and 10 for 0 minutes, 2, 4, 6, 8, and 10 minutes, respectively.

Open Time/ wet Edge Summary					
	Last Non-Visible Squiggle Time, min	Rating			
А	14	10+			
В	10	10			
С	12	10+			
D	15	10+			
Ε	15	10+			
F	14	10+			
G	13	10+			
Н	16	10+			
Ι	13	10+			
J	11	10+			
K	12	10+			
L	12	10+			
Μ	12	10+			
N	13	10+			
0	9	9			
Р	8	8			
Q	8	8			
R	8	8			
S	10	10			
Т	14	10+			

Open Time/ Wet Edge Summary*

*Average Values

<u>Freeze-thaw Resistance</u> – ASTM D 2243 was used for the water-borne paints for three samples of each with the paints applied to black and white Leneta charts after each of the five cycles. A cycle was defined according to the ASTM method. Viscosity and gloss measurements were taken of the sample after each cycle, as long as it had not failed. The overall results were fitted into a 0-10 scale with ratings of 0, 2, 4, 6, 8, and 10 for 0 cycles passed, 1, 2, 3, 4, and 5 cycles passed, respectively.

	After 1	After 2	After 3	After 4	After 5	Rating
	Cycle	Cycles	Cycles	Cycles	Cycles	_
А	Pass	Pass	Pass	Pass	Pass	10
В	Pass	Pass	Pass	Pass	Pass	10
С	Fail					0
D	Pass	Pass	Pass	Pass	Pass	10
Е	Fail					0
F	Fail					0
G	Pass	Fail				2
Н	Pass	Pass	Pass	Pass	Fail	8
I	Pass	Pass	Pass	Pass	Pass	10
J	Fail					0
К	Pass	Fail				2
L	Fail					0
М	Fail					0
Ν	Fail					0
0	Fail					0
Р	Fail					0
Q	Fail					0
R	Fail					0
S	Fail					0
Т	Fail					0

Freeze-Thaw Resistance: Pass/Fail Summary

*Average values

<u>Flow & Leveling</u> – ASTM D 4062 was used. This is an old ASTM method that is analogous to the New York Society for Paint Technology "Official Digest" No. 44 Vol. 32, No. 430, p. 1435. The NYPC Level Blade was used.

<u>Sag Resistance</u> – ASTM D4400 was used. An anti-sag bar was used to apply paint to a black and white Leneta chart. This bar deposits strips of paint from 3 to 12 mils thick approximately $\frac{1}{2}$ wide. The chart was immediately lifted to a vertical position with the 12 mil thick strip at the bottom. Evaluation was based upon how much the strips flow into the strips below.

Flow & Leveling and Sag are often used in conjunction to help gauge the application performance of a coating, often for vertical wall applications, although Flow & Leveling is also important for coatings for horizontal applications such as floors. Flow & Leveling represents short term and Sag represents a longer time effect. Flow & Leveling ratings represent a coatings ability to reduce the appearance of brush strokes and similar marks by flowing from the thicker areas to the adjacent thinner areas. Sag Resistance gauges how thick a coating can be applied before the coating shifts and causes visual defects. Typically, flat coatings are applied to about 3mil dry film, but sometimes thicker, so the coating needs to be able to withstand 6-8 wet mils before sagging to ensure that there will be no sagging of the coating in the desired application thickness range. Sag Resistance values are the highest mil thickness that can be applied without the coating sagging.

	Flow/Level	Sag
А	0	12+
В	0	12+
С	0	12+
D	0	12+
E	0	12+
F	0	12+
G	0	12+
Н	0	12+
1	0	12+
J	5	10
К	1	12+
L	0	12+
М	0	12+
N	0	12+
0	3	12+
Р	0	12+
Q	0	12+
R	0	12+
S	0	12+
Т	0	12+

Flow/Level and Sag Resistance Summary*

*Average values

<u>Mechanical Dry Time</u> – ASTM D 5895 was used to determine dry time with a mechanical straight line drying time recorder.

	Set-Touch	Tack-Free	Dry-Hard	Dry-Through
А	6	10	24	> 6 Hours
В	3	12	22	> 6 Hours
С	5	12	43	> 6 Hours
D	8	14	36	> 6 Hours
Е	4	10	23	> 6 Hours
F	2	4	23	> 6 Hours
G	10	18	26	> 6 Hours
Н	6	15	19	> 6 Hours
1	1	9	12	> 6 Hours
J	2	7	19	> 6 Hours
К	6	11	58	> 6 Hours
L	1	4	6	> 6 Hours
М	2	6	113	> 6 Hours
Ν	6	12	14	> 6 Hours
0	5	8	40	> 6 Hours
Р	4	7	14	> 6 Hours
Q	3	5	8	> 6 Hours
R	1	8	20	> 6 Hours
S	3	8	12	> 6 Hours
T	2	5	66	> 6 Hours

Mechanical Dry Time Summary (in minutes)*

*Average values; times in minutes; stylus diameter = 1mm; speed = 6 hours

<u>Hide</u> – For dry hide and gloss, a three-mil Bird bar was used to apply paint to three black and white Leneta charts. The color was measured using a Minolta CM-2002 spectrophotometer and the CIE XYZ value for Y was recorded. The Y values over the white section and the black section were used to calculate dry hide. Due to Beer's and Lambert's Law, hide increases as film thickness increases. Hide also increases as concentration of hiding pigments increases. A 0-10 rating scale was applied to the contrast ratios with ratings of 0, 2, 4, 6, 8, and 10 being contrast ratios of 0.95, 0.96, 0.97, 0.98, 0.99, and 1.00, respectively.

3 mil #13 mil #23 mil #3AverageRatingA0.9760.9760.9750.9766B0.9740.9760.9770.9766C0.9800.9790.9800.9806D0.9790.9760.9790.9786E0.9960.9990.9980.99810F0.9920.9940.9940.9938G0.9660.9670.9640.9664H0.9820.9830.9810.9826I0.9760.9770.9770.9766J0.9850.9860.9870.9868K0.9790.9800.9790.9806L0.9810.9820.9830.9826N0.9840.9860.9870.9868O0.9820.9820.9830.9826N0.9840.9860.9870.9868O0.9830.9820.9830.9836P0.9830.9820.9830.9836Q0.9840.9830.9840.9836R0.9880.9880.98888S0.9780.9780.9770.9786T0.9700.9690.9690.9704	Hide Summary – Contrast Ratio*					
B 0.974 0.976 0.977 0.976 6 C 0.980 0.979 0.980 0.980 6 D 0.979 0.976 0.979 0.978 6 E 0.996 0.999 0.998 0.998 10 F 0.992 0.994 0.994 0.993 8 G 0.966 0.967 0.964 0.966 4 H 0.982 0.983 0.981 0.982 6 1 0.976 0.977 0.976 6 6 J 0.982 0.983 0.981 0.982 6 I 0.976 0.977 0.976 6 J 0.985 0.986 0.987 0.986 8 K 0.979 0.980 0.979 0.980 6 L 0.981 0.982 0.983 0.982 6 N 0.984 0.986 0.987 0.986 8		3 mil #1	3 mil #2	3 mil #3	Average	Rating
C0.9800.9790.9800.9806D0.9790.9760.9790.9786E0.9960.9990.9980.99810F0.9920.9940.9940.9938G0.9660.9670.9640.9664H0.9820.9830.9810.9826I0.9760.9770.9770.9766J0.9850.9860.9870.9868K0.9790.9800.9790.9806L0.9810.9820.9830.9826N0.9840.9860.9870.9868O0.9820.9820.9830.9826P0.9830.9820.9830.9826R0.9840.9830.9840.9836R0.9880.9880.9880.9888S0.9780.9770.9770.9786	А	0.976	0.976	0.975	0.976	6
D0.9790.9760.9790.9786E0.9960.9990.9980.9980.99810F0.9920.9940.9940.9938G0.9660.9670.9640.9664H0.9820.9830.9810.9826I0.9760.9770.9770.9766J0.9850.9860.9870.9868K0.9790.9800.9790.9806L0.9810.9820.9830.9826N0.9840.9860.9870.9868O0.9830.9820.9830.9826R0.9880.9830.9840.9830.9836R0.9880.9880.9770.9786	В	0.974	0.976	0.977	0.976	6
E0.9960.9990.9980.99810F0.9920.9940.9940.9938G0.9660.9670.9640.9664H0.9820.9830.9810.9826I0.9760.9770.9770.9766J0.9850.9860.9870.9868K0.9790.9800.9790.9806L0.9810.9820.9830.9826N0.9840.9860.9870.9868O0.9820.9820.9830.9826P0.9830.9820.9830.9826R0.9880.9880.9880.9886S0.9780.9780.9770.9786	С	0.980	0.979	0.980	0.980	6
F0.9920.9940.9940.9938G0.9660.9670.9640.9664H0.9820.9830.9810.9826I0.9760.9770.9770.9766J0.9850.9860.9870.9868K0.9790.9800.9790.9806L0.9810.9820.9830.9790.9806M0.9810.9820.9830.9826N0.9840.9860.9870.9868O0.9830.9820.9830.9826P0.9830.9820.9830.9836Q0.9840.9830.9840.9830.9836R0.9880.9880.9880.98888S0.9780.9770.9786	D	0.979	0.976	0.979	0.978	6
G0.9660.9670.9640.9664H0.9820.9830.9810.9826I0.9760.9770.9770.9766J0.9850.9860.9870.9868K0.9790.9800.9790.9806L0.9810.9820.9830.9826M0.9810.9820.9830.9826N0.9840.9860.9870.9868O0.9820.9820.9830.9826P0.9830.9820.9830.9836Q0.9840.9830.9840.9836R0.9880.9880.9880.9888S0.9780.9780.9770.9786	E	0.996	0.999	0.998	0.998	10
H0.9820.9830.9810.9826I0.9760.9770.9770.9766J0.9850.9860.9870.9868K0.9790.9800.9790.9806L0.9810.9820.9790.9806M0.9810.9820.9830.9826N0.9840.9860.9870.9868O0.9820.9820.9830.9826P0.9830.9820.9830.9836Q0.9840.9830.9840.9836R0.9880.9880.9880.9888S0.9780.9780.9770.9786	F	0.992	0.994	0.994	0.993	8
I0.9760.9770.9770.9766J0.9850.9860.9870.9868K0.9790.9800.9790.9806L0.9810.9800.9790.9806M0.9810.9820.9830.9826N0.9840.9860.9870.9868O0.9820.9820.9830.9826P0.9830.9820.9830.9836Q0.9840.9830.9840.9836R0.9880.9880.9880.9888S0.9780.9780.9770.9786	G	0.966	0.967	0.964	0.966	4
J0.9850.9860.9870.9868K0.9790.9800.9790.9806L0.9810.9800.9790.9806M0.9810.9820.9830.9826N0.9840.9860.9870.9868O0.9820.9820.9830.9826P0.9830.9820.9830.9836Q0.9840.9830.9840.9836R0.9880.9880.9880.9888S0.9780.9780.9770.9786	Н	0.982	0.983	0.981	0.982	6
K0.9790.9800.9790.9806L0.9810.9800.9790.9806M0.9810.9820.9830.9826N0.9840.9860.9870.9868O0.9820.9820.9830.9826P0.9830.9820.9830.9836Q0.9840.9830.9840.9836R0.9880.9880.9880.9888S0.9780.9780.9770.9786	1	0.976	0.977	0.977	0.976	6
L0.9810.9800.9790.9806M0.9810.9820.9830.9826N0.9840.9860.9870.9868O0.9820.9820.9830.9826P0.9830.9820.9830.9836Q0.9840.9830.9830.9836R0.9880.9880.9880.9880.9888S0.9780.9780.9770.9786	J	0.985	0.986	0.987	0.986	8
M0.9810.9820.9830.9826N0.9840.9860.9870.9868O0.9820.9820.9830.9826P0.9830.9820.9830.9836Q0.9840.9830.9840.9836R0.9880.9880.9880.9888S0.9780.9780.9770.9786	К	0.979	0.980	0.979	0.980	6
N0.9840.9860.9870.9868O0.9820.9820.9830.9826P0.9830.9820.9830.9836Q0.9840.9830.9840.9836R0.9880.9880.9880.9888S0.9780.9780.9770.9786	L	0.981	0.980	0.979	0.980	6
O0.9820.9820.9830.9826P0.9830.9830.9830.9836Q0.9840.9830.9840.9836R0.9880.9880.9880.9888S0.9780.9780.9770.9786	М	0.981	0.982	0.983	0.982	6
P0.9830.9820.9830.9836Q0.9840.9830.9840.9836R0.9880.9880.9880.9888S0.9780.9780.9770.9786	Ν	0.984	0.986	0.987	0.986	8
Q0.9840.9830.9840.9836R0.9880.9880.9880.9888S0.9780.9780.9770.9786	0	0.982	0.982	0.983	0.982	6
R0.9880.9880.9880.9888S0.9780.9780.9770.9786	Р	0.983	0.982	0.983	0.983	6
S 0.978 0.978 0.977 0.978 6	Q	0.984	0.983	0.984	0.983	6
	R	0.988	0.988	0.988	0.988	8
T 0.970 0.969 0.969 0.970 4	S	0.978	0.978	0.977	0.978	6
	Т	0.970	0.969	0.969	0.970	4

Hide Summary – Contrast Ratio*

*Average values

Tests for Interior Flat Paints Summary

<u>Adhesion</u> – ASTM D 3359-Method B was used to determine adhesion of a 3mil drawdown on a Leneta chart. This method used a cutting tool and 3mm cutting guide to make a series of perpendicular cuts in the surface. Pressure sensitive tape in accordance with the ASTM procedure was then applied and removed after 90 seconds and the adhesion was qualitatively analyzed based on how much coating was removed by the tape. The ASTM classification of 0B-5B was put into a rating system of 0-5, respectively, with 5 being 0% removed and a 0 being greater than 65% removed.

	ASTM Rating	% Failure	Failure Mechanism	AQMD Rating
J	4B	3.5	Substrate	4
К	4B	13.3	Substrate	4
L	3B	6.7	Substrate	3
Μ	5B	0.2	Substrate	5
Ν	4B	8.5	Substrate	4
0	3B	6.0	Adhesion	3
Р	3B	6.7	Adhesion	3
Q	2B	23.3	Adhesion	2
R	4B	2.7	Substrate	4
S	4B	4.0	Substrate	4
Т	5B	1.0	Substrate	5

Adhesion (on Leneta chart)*

*Average Values

Note: When substrate failure occurs, the adhesion of the tape to the coating and the adhesion of the coating to the substrate are stronger than the substrate's cohesive strength which results in a lower rating even though the coating did not fail

Scrub Resistance - Test method B of ASTM D2486 was used with a new brush to insure correct data. Sherwin Williams Harmony was used as the standard.

	Standard Average**	Sample Average	Sample/Standard
J	196	1089	5.56
К	199	864	4.34
L	210	685	3.26
Μ	213	2106	9.89
N	282	890	3.16
O***	223	645	2.89
Р	232	908	3.91
Q	209	915	4.38
R	217	673	3.10
S	206	308	1.50
Т	216	1231	5.70

Scrub Resistance Summary*

*Average Values **The standard is Sherwin Williams' Harmony

***Average of 4 Panels

Stain Resistance – ASTM D 4828 was modified for this test. This method was actually a washability test and provides information about the changes which occur as a result of sponge cleaning a stained area rather than the paint's likelihood of resisting a stain. To better determine the paint's resistance to staining, the paint was applied to four plastic panels and allowed to dry for 7 days as described in the ASTM method. Color was measured on each stripe on each panel using a Minolta CM-2002 spectrophotometer and the CIE XYZ values were recorded. Four staining materials, ketchup, mustard, wine and red crayon, were applied with each panel having three approximately one-inch stripes that were approximately half an inch apart of one stain resulting in three stripes per stain, and one stain per panel. The materials were left on the panels for 24 hours and then rinsed with de-ionized water and washed for 100 cycles with non-abrasive cleaner and a sponge according to the ASTM method. The panel was patted dry with paper towels to remove standing water, and was then allowed to air dry for one day. Then, averaged color measurements were taken of the stripes with CIE XYZ values and ΔE values recorded. A crude visual gloss, stain, and erosion evaluation was performed and rated. The crude visual gloss rating system included 5 levels: None (N), Increase (I), Large Increase (LI), Decrease (D), and Large Decrease (LD). The crude visual stain rating system rated the samples from 0-10 with 0 being highly stained, and 10 being highly stain resistant. The crude visual erosion rating included 3 levels: None (N), Slight (S), and Moderate (M). Numerical gloss measurements were taken with the gloss meter of each stripe after washing.

	Ketchup	Mustard	Wine	Red Crayon
J	10	10	3	3
К	10	7	3	3
L	10	5	3	3
М	10	7	3	3
Ν	10	7	3	3
0	10	5	5	3
Р	7	5	3	3
Q	7	5	3	3
R	10	3	5	0
S	7	3	3	0
Т	10	3	3	0

Stain Resistance – Stain Visual Rating Summary*

*Average Values

		U	U	
	Ketchup	Mustard	Wine	Red Crayon
J	None	None	None	None
К	None	None	None	None
L	None	None	None	None
М	None	None	None	None
Ν	None	None	None	None
0	None	None	None	None
Р	None	None	None	None
Q	None	None	None	None
R	None	None	None	None
S	None	None	None	None
Т	None	None	None	None
* 4 571				

Stain Resistance – Gloss Change Visual Rating Summary*

*Average Values

Stain Resistance – Erosion Visual Rating Summary*

	Ketchup	Mustard	Wine	Red Crayon
J	None	None	None	None
К	None	None	None	None
L	None	None	None	None
М	None	None	None	None
Ν	None	None	None	None
0	None	None	None	None
Р	None	None	None	None
Q	None	None	None	None
R	None	None	None	None
S	None	None	None	None
Т	None	None	None	None

*Average Values

Stain Resistance – ΔE Summary*

	Ketchup	Mustard	Wine	Red Crayon**
J	0.40	0.43	2.25	12.19
К	0.39	0.45	1.99	15.19
L	0.23	1.38	3.28	13.21
М	0.05	0.22	1.61	12.53
Ν	0.08	0.68	2.50	23.27
0	0.09	0.85	1.15	29.28
Р	0.40	0.75	2.44	12.79
Q	0.31	1.51	3.18	16.11
R	0.24	5.49	0.91	8.98
S	0.66	3.98	2.04	8.74
Т	0.31	4.56	1.67	10.25

*Average Values **The red crayon was not removed by the non-abrasive cleaner and water, therefore the color represents the color of the crayon

Washed Area – Ketchup (Pre/Post)								
	60° Mean	60°SD	85° Mean	85° SD				
J	2.4 / 2.6	0.1 / 0.1	4.0 / 4.6	0.2 / 0.2				
К	2.0 / 2.1	0.1 / 0.1	1.8 / 2.6	0.1/0.2				
L	2.0 / 2.1	0.1 / 0.1	3.0/4.2	0.1 / 0.2				
М	1.9 / 1.9	0.1 / 0.1	1.1 / 1.5	0.1 / 0.1				
Ν	2.3 / 2.3	0.1 / 0.1	4.5 / 6.1	0.1 / 0.2				
0	2.0 / 2.0	0.1 / 0.1	2.3 / 3.0	0.1 / 0.1				
Р	2.2 / 2.4	0.1 / 0.1	2.1 / 2.5	0.1 / 0.1				
Q	2.0 / 2.2	0.1 / 0.1	2.5 / 3.0	0.1 / 0.2				
R	2.8 / 2.9	0.1 / 0.1	1.2 / 1.5	0.1 / 0.1				
S	2.2/2.3	0.1 / 0.1	1.7 / 2.5	0.1 / 0.2				
Т	1.9 / 2.0	0.1 / 0.1	1.2 / 1.9	0.1 / 0.1				

Stain Resistance – Gloss Summary*

Washed Area – Mustard (Pre/Post)								
	60° Mean	60°SD	85° Mean	85° SD				
J	2.4 / 2.5	0.1 / 0.1	3.9 / 4.5	0.2 / 0.1				
К	1.9 / 2.1	0.1 / 0.1	1.8 / 2.5	0.1 / 0.1				
L	2.0/2.4	0.1/0.1	3.0 / 4.5	0.1 / 0.2				
М	1.9 / 1.9	0.1 / 0.1	0.8 / 1.5	0.2 / 0.1				
Ν	2.3 / 2.6	0.1 / 0.1	4.6 / 6.5	0.1 / 0.1				
0	2.0 / 2.3	0.1 / 0.1	2.3 / 3.3	0.1 / 0.1				
Р	2.2 / 2.5	0.1/0.1	2.1 / 2.5	0.1/0.1				
Q	2.0 / 2.5	0.1 / 0.1	2.5 / 3.5	0.1 / 0.1				
R	2.8/3.3	0.1 / 0.1	1.2 / 1.7	0.1 / 0.1				
S	2.2 / 2.3	0.1 / 0.2	1.8 / 2.8	0.1 / 0.2				
Т	1.9 / 2.1	0.1 / 0.1	1.2 / 1.8	0.1/0.1				

	Washed Area – Wine (Pre/Post)								
	60° Mean	60°SD	85° Mean	85° SD					
J	2.4 / 2.5	0.1 / 0.1	3.9 / 4.6	0.2 / 0.2					
К	2.0 / 2.0	0.1 / 0.1	1.8 / 2.7	0.1 / 0.1					
L	2.0 / 2.0	0.1 / 0.1	3.0/4.2	0.1 / 0.2					
М	1.9 / 1.8	0.1 / 0.1	1.1 / 1.5	0.1 / 0.1					
Ν	2.2 / 2.3	0.1 / 0.1	4.3 / 7.2	0.1/0.1					
0	2.0 / 2.0	0.1 / 0.1	2.3 / 3.4	0.1 / 0.2					
Р	2.2 / 2.2	0.1 / 0.1	2.1 / 2.6	0.1 / 0.1					
Q	2.0 / 2.1	0.1 / 0.1	2.5/3.4	0.1 / 0.2					
R	2.8 / 2.9	0.1 / 0.1	1.2 / 1.5	0.1 / 0.1					
S	2.2 / 2.3	0.1 / 0.1	1.8 / 2.9	0.1 / 0.1					
Т	1.9 / 1.9	0.1 / 0.1	1.2 / 2.0	0.1 / 0.1					

Washed Area – Red Crayon (Pre/Post)**							
	60° Mean	60° SD	85° Mean	85°SD			
J	2.4/3.2	0.1 / 0.2	3.9 / 8.9	0.1 / 0.5			
К	1.9 / 2.4	0.1 / 0.1	1.8 / 5.4	0.1 / 0.2			
L	2.0 / 2.8	0.1 / 0.2	3.0 / 8.8	0.1/0.9			
М	1.9 / 2.1	0.1/0.1	1.1 / 3.6	0.1 / 0.3			
Ν	2.3 / 3.7	0.1 / 0.2	4.6 / 15.8	0.1 / 1.0			
0	2.0/3.0	0.1 / 0.2	2.3 / 10.5	0.1 / 0.5			
Р	2.2 / 2.7	0.1 / 0.1	2.0 / 5.4	0.1 / 0.4			
Q	2.0 / 2.6	0.1 / 0.2	2.5 / 7.1	0.1 / 0.3			
R	2.8 / 2.8	0.1/0.1	1.2 / 2.3	0.1 / 0.2			
S	2.2 / 2.4	0.1 / 0.1	1.8 / 4.2	0.1 / 0.2			
Т	1.9 / 2.1	0.1 / 0.1	1.2/3.3	0.1 / 0.2			

*Average Values

**The red crayon was not removed by the non-abrasive cleaner and water; therefore the gloss measurements for the red crayon stripes reflect the gloss of the crayon, not the gloss of the coating.

<u>Touch-Up</u> – This procedure was performed as indicated in ASTM D 3928 on primed (Behr P.V.A. Drywall Primer & Sealer No. 73) drywall panels, involving two sections (A and B) painted with the test paint 1 minute apart with a two inch overlap between them (C), an 'X' (D) painted on the second section 30 seconds after being painted, and a rectangle (E) painted on the first section 24 hours later. Gloss measurements were used to evaluate the results by taking two measurements on the bulk sections (A and B) and the overlapped and touched up sections (C, D, and E) at perpendicular angles (one reading horizontal, one reading vertical). The panels was also checked for visible gloss variations at the touched up sections. The results were fitted to a 0-10 scale.

The A and B sections represent non-touched up and non-overlapped sections after normal application, and the C section represents overlap during application. The D and E sections represent touched up sections where D was an immediate touch up and E was a touch up a day later. The gloss difference between A/B and C represents the gloss difference of overlapped sections that were not painted over repeatedly. The difference in gloss between A/B and D represents the gloss change that results from immediate touching up, and the difference between A/B and E represents the gloss difference that results from touching up a wall a day later.

					on op			· ·			
	A1	A2	B1	B2	C1	C2	D1	D2	E1	E2	Visual Rating**
J	3.4	3.9	3.7	3.4	4.1	3.8	3.6	3.6	3.8	3.9	10
Κ	1.6	1.8	1.7	1.7	2.0	1.9	1.8	1.8	2.2	2.0	10
L	2.4	2.6	2.5	2.5	2.6	2.6	2.5	2.6	2.5	2.4	10
М	0.9	1.1	1.3	0.9	1.3	0.9	1.2	1.2	1.2	1.1	10
Ν	2.8	3.2	3.4	3.1	4.0	3.3	3.5	3.4	3.5	3.9	10
0	1.7	2.1	2.0	1.8	2.1	1.8	2.0	2.0	2.0	1.9	10
Ρ	1.6	2.0	2.1	1.8	2.2	1.7	2.1	2.1	1.9	1.9	10
Q	1.9	2.2	2.1	1.9	2.3	1.9	2.1	2.1	2.2	1.9	10
R	1.1	1.3	1.2	1.1	1.4	1.2	1.1	1.1	0.9	0.9	10
S	1.2	1.6	1.6	1.2	1.4	1.1	1.6	1.6	1.5	1.5	10
Т	0.9	1.3	1.2	1.0	1.3	1.0	1.1	1.2	1.1	1.2	10
* *	т	7 1									

Touch-Up - Gloss Summary*

*Average Values

Because these paints are flat, there was no discernable visual gloss difference at 85° *Note: A1, B1, C1, and E1 are all horizontal gloss measurements along the length of the panel and A2, B2, C2, and E2 were all vertical measurements along the width of the panel. D1 was a measurement along the diagonal stroke that goes from the upper left to the lower right, and D2 was a measurement along the diagonal stroke that goes from the upper right to the lower left

Tests for Exterior Flat Paints Summary

<u>Adhesion</u> – ASTM D 3359-Method B was used to determine adhesion of a 3mil drawdown on a Leneta chart. This method used a cutting tool and 3mm cutting guide to make a series of perpendicular cuts in the surface. Pressure sensitive tape in accordance with the ASTM procedure was then applied and removed after 90 seconds and the adhesion was qualitatively analyzed based on how much coating was removed by the tape. The ASTM classification of 0B-5B was put into a rating system of 0-5, respectively, with 5 being 0% removed and a 0 being greater than 65% removed.

	ASTM Rating	AQMD Rating		
	_		Mechanism	
А	3B	10	Adhesion	3
В	4B	2	Adhesion	4
С	2B	20	Adhesion	2
D	4B	4	Adhesion	4
E	5B	0		5
F	2B	18	Adhesion	2
G	2B	17	Adhesion	2
Н	4B	3	Adhesion	4
Ι	4B	1	Adhesion	4
S	2B	20	Adhesion	2
Т	3B	7	Adhesion	3

*Average Values

<u>Tannin Stain Blocking</u> – Protocol from prior SCAQMD study was used. This test evaluates a coating's ability to resist tannin bleed-through from wood substrates. Cedar was used as the substrate. The panels were coated by weight, allowed to dry 24 hours in ambient conditions, and then were dried for two weeks at 50 °C. The panels were then evaluated for color change by spectrophotometer before and after drying in the oven, as well as being ranked relative to positive (Morewear 1150 Acrylic Stain Blocking Primer) and negative (Valspar Ultra Premium 72926) tannin controls on the boards. Each of the three sets of coatings were visually ranked from 1-13 with 13 being the most white coating, and 1 being the least white coating.

Color difference (ΔE) measurements were taken for two different comparisons. The first one was the tannin bleed which was measured as the difference in color between the coating after initial drying on the cedar panels and the final after the panels were removed from the oven. The second color difference measured incorporates the flash tannin bleed which was the tannin bleed that occurs during the application and drying of the coating by measuring the panels after the test versus the color on a Leneta chart drawdown. A high color difference between the Leneta and the final and a low color difference between the tannin board before and after oven drying indicates that a coating had a large amount of flash tannin bleed, but had less tannin bleed once the coating was initially dry.

		Viewel Deplying**	AE (Lonoto)
	ΔE (Initial Cedar)	Visual Ranking**	ΔE (Leneta)
Positive Standard	1.27	5	4.48
Negative Standard	0.67	1	2.77
А	1.17	9	4.38
В	0.79	3	4.93
С	0.88	4	4.28
D	0.81	2	4.78
E	0.91	12	1.54
F	1.00	13	1.70
G	0.98	8	3.69
Н	0.86	10	3.15
Ι	1.35	11	4.23
S	1.08	7	4.15
Т	1.23	7	4.95
I S	1.35 1.08	11 7	4.23 4.15

Tannin Stain Blocking Summary*

*Average Values

**These values are the average of the three visual rankings

<u>Alkalinity Resistance</u> – The Dunn Edwards Alkali Resistance Test Method was used with Dunn Edwards concrete test panels. A sample of the coating was tinted with a mixture of D-E QTC1 and QTC 7 tints and applied to the test panel. The back of the test panel was immersed in a tub of water and the tub was placed outdoors for full exposure. The panels were examined every day for 7 days and the spectrophotometer was used to determine color changes. The panels were also visually examined for color change. The results were fitted into a 0-10 scale with 10 being no color change and 0 being severe color change.

The spectrophotometer ΔE readings provide a numerical representation of the color changes. For example, a reading of 0.50 is often considered a visual match between a standard and a sample. For this test, a ΔE reading less than 1.00 would indicate an excellent resistance, a reading of 2.00 would indicate very good, 3.00 good, 4.00 poor, and 5.00 complete failure.

The coatings in this test were only allowed to dry one day before severe exposure, which includes the concrete being placed in water. Because these coatings are only allowed to dry one day, they are tested before they are fully coalesced. The amount of time required for a given coating to fully coalesce depends on the particle size and molecular weight of that particular coating's resin. A coating that has not fully coalesced tends to be more permeable to both water and base, resulting in accelerated failure for most of the coatings under these conditions.

	1 Day	2 Days	3 Days	4 Days	5Days	6 Days	7 Days	Final	Visual
Α	1.31	2.23	4.19	6.14	7.47	8.99	9.95	8.75	0
В	0.95	1.25	1.77	2.38	2.99	2.97	3.13	3.20	1
С	0.97	3.20	5.14	7.17	7.73	8.42	8.53	8.79	0
D	0.66	1.04	1.37	1.94	2.34	2.45	2.79	2.42	1
E	1.03	3.37	6.36	9.65	11.57	11.34	12.81	12.92	0
F	2.11	4.14	8.52	12.54	13.65	15.75	15.51	15.32	0
G	2.31	4.18	6.86	9.57	11.77	12.89	13.60	14.12	1
Н	1.14	1.90	3.59	6.31	9.04	9.66	11.32	11.87	0
Ι	1.35	3.13	5.82	9.68	13.83	14.92	15.68	14.95	0
S	0.84	2.77	8.78	13.71	19.30	19.76	20.72	20.96	0
Т	1.65	5.88	16.30	22.03	25.38	26.48	27.58	26.50	0

Alkalinity Resistance - ΔE Summary*

*Average Values

<u>Test Results</u> <u>Tests for General Properties of All Paints</u>

Appearance

	Observations – 1 gallon can as received: Notes on Odor, Skinning, Pressure, Can Corrosion
А	None
В	Very Trace Can Corrosion
С	None
D	None
E	None
F	None
G	Trace Can Corrosion
Н	Very Slight Separation
I	None
J	None
К	None
L	None
М	1 ³ / ₄ inch medium yellow separation layer with darker spots
N	None
0	None
Р	None
Q	None
R	Very Slight Separation
S	Trace Can Corrosion
Т	None

<u>Gloss (60° & 85°)</u>

	(Gloss (5 reading	gs per replica	te)
	60° Mean	60° Std. Dev.	85° Mean	85° Std. Dev.
А	1.9	0.1	0.8	0.1
Replicate 2	1.9	0.1	0.8	0.1
Average	1.9	0.1	0.8	0.1
В	2.7	0.1	2.2	0.1
Replicate 2	2.7	0.1	2.2	0.1
Average	2.7	0.1	2.2	0.1
С	2.3	0.1	2.5	0.1
Replicate 2	2.3	0.1	2.5	0.1
Average	2.3	0.1	2.5	0.1
D	2.1	0.1	1.6	0.1
Replicate 2	2.1	0.1	1.6	0.1
Average	2.1	0.1	1.6	0.1
E	8.7	0.1	28.0	0.1
Replicate 2	8.7	0.1	28.0	0.2
Average	8.7	0.1	28.0	0.2
F	2.5	0.1	2.7	0.1
Replicate 2	2.5	0.1	2.7	0.1

Average	2.5	0.1	2.7	0.1
G	1.7	0.1	0.6	0.1
Replicate 2	1.6	0.1	0.6	0.1
Average	1.7	0.1	0.6	0.1
Н	1.9	0.1	1.1	0.1
Replicate 2	1.9	0.1	1.1	0.1
Average	1.9	0.1	1.1	0.1
1	2.0	0.1	1.0	0.1
Replicate 2	2.0	0.1	1.0	0.1
Average	2.0	0.1	1.0	0.1
J	2.4	0.1	4.3	0.1
Replicate 2	2.5	0.1	4.4	0.1
Average	2.5	0.1	4.4	0.1
K	2.0	0.1	2.0	0.1
Replicate 2	2.0	0.1	1.9	0.1
Average	2.0	0.1	2.0	0.1
L	2.1	0.1	3.2	0.1
Replicate 2	2.1	0.1	3.2	0.1
Average	2.1	0.1	3.2	0.1
Μ	1.9	0.1	1.1	0.1
Replicate 2	1.9	0.1	1.1	0.1
Average	1.9	0.1	1.1	0.1
N	2.3	0.1	4.9	0.1
Replicate 2	2.3	0.1	4.9	0.1
Average	2.3	0.1	4.9	0.1
0	2.0	0.1	2.4	0.1
Replicate 2	2.0	0.1	2.4	0.1
Average	2.0	0.1	2.4	0.1
Р	2.3	0.1	2.3	0.1
Replicate 2	2.3	0.1	2.3	0.1
Average	2.3	0.1	2.3	0.1
Q	2.1	0.1	2.8	0.1
Replicate 2	2.1	0.1	2.8	0.1
Average	2.1	0.1	2.8	0.1
R	2.9	0.1	1.3	0.1
Replicate 2	3.0	0.1	1.3	0.1
Average	3.0	0.1	1.3	0.1
S	2.3	0.1	1.9	0.1
Replicate 2	2.3	0.1	1.9	0.1
Average	2.3	0.1	1.9	0.1
Т	1.9	0.1	1.3	0.1
Replicate 2	1.9	0.1	1.3	0.1
Average	1.9	0.1	1.3	0.1

Stability	Initial	Storage	Stormer	Visc.	Viscosity	Character	Gloss (5 reading	gs per repli	cate)
	Stormer	Time	Viscosity	Temp	Rating	Rating	60°Mean	60 <i>°</i> SD	85°Mean	85°SD
А	97	30 Days	101	25	6	8	1.9	0.1	0.8	0.1
В	94	30 Days	96	25	8	6	2.6	0.1	2.3	0.1
С	102	30 Days	114	25	0	8	2.3	0.1	2.7	0.1
D	101	30 Days	103	25	8	8	2.1	0.1	1.7	0.1
E	103	30 Days	108	25	5	4	9.7	0.2	29.3	0.2
F	108	30 Days	114	25	4	8	2.5	0.1	2.8	0.1
G	115	30 Days	115	25	10	6	1.7	0.1	0.6	0.1
Н	104	30 Days	103	25	9	6	1.9	0.1	1.0	0.1
1	100	30 Days	102	25	8	6	2.0	0.1	0.9	0.1
J	95	30 Days	104	25	1	10	2.4	0.1	4.7	0.2
K	110	30 Days	120	25	0	8	2.0	0.1	2.0	0.1
L	107	30 Days	124	25	0	6	2.1	0.1	3.2	0.1
М	100	30 Days	101	25	9	4	2.0	0.1	1.3	0.1
Ν	102	30 Days	101	25	9	6	2.2	0.1	5.0	0.1
0	97	30 Days	94	25	7	6	2.0	0.1	2.4	0.1
Р	102	30 Days	104	25	8	4	2.3	0.1	2.4	0.1
Q	109	30 Days	112	25	7	6	2.1	0.1	2.8	0.1
R	117	30 Days	126	25	1	6	2.9	0.1	1.3	0.1
S	99	30 Days	94	25	5	6	2.3	0.1	2.0	0.1
Т	99	30 Days	100	25	9	4	1.9	0.1	1.3	0.1

<u>Stability</u>

<u>Stability – Syneresis</u>

		Clear Layer	AQMD				Clear Layer	AQMD	
	Time	(mm)	Rating	Settling Notes		Time	(mm)	Rating	Settling Notes
А	10 Days	0.75	9	None	К	10 Days	2	8	Soft Pack
Replicate 2		0.75	9	None	Replicate 2		2	8	Soft Pack
Replicate 3		0.75	9	None	Replicate 3		2	8	Soft Pack
Average		0.75	9	None	Average		2	8	Soft Pack
В	10 Days	1	9	Soft Pack	L	10 Days	2	8	Hard Pack
Replicate 2		1	9	Soft Pack	Replicate 2		2	8	Hard Pack
Replicate 3		1	9	Soft Pack	Replicate 3		2	8	Hard Pack
Average		1	9	Soft Pack	Average		2	8	Hard Pack
С	10 Days	0.5	9	Hard Pack	М	10 Days	1	9	None
Replicate 2		0.5	9	Hard Pack	Replicate 2		1	9	None
Replicate 3		0.5	9	Hard Pack	Replicate 3		1	9	None
Average		0.5	9	Hard Pack	Average		1	9	None
D	10 Days	1	9	Soft Pack	Ν	10 Days	1	9	Soft Pack

Replicate 2		1	9	Soft Pack	Replica	ate 2	1	9	Soft Pack
Replicate 3		1	9	Soft Pack	Replica		1	9	Soft Pack
Average		1	9	Soft Pack	Averag	je	1	9	Soft Pack
E	10 Days	2	8	Soft Pack	0	10 Days	2	8	Soft Pack
Replicate 2		2	8	Soft Pack	Replica	ate 2	2	8	Soft Pack
Replicate 3		2	8	Soft Pack	Replica	ate 3	2	8	Soft Pack
Average		2	8	Soft Pack	Averag	je	2	8	Soft Pack
F	10 Days	0.5	9	Soft Pack	P	10 Days	1	9	Soft Pack
Replicate 2		0.5	9	Soft Pack	Replica	ate 2	1	9	Soft Pack
Replicate 3		0.5	9	Soft Pack	Replica	ate 3	1	9	Soft Pack
Average		0.5	9	Soft Pack	Averaç	ge	1	9	Soft Pack
G	10 Days	1	9	Soft Pack	Q	10 Days	1	9	Soft Pack
Replicate 2		1	9	Soft Pack	Replica	ate 2	1	9	Soft Pack
Replicate 3		1	9	Soft Pack	Replica	ate 3	1	9	Soft Pack
Average		1	9	Soft Pack	Averag	je	1	9	Soft Pack
Н	10 Days	1	9	Soft Pack	R	10 Days	0.5	9	Soft Pack
Replicate 2		1	9	Soft Pack	Replica	ate 2	0.5	9	Soft Pack
Replicate 3		1	9	Soft Pack	Replica	ate 3	0.5	9	Soft Pack
Average		1	9	Soft Pack	Averag	je	0.5	9	Soft Pack
I	10 Days	0.5	9	Soft Pack	S	10 Days	1	9	None
Replicate 2		0.5	9	Soft Pack	Replica	ate 2	1	9	None
Replicate 3		0.5	9	Soft Pack	Replica	ate 3	1	9	None
Average		0.5	9	Soft Pack	Averaç	ge	1	9	None
J	10 Days	1	9	Hard Pack	Т	10 Days	1	9	None
Replicate 2		1	9	Hard Pack	Replica	ate 2	1	9	None
Replicate 3		1	9	Hard Pack	Replica	ate 3	1	9	None
Average		1	9	Hard Pack	Averaç	ge	1	9	None

Open Time/ Wet Edge

	Last Non-Visible Squiggle	AQMD		Last Non-Visible Squiggle	AQMD
	Time (min)	Rating		Time (min)	Rating
А	16	10+	К	14	10+
Replicate 2	14	10+	Replicate 2	10	10
Replicate 3	12	10+	Replicate 3	12	10+
Average	14	10+	Average	12	10+
В	10	10	L	12	10+
Replicate 2	10	10	Replicate 2	12	10+
Replicate 3	10	10	Replicate 3	12	10+
Average	10	10	Average	12	10+

		10		10	10
C	12	10+	M	12	10+
Replicate 2	12	10+	Replicate 2	12	10+
Replicate 3	12	10+	Replicate 3	12	10+
Average	12	10+	Average	12	10+
D	16	10+	N	12	10+
Replicate 2	14	10+	Replicate 2	12	10+
Replicate 3	14	10+	Replicate 3	14	10+
Average	15	10+	Average	13	10+
E	16	10+	0	10	10
Replicate 2	14	10+	Replicate 2	8	8
Replicate 3	14	10+	Replicate 3	8	8
Average	15	10+	Average	9	9
F	14	10+	Р	8	8
Replicate 2	14	10+	Replicate 2	8	8
Replicate 3	14	10+	Replicate 3	8	8
Average	14	10+	Average	8	8
G	12	10+	Q	8	8
Replicate 2	14	10+	Replicate 2	8	8
Replicate 3	14	10+	Replicate 3	8	8
Average	13	10+	Average	8	8
Н	16	10+	R	8	8
Replicate 2	16	10+	Replicate 2	8	8
Replicate 3	16	10+	Replicate 3	8	8
Average	16	10+	Average	8	8
1	14	10+	S	10	10
Replicate 2	14	10+	Replicate 2	10	10
Replicate 3	12	10+	Replicate 3	10	10
Average	13	10+	Average	10	10
J	10	10	Т	14	10+
Replicate 2	12	10+	Replicate 2	14	10+
Replicate 3	12	10+	Replicate 3	14	10+
Average	11	10+	Average	14	10+

Freeze-Thaw Resistance

	Original	A	fter 1 Cycl	е	Α	ter 2 Cycle	es	Α	fter 3 Cycle	es	A	fter 4 Cycle	es	Α	fter 5 Cycl	es	AQMD
	Stormer	S/G/C	Stormer	Temp	S/G/C	Stormer	Temp	S/G/C	Stormer	Temp	S/G/C	Stormer	Temp	S/G/C	Stormer	Temp	Rating
Α	97	10	99	25	8	97	25	8	94	25	6	94	25	4	102	25	10
Can 2	97	10	96	25	8	95	25	8	94	25	6	94	25	4	101	25	10
Can 3	97	10	98	25	8	98	25	8	98	25	6	94	25	4	104	25	10
В	94	10	94	25	6	95	25	6	96	25	4	96	25	4	99	25	10
Can 2	94	10	94	25	6	93	25	6	93	25	4	93	25	4	100	25	10
Can 3	94	10	93	25	6	92	25	6	92	25	4	93	25	4	98	25	10
С	101		Failure														0
Can 2	102		Failure														0
Can 3	102		Failure														0
D	100	8	100	25	6	103	25	6	102	25	4	107	25	2	109	25	10
Can 2	102	8	104	25	6	104	25	6	104	25	4	109	25	2	109	25	10
Can 3	101	8	102	25	6	104	25	6	105	25	4	109	25	2	109	25	10
Ε	103		Failure														0
Can 2	103		Failure														0
Can 3	103		Failure														0
F	108		Failure														0
Can 2	109		Failure														0
Can 3	108		Failure	n													0
G	115	4	138	25		Failure											2
Can 2	115	4	141	25		Failure											2
Can 3	116	4	141	25		Failure											2
Н	104	6	118	25	4	125	25	2	131	25	2	131	25		Failure		8
Can 2	104	6	117	25	4	123	25	2	131	25	2	133	25		Failure		8
Can 3	104	6	117	25	4	123	25	2	130	25	2	132	25		Failure	1	8
1	101	8	103	25	6	105	25	6	104	25	4	106	25	2	113	25	10
Can 2	98	8	99	25	6	101	25	6	102	25	4	103	25	2	113	25	10
Can 3	101	8	102	25	6	103	25	6	103	25	4	105	25	2	112	25	10
J	94		Failure														0
Can 2	95		Failure														0
Can 3	95		Failure	1													0
K	110	4	122	25		Failure											2
Can 2	109	4	132	25		Failure											2
Can 3	110	4	133	25		Failure											2
L	108		Failure														0
Can 2	107		Failure														0
Can 3	107		Failure														0

Μ	99	Failure					0
Can 2	100	Failure					0
Can 3	100	Failure					0
Ν	102	Failure					0
Can 2	101	Failure					0
Can 3	102	Failure					0
	Original	After 1 Cycle	After 3 Cycles	After 5 Cycles	After 8 Cycles	After 8 Cycles	
	Stormer	S/G/C Stormer Temp					
0	97	Failure					0
Can 2	97	Failure					0
Can 3	96	Failure					0
Р	102	Failure					0
Can 2	103	Failure					0
Can 3	101	Failure					0
Q	109	Failure					0
Can 2	109	Failure					0
Can 3	109	Failure					0
R	114	Failure					0
Can 2	118	Failure					0
Can 3	119	Failure					0
S	100	Failure					0
Can 2	99	Failure					0
Can 3	99	Failure					0
Т	99	Failure					0
Can 2	100	Failure					0
Can 3	99	Failure					0

Freeze-Thaw Resistance: Gloss

	A	After 1 Cycle			After 2 Cycles				After 3 Cycles			
	60°M	60 <i>°</i> SD	85° M	85 <i>°</i> SD	60°M	60°SD	85°M	85 °SD	60°M	60°SD	85°M	85°SD
А	1.9	0.1	0.8	0.1	1.8	0.1	0.8	0.1	1.9	0.1	0.8	0.1
Can 2	1.9	0.1	0.8	0.1	1.9	0.1	0.8	0.1	1.9	0.1	0.8	0.1
Can 3	1.9	0.1	0.8	0.1	1.8	0.1	0.8	0.1	1.9	0.1	0.8	0.1
В	2.6	0.1	2.2	0.1	2.4	0.1	2.1	0.1	2.5	0.1	2.2	0.1
Can 2	2.6	0.1	2.2	0.1	2.4	0.1	2.1	0.2	2.5	0.1	2.2	0.1
Can 3	2.6	0.1	2.2	0.1	2.4	0.1	2.1	0.2	2.5	0.1	2.1	0.1
С	2	0.1	2	0.1		Fai	lure					
Can 2	2	0.1	2	0.1	Failure							
Can 3	2	0.1	2.1	0.1	Failure							

D	2.1	0.1	1.6	0.1	2	0.1	1.6	0.1	2.1	0.1	1.6	0.1
Can 2	2.1	0.1	1.6	0.1	2	0.1	1.5	0.1	2.2	0.1	1.5	0.1
Can 3	2.1	0.1	1.6	0.1	2	0.1	1.5	0.1	2.2	0.1	1.6	0.1
Ε		Failu	ure									
Can 2		Failu	ure									
Can 3		Failu	ure									
F		Failu	ure									
Can 2		Failu	ure									
Can 3		Failu	ure									
G	1.7	0.1	0.6	0.1		Failu						
Can 2	1.7	0.1	0.6	0.1		Failu	ure					
Can 3	1.7	0.1	0.7	0.2		Failu						
Н	1.8	0.1	1	0.2	1.9	0.1	1.1	0.1	1.9	0.1	1.1	0.1
Can 2	1.8	0.2	1.1	0.1	1.9	0.1	1.1	0.1	1.9	0.1	1.2	0.1
Can 3	1.8	0.1	1.1	0.1	1.9	0.1	1.1	0.1	1.9	0.1	1.1	0.1
1	1.9	0.1	0.9	0.1	1.9	0.1	0.9	0.1	2	0.1	0.9	0.1
Can 2	1.9	0.1	0.9	0.1	1.9	0.1	0.9	0.1	1.9	0.1	0.9	0.1
Can 3	1.9	0.1	0.9	0.1	1.9 0.1 0.9 0.1				1.9	0.1	0.9	0.1
J	Failure											
Can 2	Failure											
Can 3		Failu										
K	2	0.1	1.8	0.1		Failu						
Can 2	2	0.1	1.8	0.1		Failu						
Can 3	2	0.1	1.8	0.1		Failu	ire					
L		Failu										
Can 2		Failu										
Can 3		Failu										
М		Failu										
Can 2		Failu										
Can 3		Failu										
N		Failu										
Can 2		Failu										
Can 3		Failu										
0		Failu										
Can 2	Failure											
Can 3	Failure											
Р	Failure											
Can 2	Failure											
Can 3	Failure											
Q	Failure											

Can 2	Failure	
Can 3	Failure	
R	Failure	
Can 2	Failure	
Can 3	Failure	
S	Failure	
Can 2	Failure	
Can 3	Failure	
Т	Failure	
Can 2	Failure	
Can 3	Failure	

Co	ntinued		After 4	Cycles			After 5	Cycles		
		60°M	60°SD	85° M	85°SD	60°M	60°SD	85°M	85°SD	
Α		1.9	0.1	0.8	0.1	1.8	0.2	1.8	0.1	
	Can 2	1.9	0.1	0.8	0.1	1.9	0.1	0.8	0.1	
	Can 3	1.9	0.1	0.8	0.8 0.1 1.9 0.1 0.8					
В		2.6	0.1	2.2	0.1	2.5	0.1	2.2	0.1	
	Can 2	2.6	0.1	2.2	0.1	2.5	0.1	2.2	0.1	
	Can 3	2.6	0.1	2.2	0.1	2.5	0.1	2.2	0.1	
С										
	Can 2									
	Can 3									
D		2.1	0.1	1.6	0.1	2.1	0.1	1.6	0.1	
	Can 2	2.1	0.1	1.6	0.1	2.1	0.1	1.6	0.1	
	Can 3	2.1	0.1	1.6	0.1	2.1	0.1	1.6	0.1	
Ε										
	Can 2									
	Can 3									
F										
	Can 2									
	Can 3									
G										
	Can 2									
	Can 3									
Н		1.9	0.1	1.2	0.1		Fai	lure		
	Can 2	1.9	0.1	1.2	0.1					
	Can 3	1.9	0.1	1.2	0.1	Failure				
1		1.9	0.1	1	0.1	1.9	0.1	1	0.1	
	Can 2	2	0.1	0.9	0.1	1.9	0.1	1	0.1	

Can 3	2	0.1	1	0.1	1.9	0.1	0.9	0.2			
J											
Can 2											
Can 3											
К											
Can 2											
Can 3											
L											
Can 2											
Can 3											
М											
Can 2											
Can 3											
Ν											
Can 2											
Can 3											
0											
Can 2											
Can 3											
Р											
Can 2											
Can 3											
Q											
Can 2											
Can 3											
R											
Can 2											
Can 3											
S											
Can 2											
Can 3											
Т											
Can 2											
Can 3											

Flow & Leveling

	Flow and Leveling								
Flat	1	2	3	Average					
А	0	0	0	0					
В	0	0	0	0					
С	0	0	0	0					
D	0	0	0	0					
E	0	0	0	0					
F	0	0	0	0					
G	0	0	0	0					
Н	0	0	0	0					
Ι	0	0	0	0					
J	5	5	5	5					
К	1	1	0	1					
L	0	0	0	0					
М	0	0	0	0					
Ν	0	0	0	0					
0	3	3	3	3					
Р	0	0	1	0					
Q	0	0	0	0					
R	0	0	0	0					
S	0	0	0	0					
Т	0	0	0	0					

Sag Resistance

	Sag									
Flat	1	2	3	Average						
А	12+	12+	12+	12+						
В	12+	12+	12+	12+						
С	12+	12+	12+	12+						
D	12+	12+	12+	12+						
E	12+	12+	12+	12+						
F	12+	12+	12+	12+						
G	12+	12+	12+	12+						
Н	12+	12+	12+	12+						
I	12+	12+	12+	12+						
J	11	10	10	10						
К	12+	12+	12+	12+						
L	12+	12+	12+	12+						
М	12+	12+	12+	12+						
Ν	12+	12+	12+	12+						
0	12+	12+	12+	12+						
Р	12+	12+	12+	12+						
Q	12+	12+	12+	12+						
R	12+	12+	12+	12+						
S	12+	12+	12+	12+						
Т	12+	12+	12+	12+						

		Rep	licate 1			Repl	icate 2		Replicate 3			
	Stage 1	Stage 2	Stage 3	Stage 4	Stage 1	Stage 2	Stage 3	Stage 4	Stage 1	Stage 2	Stage 3	Stage 4
А	7	9	21	> 300	7	9	17	> 300	1	7	21	> 300
Time (min)	8	11	25	> 6 Hours	8	11	20	> 6 Hours	1	8	25	> 6 Hours
Average (min)	6	10	24	> 6 Hours								
В	5	11	25	> 300	1	11	14	> 300	2	7	17	> 300
Time (min)	6	13	30	> 6 Hours	1	13	17	> 6 Hours	2	8	20	> 6 Hours
Average (min)	3	12	22	> 6 Hours								
С	4	11	30	> 300	3	6	39	> 300	6	14	38	> 300
Time (min)	5	13	36	> 6 Hours	4	7	47	> 6 Hours	7	17	46	> 6 Hours
Average (min)	5	12	43	> 6 Hours								
D	10	12	16	> 300	5	10	36	> 300	6	13	37	> 300
Time (min)	12	14	19	> 6 Hours	6	12	43	> 6 Hours	7	16	44	> 6 Hours
Average (min)	8	14	36	> 6 Hours								
E	1	10	19	> 300	8	11	20	> 300	1	4	19	> 300
Time (min)	1	12	23	> 6 Hours	10	13	24	> 6 Hours	1	5	23	> 6 Hours
Average (min)	4	10	23	> 6 Hours								
F	1	4	18	> 300	2	3	25	> 300	1	2	14	> 300
Time (min)	1	5	22	> 6 Hours	2	4	30	> 6 Hours	1	2	17	> 6 Hours
Average (min)	2	4	23	> 6 Hours								
G	11	14	26	> 300	12	15	19	> 300	2	15	19	> 300
Time (min)	13	17	31	> 6 Hours	14	18	23	> 6 Hours	2	18	23	> 6 Hours
Average (min)	10	18	26	> 6 Hours								
Н	12	14	18	> 300	1	12	14	> 300	1	12	15	> 300
Time (min)	14	17	22	> 6 Hours	1	14	17	> 6 Hours	1	14	18	> 6 Hours
Average (min)	6	15	19	> 6 Hours								
1	1	11	13	> 300	1	8	10	> 300	1	4	7	> 300
Time (min)	1	13	16	> 6 Hours	1	10	12	> 6 Hours	1	5	8	> 6 Hours
Average (min)	1	9	12	> 6 Hours								
J	2	6	21	> 300	3	7	13	> 300	1	5	13	> 300
Time (min)	2	7	25	> 6 Hours	4	8	16	> 6 Hours	1	6	16	> 6 Hours
Average (min)	2	7	19	> 6 Hours								
К	6	10	55	> 300	8	11	31	> 300	2	6	58	> 300
Time (min)	7	12	66	> 6 Hours	10	13	37	> 6 Hours	2	7	70	> 6 Hours
Average (min)	6	11	58	> 6 Hours								
L	1	6	8	> 300	1	2	3	> 300	1	2	4	> 300
Time (min)	1	7	10	> 6 Hours	1	2	4	> 6 Hours	1	2	5	> 6 Hours
Average (min)	1	4	6	> 6 Hours								

М	2	4	90	> 300	1	3	98	> 300	1	7	95	> 300
Time (min)	2	5	108	> 6 Hours	1	4	118	> 6 Hours	1	8	114	> 6 Hours
Average (min)	2	6	113	> 6 Hours		т 		> 0 110013				> 0 1 10013
N	5	10	12	> 300	3	10	12	> 300	6	9	11	> 300
Time (min)	6	10	14	> 6 Hours	4	10	14	> 6 Hours	7	11	13	> 6 Hours
Average (min)	6	12	14	> 6 Hours		12	14	>0110013	/		10	20110013
			53			7		. 200		7		
0	4	6		> 300	4	· ·	15	> 300	4	1	31	> 300
Time (min)	5	1	64	> 6 Hours	5	8	18	> 6 Hours	5	8	37	> 6 Hours
Average (min)	5	8	40	> 6 Hours								
Р	4	6	14	> 300	6	9	15	> 300	1	2	6	> 300
Time (min)	5	7	17	> 6 Hours	7	11	18	> 6 Hours	1	2	7	> 6 Hours
Average (min)	4	7	14	> 6 Hours								
Q	1	3	6	> 300	1	2	4	> 300	5	7	10	> 300
Time (min)	1	4	7	> 6 Hours	1	2	5	> 6 Hours	6	8	12	> 6 Hours
Average (min)	3	5	8	> 6 Hours								
R	1	8	18	> 300	1	7	14	> 300	1	6	18	> 300
Time (min)	1	10	22	> 6 Hours	1	8	17	> 6 Hours	1	7	22	> 6 Hours
Average (min)	1	8	20	> 6 Hours								
S	1	5	8	> 300	6	8	11	> 300	1	7	11	> 300
Time (min)	1	6	10	> 6 Hours	7	10	13	> 6 Hours	1	8	13	> 6 Hours
Average (min)	3	8	12	> 6 Hours								
Т	2	5	53	> 300	1	2	56	> 300	1	6	56	> 300
Time (min)	2	6	64	> 6 Hours	1	2	67	> 6 Hours	1	7	67	> 6 Hours
Average (min)	2	5	66	> 6 Hours								

	3mi l- 1				3mil - 2			3mil - 3			AQMD
	Y (Black)	Y (White)	Cont. Rat.	Y (Black)	Y (White)	Cont. Rat.	Y (Black)	Y (White)	Cont. Rat.	Avg	Rating
A	87.29	89.57	0.975	(Black) 87.13	(Wille) 89.49	0.974	87.19	89.50	0.974	Avy	nating
Reading 2	87.33	89.37	0.976	87.38	89.51	0.974	87.19	89.30	0.974		
Reading 2	87.36	89.44	0.977	87.44	89.48	0.970	87.37	89.40	0.975		
Average	07.50	09.40	0.976	07.44	09.40	0.976	07.57	09.45	0.975	0.976	6
B	87.92	90.55	0.971	88.27	90.59	0.974	88.48	90.71	0.975	0.370	0
Reading 2	88.35	90.63	0.975	88.38	90.41	0.978	88.53	90.61	0.977		
Reading 3	88.41	90.46	0.977	88.40	90.46	0.977	88.61	90.56	0.978		
Average	00.41	50.40	0.974	00.40	50.40	0.976	00.01	50.50	0.977	0.976	6
C	87.97	89.87	0.979	87.93	89.87	0.978	88.14	89.97	0.980	0.370	0
Reading 2	88.02	89.81	0.980	87.97	89.85	0.979	88.00	89.91	0.979		
Reading 3	88.23	89.85	0.982	87.94	89.77	0.980	88.22	89.83	0.982		
Average	00.20	09.05	0.982	07.34	03.17	0.900 0.979	00.22	09.00	0.980	0.980	6
D	87.69	89.70	0.978	87.53	89.86	0.974	87.82	89.75	0.978	0.300	0
Reading 2	87.87	89.76	0.979	87.85	89.84	0.978	87.87	89.78	0.979		
Reading 3	87.86	89.61	0.980	87.58	89.64	0.977	87.79	89.68	0.979		
Average	07.00	03.01	0.979	07.50	03.04	0.976	07.73	03.00	0.979	0.978	6
E	83.23	83.56	0.996	83.42	83.45	1.000	83.34	83.55	0.997	0.370	0
E Reading 2	83.26	83.58	0.996	83.24	83.48	0.997	83.27	83.49	0.997		
Reading 3	83.25	83.50	0.997	83.39	83.47	0.999	83.30	83.42	0.999		
Average	00.20	00.00	0.997 0.996	00.00	00.47	0.999 0.999	00.00	00.42	0.998	0.998	10
F	82.82	83.50	0.992	83.09	83.50	0.995	82.99	83.55	0.993	0.000	10
Reading 2	82.96	83.52	0.993	83.06	83.57	0.994	83.05	83.60	0.993		
Reading 3	82.71	83.50	0.991	83.00	83.51	0.994	82.98	83.47	0.994		
Average	02.71	00.00	0.992	00.00	00.01	0.994	02.00	00.47	0.994	0.993	8
G	85.27	88.37	0.965	85.39	88.35	0.966	84.96	88.05	0.965	0.000	
Reading 2	85.24	88.27	0.966	85.35	88.24	0.967	85.18	88.25	0.965		
Reading 3	85.33	88.20	0.967	85.46	88.32	0.968	84.91	88.15	0.963		
Average	00.00	00.20	0.966	00.10	00.02	0.967	01.01	00.10	0.964	0.966	4
H	88.71	90.34	0.982	88.63	90.26	0.982	88.33	90.35	0.978	0.000	
Reading 2	88.74	90.37	0.982	88.84	90.27	0.984	88.75	90.39	0.982		
Reading 3	88.60	90.28	0.981	88.75	90.18	0.984	88.90	90.28	0.985		
Average	00.00	00.20	0.982	00.10	00.10	0.983	00.00	00.20	0.981	0.982	6
I	86.83	89.07	0.975	87.10	89.27	0.976	86.91	89.07	0.976	0.001	
Reading 2	87.05	89.09	0.977	87.36	89.20	0.979	87.08	89.13	0.977		
Reading 3	86.86	89.10	0.975	86.98	89.21	0.975	87.14	89.13	0.978		
Average			0.976			0.977	••••		0.977	0.976	6
J	81.69	82.94	0.985	81.76	82.89	0.986	81.59	82.78	0.986		
Reading 2	81.64	82.77	0.986	81.62	82.96	0.984	81.68	82.76	0.987		
Reading 3	81.62	82.92	0.984	81.72	82.83	0.987	81.75	82.70	0.989		
Average	00	02.02	0.985	0	02.00	0.986		02.1.0	0.987	0.986	8
K	88.97	91.17	0.976	88.81	90.79	0.978	88.79	90.75	0.978		U
Reading 2	88.97	90.62	0.982	89.12	90.88	0.981	89.08	90.93	0.980		
Reading 3	88.91	90.65	0.981	88.95	90.54	0.982	88.90	90.74	0.980		
Average			0.979			0.980			0.979	0.980	6
L	89.72	91.53	0.980	89.73	91.53	0.980	89.64	91.56	0.979		
Reading 2	89.73	91.51	0.981	89.69	91.46	0.981	89.45	91.37	0.979		
Reading 3	89.72	91.37	0.982	89.53	91.40	0.980	89.58	91.55	0.978		

Average			0.981			0.980			0.979	0.980	6
		3mi l- 1			3mil - 2			3mil - 3	-		
Continued	Y (Black)	Y (White)	Cont. Rat.	Y (Black)	Y (White)	Cont. Rat.	Y (Black)	Y (White)	Cont. Rat.		
M	83.51	85.14	0.981	83.46	85.22	0.979	83.40	84.98	0.981		
Reading 2	83.46	85.14	0.980	83.55	85.01	0.983	83.53	84.87	0.984		
Reading 3	83.46	85.06	0.981	83.54	84.91	0.984	83.54	84.89	0.984		
Average	00110	00.00	0.981	00.01	0 110 1	0.982	00.01	0 1100	0.983	0.982	6
N	85.73	87.16	0.984	85.87	87.24	0.984	86.09	87.18	0.987		
Reading 2	85.84	87.17	0.985	85.94	87.16	0.986	85.85	87.18	0.985		
Reading 3	85.83	87.13	0.985	86.08	87.20	0.987	86.11	87.13	0.988		
Average			0.984			0.986			0.987	0.986	8
0	89.69	91.32	0.982	89.70	91.31	0.982	89.67	91.31	0.982		
Reading 2	89.58	91.29	0.981	89.65	91.20	0.983	89.81	91.29	0.984		
Reading 3	89.66	91.23	0.983	89.58	91.27	0.981	89.70	91.27	0.983		
Average			0.982			0.982			0.983	0.982	6
Р	88.73	90.37	0.982	88.69	90.33	0.982	88.64	90.34	0.981		
Reading 2	88.67	90.33	0.982	88.80	90.34	0.983	88.92	90.32	0.984		
Reading 3	88.91	90.33	0.984	88.62	90.24	0.982	88.70	90.30	0.982		
Average			0.983			0.982			0.983	0.983	6
Q	89.65	91.12	0.984	89.47	91.16	0.981	89.48	91.08	0.982		
Reading 2	89.66	91.11	0.984	89.62	91.14	0.983	89.64	91.07	0.984		
Reading 3	89.51	91.05	0.983	89.55	91.09	0.983	89.66	91.07	0.985		
Average			0.984			0.983			0.984	0.983	6
R	84.33	85.34	0.988	84.28	85.37	0.987	84.19	85.32	0.987		
Reading 2	84.28	85.32	0.988	84.31	85.33	0.988	84.31	85.33	0.988		
Reading 3	84.27	85.33	0.988	84.25	85.30	0.988	84.37	85.33	0.989		
Average			0.988			0.988			0.988	0.988	8
S	88.30	90.38	0.977	88.27	90.39	0.977	88.18	90.36	0.976		
Reading 2	88.33	90.37	0.977	88.32	90.33	0.978	88.36	90.37	0.978		
Reading 3	88.43	90.29	0.979	88.44	90.33	0.979	88.33	90.33	0.978		
Average			0.978			0.978			0.977	0.978	6
Т	87.85	90.67	0.969	87.84	90.76	0.968	87.64	90.72	0.966		
Reading 2	87.89	90.60	0.970	88.08	90.73	0.971	87.96	90.65	0.970		
Reading 3	88.03	90.61	0.972	87.75	90.64	0.968	88.16	90.69	0.972		
Average			0.970			0.969			0.969	0.970	4

Tests for Interior Flat Paints

Adhesion

	Cros	Cross-Hatch Adhesion - Leneta Chart										
	Rating	Failure %	Failure Mechanism	Rating								
J	5B	0.5	Substrate	5								
Replicate 2	3B	10.0	Substrate	3								
Replicate 3	5B	0.0		5								
Average	4B	3.5	Substrate	4								
К	5B	0.0		5								
Replicate 2	1B	40.0	Substrate	1								

Replicate 3	5B	0.0		5
Average	4B	13.3	Substrate	4
L	3B	10.0	Substrate	3
Replicate 2	3B	5.0	Substrate	3
Replicate 3	3B	5.0	Substrate	3
Average	3B	6.7	Substrate	3
М	5B	0.5	Substrate	5
Replicate 2	5B	0.0		5
Replicate 3	5B	0.0		5
Average	5B	0.2	Substrate	5
			20 Substrate 5	
N	2B	25.0	Adhesion	2
Replicate 2	5B	0.0		5
Replicate 3	5B	0.5	Substrate	5
Average	4B	8.5	Substrate	4
0	3B	6.0	1 Substrate 5 Adhesion	3
Replicate 2	4B	4.0	3 Substrate 1 Adhesion	4
Replicate 3	3B	8.0	1 Substrate 7 Adhesion	3
Average	3B	6.0	Adhesion	3
Р	3B	5.0	Adhesion	3
Replicate 2	3B	5.0	Adhesion	3
Replicate 3	3B	10.0	Adhesion	3
Average	3B	6.7	Adhesion	3
Q	2B	20.0	Adhesion	2
Replicate 2	2B	25.0	Adhesion	2
Replicate 3	2B	25.0	Adhesion	2
Average	2B	23.3	Adhesion	2
R	4B	2.0	Substrate	4
Replicate 2	4B	1.0	Substrate	4
Replicate 3	3B	5.0	Substrate	3
Average	4B	2.7	Substrate	4
S	3B	5.0	4 Substrate 1 Adhesion	3
Replicate 2	4B	4.0	1 Substrate 3 Adhesion	4
Replicate 3	4B	3.0	Substrate	4
Average	4B	4.0	Substrate	4
Т	4B	3.0	2 Substrate 1 Adhesion	4
Replicate 2	5B	0.0		5
Replicate 3	5B	0.0		5
Average	5B	1.0	Substrate	5

<u>Scrub</u>

	Pan	el 1	Pan	el 2	Pan	el 3	Standard	Sample	Pane	el 4
	Standard	Sample	Standard	Sample	Standard	Sample	Avg	Avg	Standard	Sample
J	200	1081	206	1161	182	1025	196	1089		
Κ	192	779	203	739	202	1074	199	864		
L	197	620	206	714	228	720	210	685		
Μ	240	2156	195	1765	203	2397	213	2106		
Ν	304	962	265	787	277	921	282	890		
0	257	691	219	297	221	625	223	645	195	965
Ρ	254	1008	237	798	206	917	232	908		
Q	223	1004	203	1015	200	726	209	915		

R	230	754	226	666	195	600	217	673	
S	218	334	203	303	198	287	206	308	
Т	239	1408	194	992	216	1292	216	1231	

	Vis	ual Rating	 Staini 	ng	Vi	sual Rating	g - Glos	S	Vis	ual Rating	- Erosic	n
	Ketchup	Mustard	Wine	Crayon	Ketchup	Mustard	Wine	Crayon	Ketchup	Mustard	Wine	Crayon
J	10	10	3	3	None	None	None	None	None	None	None	None
Replicate 2	10	10	3	3	None	None	None	None	None	None	None	None
Replicate 3	10	10	3	3	None	None	None	None	None	None	None	None
Average	10	10	3	3	None	None	None	None	None	None	None	None
K	10	7	3	3	None	None	None	None	None	None	None	None
Replicate 2	10	7	3	3	None	None	None	None	None	None	None	None
Replicate 3	10	7	3	3	None	None	None	None	None	None	None	None
Average	10	7	3	3	None	None	None	None	None	None	None	None
L	10	5	3	3	None	None	None	None	None	None	None	None
Replicate 2	10	5	3	3	None	None	None	None	None	None	None	None
Replicate 3	10	5	3	3	None	None	None	None	None	None	None	None
Average	10	5	3	3	None	None	None	None	None	None	None	None
М	10	7	3	3	None	None	None	None	None	None	None	None
Replicate 2	10	7	3	3	None	None	None	None	None	None	None	None
Replicate 3	10	7	3	3	None	None	None	None	None	None	None	None
Average	10	7	3	3	None	None	None	None	None	None	None	None
N	10	7	3	3	None	None	None	None	None	None	None	None
Replicate 2	10	7	3	3	None	None	None	None	None	None	None	None
Replicate 3	10	7	3	3	None	None	None	None	None	None	None	None
Average	10	7	3	3	None	None	None	None	None	None	None	None
0	10	5	5	3	None	None	None	None	None	None	None	None
Replicate 2	10	5	5	3	None	None	None	None	None	None	None	None
Replicate 3	10	5	5	3	None	None	None	None	None	None	None	None
Average	10	5	5	3	None	None	None	None	None	None	None	None
P	7	5	3	3	None	None	None	None	None	None	None	None
Replicate 2	7	5	3	3	None	None	None	None	None	None	None	None
Replicate 3	7	5	3	3	None	None	None	None	None	None	None	None
Average	7	5	3	3	None	None	None	None	None	None	None	None
Q	7	5	3	3	None	None	None	None	None	None	None	None
Replicate 2	7	5	3	3	None	None	None	None	None	None	None	None
Replicate 3	7	5	3	3	None	None	None	None	None	None	None	None
Average	7	5	3	3	None	None	None	None	None	None	None	None
R	10	3	5	0	None	None	None	None	None	None	None	None
Replicate 2	10	3	5	0	None	None	None	None	None	None	None	None
Replicate 3	10	3	5	0	None	None	None	None	None	None	None	None
Average	10	3	5	0	None	None	None	None	None	None	None	None
S	7	3	3	0	None	None	None	None	None	None	None	None

| Replicate 2 | 7 | 3 | 3 | 0 | None |
|-------------|----|---|---|---|------|------|------|------|------|------|------|------|
| Replicate 3 | 7 | 3 | 3 | 0 | None |
| Average | 7 | 3 | 3 | 0 | None |
| Т | 10 | 3 | 3 | 0 | None |
| Replicate 2 | 10 | 3 | 3 | 0 | None |
| Replicate 3 | 10 | 3 | 3 | 0 | None |
| Average | 10 | 3 | 3 | 0 | None |

Stain Resistance - Color

			Ke	etchup						Ν	lustard			
	X (Pre)	Х	Y (Pre)	Ŷ	Z (Pre)	Z	ΔE	X (Pre)	Х	Y (Pre)	Y	Z (Pre)	Z	ΔE
J	76.36	77.27	80.97	81.97	85.79	86.69	0.46	76.68	77.34	81.30	82.03	86.13	86.60	0.40
Replicate 2	76.46	77.24	81.07	81.93	85.89	86.68	0.40	76.40	77.34	81.00	82.04	85.83	86.67	0.50
Replicate 3	76.43	77.11	81.05	81.81	85.97	86.71	0.35	76.40	77.08	81.02	81.78	85.94	86.54	0.38
Average	76.42	77.21	81.03	81.90	85.88	86.69	0.40	76.49	77.25	81.11	81.95	85.97	86.60	0.43
К	82.49	83.22	87.59	88.43	92.45	93.23	0.38	82.90	83.28	88.02	88.51	92.95	92.91	0.45
Replicate 2	82.06	83.09	87.14	88.29	92.03	93.21	0.50	82.50	83.19	87.60	88.42	92.46	92.83	0.50
Replicate 3	82.13	82.63	87.21	87.82	92.23	92.87	0.29	82.36	82.88	87.46	88.10	92.46	92.73	0.41
Average	82.23	82.98	87.31	88.18	92.24	93.10	0.39	82.59	83.12	87.69	88.34	92.62	92.82	0.45
L	84.68	84.60	89.84	89.78	94.84	94.42	0.25	84.79	83.90	89.95	89.13	94.92	92.15	1.36
Replicate 2	84.46	84.30	89.61	89.47	94.68	94.22	0.22	84.60	83.47	89.76	88.70	94.81	91.65	1.48
Replicate 3	84.32	84.08	89.46	89.23	94.55	94.00	0.23	84.32	83.32	89.46	88.53	94.55	91.77	1.31
Average	84.49	84.33	89.64	89.49	94.69	94.21	0.23	84.57	83.56	89.72	88.79	94.76	91.86	1.38
Μ	78.59	78.67	83.41	83.52	87.06	87.12	0.07	78.75	78.51	83.59	83.36	87.28	86.59	0.34
Replicate 2	78.51	78.55	83.33	83.39	87.06	87.11	0.03	78.48	78.17	83.30	83.00	87.07	86.53	0.21
Replicate 3	78.29	78.28	83.11	83.11	86.92	86.98	0.04	78.33	78.16	83.15	82.99	87.00	86.69	0.12
Average	78.46	78.50	83.28	83.34	87.01	87.07	0.05	78.52	78.28	83.35	83.12	87.12	86.60	0.22
Ν	80.34	80.37	85.22	85.28	89.58	89.62	0.06	80.52	80.29	85.40	85.21	89.75	88.89	0.48
Replicate 2	80.22	80.21	85.11	85.13	89.57	89.48	0.11	80.39	79.92	85.28	84.86	89.70	88.37	0.67
Replicate 3	80.02	80.05	84.90	84.96	89.44	89.46	0.08	80.22	79.79	85.11	84.75	89.61	88.02	0.89
Average	80.19	80.21	85.08	85.12	89.53	89.52	0.08	80.38	80.00	85.26	84.94	89.69	88.43	0.68
0	83.87	83.74	88.90	88.88	93.21	93.15	0.07	83.76	82.97	88.88	88.15	93.14	90.71	1.20
Replicate 2	83.53	83.51	88.64	88.64	92.97	93.12	0.11	83.39	82.98	88.49	88.14	92.78	91.61	0.59
Replicate 3	83.40	83.39	88.50	88.51	92.88	93.01	0.09	83.41	82.81	88.52	87.97	92.92	91.30	0.75
Average	83.60	83.55	88.68	88.68	93.02	93.09	0.09	83.52	82.92	88.63	88.09	92.95	91.21	0.85
Р	83.03	82.57	88.12	87.75	92.97	91.99	0.49	83.09	82.24	88.19	87.41	93.06	91.24	0.79
Replicate 2	82.65	82.30	87.72	87.45	92.62	92.09	0.28	82.79	81.83	87.88	87.00	92.84	90.76	0.91
Replicate 3	82.73	82.17	87.81	87.33	92.79	91.81	0.44	82.81	82.01	87.90	87.15	92.90	91.52	0.54
Average	82.80	82.35	87.88	87.51	92.79	91.96	0.40	82.90	82.03	87.99	87.19	92.93	91.17	0.75

Q	84.06	83.53	89.23	88.73	92.92	92.05	0.34	83.99	82.71	89.15	87.96	92.91	89.71	1.47
Replicate 2	83.74	83.18	88.89	88.36	92.67	91.81	0.33	83.77	82.17	88.92	87.42	92.75	88.59	1.95
Replicate 3	83.56	83.06	88.71	88.24	92.57	91.88	0.26	83.62	82.57	88.77	87.78	92.65	90.17	1.10
Average	83.79	83.26	88.94	88.44	92.72	91.91	0.31	83.79	82.48	88.95	87.72	92.77	89.49	1.51
R	78.54	78.52	83.52	83.53	87.51	87.23	0.21	78.68	76.86	83.68	82.42	87.76	79.26	5.48
Replicate 2	78.38	78.23	83.37	83.23	87.53	87.00	0.28	78.49	76.73	83.49	82.28	87.67	79.38	5.35
Replicate 3	78.34	78.22	83.33	83.23	87.48	87.06	0.23	78.37	76.63	83.36	82.22	87.52	78.95	5.63
Average	78.42	78.32	83.41	83.33	87.51	87.10	0.24	78.51	76.74	83.51	82.31	87.65	79.20	5.49
S	81.33	81.02	86.44	86.23	91.01	89.80	0.74	81.83	79.26	86.96	84.95	91.37	82.32	5.24
Replicate 2	81.06	80.71	86.46	85.91	90.87	89.77	0.62	81.47	79.75	86.59	85.17	91.15	85.39	3.18
Replicate 3	81.01	80.79	86.12	85.99	90.83	89.82	0.63	81.46	79.59	86.58	85.07	91.18	84.90	3.51
Average	81.13	80.84	86.34	86.04	90.90	89.80	0.66	81.59	79.53	86.71	85.06	91.23	84.20	3.98
Т	81.25	81.08	86.29	86.18	91.61	91.13	0.28	81.15	78.97	86.19	84.46	91.53	84.05	4.24
Replicate 2	80.81	80.67	85.83	85.78	91.21	90.73	0.30	80.87	78.32	85.90	83.87	91.29	82.73	4.87
Replicate 3	80.68	80.61	85.70	85.70	91.17	90.71	0.35	80.62	78.21	85.64	83.73	91.11	83.07	4.57
Average	80.91	80.79	85.94	85.89	91.33	90.86	0.31	80.88	78.50	85.91	84.02	91.31	83.28	4.56
				Wine							d Crayon			
	X (Pre)	X	Y (Pre)	Y	Z (Pre)	Z	ΔE	X (Pre)	Х	Y (Pre)	Y	Z (Pre)	Z	ΔE
J	76.84	74.09	81.47	78.65	86.30	80.61	2.37	76.58	66.17	81.20	66.47	85.97	60.43	13.62
Replicate 2	76.46	74.32	81.07	78.89	85.91	81.12	2.08	76.57	67.26	81.19	68.01	86.02	62.96	12.11
Replicate 3	76.52	73.85	81.15	78.42	86.08	80.56	2.31	76.33	68.29	80.94	69.50	85.82	65.06	10.83
Average	76.61	74.09	81.23	78.65	86.10	80.76	2.25	76.49	67.24	81.11	67.99	85.94	62.82	12.19
K	83.00	80.81	88.13	85.79	93.05	88.16	1.96	82.68	69.73	87.80	69.19	92.67	64.21	15.12
Replicate 2			87.60	85.47	92.44	87.70	1.97	82.44	69.42	87.54	68.84	92.36		15 70
	82.50	80.50											62.58	15.78
Replicate 3	82.25	80.04	87.35	84.99	92.35	87.33	2.04	82.27	69.92	87.37	69.54	92.34	64.71	14.68
Replicate 3 Average	82.25 82.58	80.04 80.45	87.35 87.69	84.99 85.42	92.35 92.61	87.33 87.73	2.04 1.99	82.27 82.46	69.69	87.57	69.19	92.34 92.46	64.71 63.83	14.68 15.19
Average L	82.25 82.58 84.91	80.04 80.45 80.40	87.35 87.69 90.08	84.99 85.42 85.37	92.35 92.61 94.97	87.33 87.73 85.97	2.04 1.99 3.47	82.27 82.46 84.83	69.69 72.10	87.57 90.00	69.19 72.19	92.34 92.46 94.95	64.71 63.83 64.34	14.68 15.19 15.29
Average L Replicate 2	82.25 82.58 84.91 84.67	80.04 80.45 80.40 80.06	87.35 87.69 90.08 89.83	84.99 85.42 85.37 85.04	92.35 92.61 94.97 94.78	87.33 87.73 85.97 85.79	2.04 1.99 3.47 3.45	82.27 82.46 84.83 84.52	69.69 72.10 72.91	87.57 90.00 89.67	69.19 72.19 73.43	92.34 92.46 94.95 94.70	64.71 63.83 64.34 67.01	14.68 15.19 15.29 13.66
Average L Replicate 2 Replicate 3	82.25 82.58 84.91 84.67 84.43	80.04 80.45 80.40 80.06 80.99	87.35 87.69 90.08 89.83 89.58	84.99 85.42 85.37 85.04 86.00	92.35 92.61 94.97 94.78 94.61	87.33 87.73 85.97 85.79 87.27	2.04 1.99 3.47 3.45 2.91	82.27 82.46 84.83 84.52 84.43	69.69 72.10 72.91 74.84	87.57 90.00 89.67 89.58	69.19 72.19 73.43 76.27	92.34 92.46 94.95 94.70 94.65	64.71 63.83 64.34 67.01 72.24	14.68 15.19 15.29 13.66 10.69
Average L Replicate 2 Replicate 3 Average	82.25 82.58 84.91 84.67 84.43 84.67	80.04 80.45 80.40 80.06 80.99 80.48	87.35 87.69 90.08 89.83 89.58 89.83	84.99 85.42 85.37 85.04 86.00 85.47	92.35 92.61 94.97 94.78 94.61 94.79	87.33 87.73 85.97 85.79 87.27 86.34	2.04 1.99 3.47 3.45 2.91 3.28	82.27 82.46 84.83 84.52 84.43 84.59	69.69 72.10 72.91 74.84 73.28	87.57 90.00 89.67 89.58 89.75	69.19 72.19 73.43 76.27 73.96	92.34 92.46 94.95 94.70 94.65 94.77	64.71 63.83 64.34 67.01 72.24 67.86	14.68 15.19 15.29 13.66 10.69 13.21
Average L Replicate 2 Replicate 3 Average M	82.25 82.58 84.91 84.67 84.43 84.67 78.71	80.04 80.45 80.40 80.06 80.99 80.48 77.15	87.35 87.69 90.08 89.83 89.58 89.83 89.83 83.53	84.99 85.42 85.37 85.04 86.00 85.47 81.86	92.35 92.61 94.97 94.78 94.61 94.79 87.16	87.33 87.73 85.97 85.79 87.27 86.34 83.77	2.04 1.99 3.47 3.45 2.91 3.28 1.40	82.27 82.46 84.83 84.52 84.43 84.59 78.85	69.69 72.10 72.91 74.84 73.28 69.36	87.57 90.00 89.67 89.58 89.75 83.68	69.19 72.19 73.43 76.27 73.96 70.09	92.34 92.46 94.95 94.70 94.65 94.77 87.29	64.71 63.83 64.34 67.01 72.24 67.86 64.79	14.68 15.19 15.29 13.66 10.69 13.21 11.85
Average L Replicate 2 Replicate 3 Average M Replicate 2	82.25 82.58 84.91 84.67 84.43 84.67 78.71 78.71 78.50	80.04 80.45 80.40 80.06 80.99 80.48 77.15 76.37	87.35 87.69 90.08 89.83 89.58 89.83 83.53 83.53 83.32	84.99 85.42 85.37 85.04 86.00 85.47 81.86 81.02	92.35 92.61 94.97 94.78 94.61 94.79 87.16 87.02	87.33 87.73 85.97 85.79 87.27 86.34 83.77 82.68	2.04 1.99 3.47 3.45 2.91 3.28 1.40 1.73	82.27 82.46 84.83 84.52 84.43 84.59 78.85 78.61	69.69 72.10 72.91 74.84 73.28 69.36 68.46	87.57 90.00 89.67 89.58 89.75 83.68 83.43	69.19 72.19 73.43 76.27 73.96 70.09 68.79	92.34 92.46 94.95 94.70 94.65 94.77 87.29 87.12	64.71 63.83 64.34 67.01 72.24 67.86 64.79 62.89	14.68 15.19 15.29 13.66 10.69 13.21 11.85 13.00
Average L Replicate 2 Replicate 3 Average M Replicate 2 Replicate 3	82.25 82.58 84.91 84.67 84.43 84.67 78.71 78.71 78.50 78.39	80.04 80.45 80.40 80.06 80.99 80.48 77.15 76.37 76.22	87.35 87.69 90.08 89.83 89.58 89.83 83.53 83.53 83.32 83.21	84.99 85.42 85.37 85.04 86.00 85.47 81.86 81.02 80.87	92.35 92.61 94.97 94.78 94.61 94.79 87.16 87.02 87.04	87.33 87.73 85.97 85.79 87.27 86.34 83.77 82.68 82.71	2.04 1.99 3.47 3.45 2.91 3.28 1.40 1.73 1.71	82.27 82.46 84.83 84.52 84.43 84.59 78.85 78.61 78.61 78.45	69.69 72.10 72.91 74.84 73.28 69.36 68.46 68.36	87.57 90.00 89.67 89.58 89.75 83.68 83.43 83.43	69.1972.1973.4376.2773.9670.0968.7968.72	92.34 92.46 94.95 94.70 94.65 94.77 87.29 87.12 87.02	64.71 63.83 64.34 67.01 72.24 67.86 64.79 62.89 63.25	14.68 15.19 15.29 13.66 10.69 13.21 11.85 13.00 12.75
Average L Replicate 2 Replicate 3 Average M Replicate 2 Replicate 3 Average	82.25 82.58 84.91 84.67 84.43 84.67 78.71 78.71 78.50 78.39 78.39	80.04 80.45 80.40 80.06 80.99 80.48 77.15 76.37 76.22 76.58	87.35 87.69 90.08 89.83 89.58 89.83 83.53 83.53 83.32 83.21 83.21 83.35	84.99 85.42 85.37 85.04 86.00 85.47 81.86 81.02 80.87 81.25	92.35 92.61 94.97 94.78 94.61 94.79 87.16 87.02 87.04 87.07	87.33 87.73 85.97 85.79 87.27 86.34 83.77 82.68 82.71 83.05	2.04 1.99 3.47 3.45 2.91 3.28 1.40 1.73 1.71 1.61	82.27 82.46 84.83 84.52 84.43 84.59 78.85 78.61 78.45 78.64	69.69 72.10 72.91 74.84 73.28 69.36 68.46 68.36 68.36 68.73	87.57 90.00 89.67 89.58 89.75 83.68 83.43 83.27 83.46	69.1972.1973.4376.2773.9670.0968.7968.7269.20	92.34 92.46 94.95 94.70 94.65 94.77 87.29 87.12 87.02 87.14	64.71 63.83 64.34 67.01 72.24 67.86 64.79 62.89 63.25 63.64	14.68 15.29 13.66 10.69 13.21 11.85 13.00 12.75 12.53
Average L Replicate 2 Replicate 3 Average M Replicate 2 Replicate 3 Average N	82.25 82.58 84.91 84.67 84.43 84.67 78.71 78.71 78.50 78.39 78.53 80.52	80.04 80.45 80.40 80.06 80.99 80.48 77.15 76.37 76.22 76.58 77.09	87.35 87.69 90.08 89.83 89.58 89.83 83.53 83.53 83.32 83.21 83.35 85.42	84.99 85.42 85.37 85.04 86.00 85.47 81.86 81.02 80.87 81.25 81.75	92.35 92.61 94.97 94.78 94.61 94.79 87.16 87.02 87.04 87.07 89.79	87.33 87.73 85.97 85.79 87.27 86.34 83.77 82.68 82.71 83.05 83.40	2.04 1.99 3.47 3.45 2.91 3.28 1.40 1.73 1.71 1.61 2.43	82.27 82.46 84.83 84.52 84.43 84.59 78.85 78.61 78.45 78.64 80.46	69.69 72.10 72.91 74.84 73.28 69.36 68.46 68.36 68.73 62.38	87.57 90.00 89.67 89.58 89.75 83.68 83.43 83.27 83.46 85.35	69.1972.1973.4376.2773.9670.0968.7968.7269.2059.80	92.34 92.46 94.95 94.70 94.65 94.77 87.29 87.12 87.02 87.14 89.76	64.71 63.83 64.34 67.01 72.24 67.86 64.79 62.89 63.25 63.64 54.20	14.68 15.19 15.29 13.66 10.69 13.21 11.85 13.00 12.75 12.53 20.64
Average L Replicate 2 Replicate 3 Average M Replicate 2 Replicate 3 Average N Replicate 2	82.25 82.58 84.91 84.67 84.43 84.67 78.71 78.50 78.50 78.39 78.53 80.52 80.34	80.04 80.45 80.40 80.99 80.48 77.15 76.37 76.22 76.58 77.09 76.11	87.35 87.69 90.08 89.83 89.58 89.83 83.53 83.53 83.21 83.21 83.35 85.42 85.23	84.99 85.42 85.37 85.04 86.00 85.47 81.86 81.02 80.87 81.25 81.75 80.71	92.35 92.61 94.97 94.78 94.61 94.79 87.16 87.02 87.04 87.07 89.79 89.69	87.33 87.73 85.97 85.79 87.27 86.34 83.77 82.68 82.71 83.05 83.40 82.11	2.04 1.99 3.47 3.45 2.91 3.28 1.40 1.73 1.71 1.61 2.43 2.85	82.27 82.46 84.83 84.52 84.43 84.59 78.85 78.61 78.61 78.45 78.64 80.46 80.36	69.69 72.10 72.91 74.84 73.28 69.36 68.46 68.36 68.73 62.38 60.71	87.57 90.00 89.67 89.58 89.75 83.68 83.43 83.27 83.46 85.35 85.24	69.1972.1973.4376.2773.9670.0968.7968.7269.2059.8057.57	92.34 92.46 94.95 94.70 94.65 94.77 87.29 87.12 87.02 87.14 89.76 89.67	64.71 63.83 64.34 67.01 72.24 67.86 64.79 62.89 63.25 63.64 54.20 51.71	14.68 15.19 15.29 13.66 10.69 13.21 11.85 13.00 12.75 20.64 22.47
Average L Replicate 2 Replicate 3 Average M Replicate 2 Replicate 3 Average N Replicate 2 Replicate 3	82.25 82.58 84.91 84.67 84.43 84.67 78.71 78.50 78.39 78.53 80.52 80.34 80.18	80.04 80.45 80.40 80.99 80.48 77.15 76.37 76.22 76.58 77.09 76.11 77.16	87.35 87.69 90.08 89.83 89.58 89.83 83.53 83.53 83.32 83.21 83.35 83.21 83.35 85.42 85.23 85.06	84.99 85.42 85.37 85.04 86.00 85.47 81.86 81.02 80.87 81.25 81.75 80.71 81.86	92.35 92.61 94.97 94.78 94.61 94.79 87.16 87.02 87.04 87.07 89.79 89.69 89.56	87.33 87.73 85.97 85.79 87.27 86.34 83.77 82.68 82.71 83.05 83.40 82.11 83.79	2.04 1.99 3.47 3.45 2.91 3.28 1.40 1.73 1.71 1.61 2.43 2.85 2.22	82.27 82.46 84.83 84.52 84.43 84.59 78.85 78.61 78.45 78.64 80.46 80.36 80.34	69.69 72.10 72.91 74.84 73.28 69.36 68.46 68.36 68.73 62.38 60.71 57.52	87.57 90.00 89.67 89.58 89.75 83.68 83.43 83.27 83.46 85.35 85.24 85.22	69.1972.1973.4376.2773.9670.0968.7968.7269.2059.8057.5753.18	92.34 92.46 94.95 94.70 94.65 94.77 87.29 87.12 87.02 87.14 89.76 89.67 89.69	64.71 63.83 64.34 67.01 72.24 67.86 64.79 62.89 63.25 63.64 54.20 51.71 46.35	14.68 15.29 13.66 10.69 13.21 11.85 13.00 12.75 12.53 20.64 22.47 26.70
Average L Replicate 2 Replicate 3 Average M Replicate 2 Replicate 3 Average N Replicate 2 Replicate 3 Average	82.25 82.58 84.91 84.67 84.43 84.67 78.71 78.71 78.50 78.39 78.53 80.52 80.34 80.18 80.18 80.35	80.04 80.45 80.40 80.99 80.48 77.15 76.37 76.22 76.58 77.09 76.11 77.16 76.79	87.35 87.69 90.08 89.83 89.58 89.83 83.53 83.53 83.32 83.21 83.35 85.42 85.23 85.06 85.24	84.99 85.42 85.37 85.04 86.00 85.47 81.86 81.02 80.87 81.25 81.75 80.71 81.86 81.44	92.35 92.61 94.97 94.78 94.61 94.79 87.16 87.02 87.04 87.07 89.79 89.69 89.56 89.68	87.33 87.73 85.97 85.79 87.27 86.34 83.77 82.68 82.71 83.05 83.40 82.11 83.79 83.10	2.04 1.99 3.47 3.45 2.91 3.28 1.40 1.73 1.71 1.61 2.43 2.85 2.22 2.50	82.27 82.46 84.83 84.52 84.43 84.59 78.85 78.61 78.45 78.64 80.46 80.36 80.34 80.39	69.69 72.10 72.91 74.84 73.28 69.36 68.46 68.36 68.73 62.38 60.71 57.52 60.20	87.57 90.00 89.67 89.58 89.75 83.68 83.43 83.27 83.46 85.35 85.24 85.22 85.22	69.1972.1973.4376.2773.9670.0968.7968.7269.2059.8057.5753.1856.85	92.34 92.46 94.95 94.70 94.65 94.77 87.29 87.12 87.02 87.14 89.76 89.67 89.69 89.71	64.71 63.83 64.34 67.01 72.24 67.86 64.79 62.89 63.25 63.64 54.20 51.71 46.35 50.75	14.68 15.19 15.29 13.66 10.69 13.21 11.85 13.00 12.75 12.53 20.64 22.47 26.70 23.27
Average L Replicate 2 Replicate 3 Average M Replicate 2 Replicate 3 Average N Replicate 2 Replicate 3	82.25 82.58 84.91 84.67 84.43 84.67 78.71 78.50 78.39 78.53 80.52 80.34 80.18	80.04 80.45 80.40 80.99 80.48 77.15 76.37 76.22 76.58 77.09 76.11 77.16	87.35 87.69 90.08 89.83 89.58 89.83 83.53 83.53 83.32 83.21 83.35 83.21 83.35 85.42 85.23 85.06	84.99 85.42 85.37 85.04 86.00 85.47 81.86 81.02 80.87 81.25 81.75 80.71 81.86	92.35 92.61 94.97 94.78 94.61 94.79 87.16 87.02 87.04 87.07 89.79 89.69 89.56	87.33 87.73 85.97 85.79 87.27 86.34 83.77 82.68 82.71 83.05 83.40 82.11 83.79	2.04 1.99 3.47 3.45 2.91 3.28 1.40 1.73 1.71 1.61 2.43 2.85 2.22	82.27 82.46 84.83 84.52 84.43 84.59 78.85 78.61 78.45 78.64 80.46 80.36 80.34	69.69 72.10 72.91 74.84 73.28 69.36 68.46 68.36 68.73 62.38 60.71 57.52	87.57 90.00 89.67 89.58 89.75 83.68 83.43 83.27 83.46 85.35 85.24 85.22	69.1972.1973.4376.2773.9670.0968.7968.7269.2059.8057.5753.18	92.34 92.46 94.95 94.70 94.65 94.77 87.29 87.12 87.02 87.14 89.76 89.67 89.69	64.71 63.83 64.34 67.01 72.24 67.86 64.79 62.89 63.25 63.64 54.20 51.71 46.35	14.68 15.29 13.66 10.69 13.21 11.85 13.00 12.75 12.53 20.64 22.47 26.70

Replicate 3	83.38	82.08	88.49	87.12	92.89	90.33	0.97	83.52	59.97	88.63	55.44	92.99	48.62	26.89
Average	83.58	82.09	88.69	87.11	93.01	90.00	1.15	83.70	58.53	88.81	53.35	92.81	45.86	29.28
Р	83.08	78.37	88.17	83.24	93.04	85.77	2.57	83.02	71.41	88.10	71.51	92.98	64.97	14.38
Replicate 2	82.86	78.55	87.95	83.45	92.92	86.33	2.32	82.76	72.76	87.84	73.49	92.81	68.52	12.31
Replicate 3	82.77	78.24	87.85	83.14	92.86	85.98	2.43	82.65	72.57	87.73	73.31	92.74	69.74	11.69
Average	82.90	78.39	87.99	83.28	92.94	86.03	2.44	82.81	72.25	87.89	72.77	92.84	67.74	12.79
Q	83.99	79.33	89.14	84.24	93.00	84.18	2.36	84.04	68.27	89.19	66.95	93.01	61.92	16.90
Replicate 2	83.73	78.07	88.87	82.92	92.80	82.40	3.94	83.84	70.90	88.98	70.78	92.85	67.05	13.52
Replicate 3	83.60	79.22	88.74	84.16	92.73	84.32	3.23	83.71	67.66	88.86	66.30	92.81	59.30	17.92
Average	83.77	78.87	88.92	83.77	92.84	83.63	3.18	83.86	68.94	89.01	68.01	92.89	62.76	16.11
R	78.56	77.12	83.55	82.12	87.62	85.17	0.95	78.55	69.23	83.55	70.73	87.64	70.80	8.86
Replicate 2	78.44	77	83.43	82.01	87.58	85.23	0.90	78.39	67.67	83.38	68.71	87.55	68.60	10.14
Replicate 3	78.39	77.04	83.39	82.04	87.63	85.32	0.89	78.26	69.89	83.25	71.72	87.52	72.34	7.95
Average	78.46	77.05	83.46	82.06	87.61	85.24	0.91	78.40	68.93	83.39	70.39	87.57	70.58	8.98
S	81.70	77.67	86.82	82.69	91.23	86.05	1.90	81.63	74.14	86.75	76.13	91.17	77.38	7.34
Replicate 2	81.46	76.88	86.57	81.87	91.13	85.33	2.14	81.40	72.32	86.51	73.75	91.01	74.62	8.81
Replicate 3	81.28	76.87	86.39	81.87	91.00	85.36	2.08	81.37	70.94	86.48	71.95	91.06	72.18	10.06
Average	81.48	77.14	86.59	82.14	91.12	85.58	2.04	81.47	72.47	86.58	73.94	91.08	74.73	8.74
Т	81.22	78.98	86.25	83.94	91.58	87.53	1.50	81.16	70.68	86.20	71.40	91.55	71.19	10.77
Replicate 2	80.80	77.87	85.83	82.8	91.24	86.2	1.85	80.82	70.87	85.84	71.86	91.23	72.33	9.99
Replicate 3	80.65	78.12	85.67	83.06	91.15	86.69	1.65	80.64	70.89	85.65	71.93	91.11	71.98	9.99
Average	80.89	78.32	85.92	83.27	91.32	86.81	1.67	80.87	70.81	85.90	71.73	91.30	71.83	10.25

Stain Resistance - Gloss

		Ketchup	o - After			Mustar	d - After			Wine	- After		F	Red Cray	on - Afte	r
	60°M	60 <i>°</i> SD	85°M	85 <i>°</i> SD	60°M	60 <i>°</i> SD	85°M	85 <i>°</i> SD	60°M	60 <i>°</i> SD	85°M	85 <i>°</i> SD	60°M	60 <i>°</i> SD	85°M	85 <i>°</i> SD
J-Pre	2.4	0.1	4.0	0.2	2.4	0.1	3.9	0.2	2.4	0.1	3.9	0.2	2.4	0.1	3.9	0.1
Strip 1	2.6	0.1	4.6	0.2	2.5	0.1	4.5	0.1	2.5	0.1	4.8	0.2	3.3	0.1	9.3	0.2
Strip 2	2.6	0.1	4.7	0.1	2.5	0.1	4.5	0.1	2.5	0.1	4.6	0.2	3.2	0.2	8.8	0.6
Strip 3	2.6	0.1	4.6	0.2	2.5	0.1	4.4	0.1	2.5	0.1	4.3	0.2	3.1	0.2	8.7	0.6
Avg	2.6	0.1	4.6	0.2	2.5	0.1	4.5	0.1	2.5	0.1	4.6	0.2	3.2	0.2	8.9	0.5
K-Pre	2.0	0.1	1.8	0.1	1.9	0.1	1.8	0.1	2.0	0.1	1.8	0.1	1.9	0.1	1.8	0.1
Strip 1	2.1	0.1	2.7	0.2	2.1	0.1	2.6	0.1	2.0	0.1	2.7	0.1	2.3	0.1	5.2	0.1
Strip 2	2.1	0.1	2.5	0.2	2.1	0.1	2.5	0.1	2.0	0.1	2.7	0.1	2.4	0.1	5.5	0.2
Strip 3	2.1	0.1	2.5	0.2	2.1	0.1	2.5	0.1	2.0	0.1	2.6	0.1	2.4	0.1	5.6	0.2
Avg	2.1	0.1	2.6	0.2	2.1	0.1	2.5	0.1	2.0	0.1	2.7	0.1	2.4	0.1	5.4	0.2
L-Pre	2.0	0.1	3.0	0.1	2.0	0.1	3.0	0.1	2.0	0.1	3.0	0.1	2.0	0.1	3.0	0.1
Strip 1	2.1	0.1	4.5	0.2	2.4	0.1	4.6	0.2	2.0	0.1	4.5	0.2	3.0	0.2	9.4	1.4
Strip 2	2.1	0.1	4.1	0.2	2.4	0.1	4.5	0.2	2.0	0.1	4.1	0.1	2.9	0.2	9.4	0.6

Strip 3	2.1	0.1	4.1	0.2	2.3	0.1	4.3	0.1	2.0	0.1	4.1	0.2	2.5	0.2	7.5	0.6
Avg	2.1	0.1	4.2	0.2	2.4	0.1	4.5	0.2	2.0	0.1	4.2	0.2	2.8	0.2	8.8	0.9
M-Pre	1.9	0.1	1.1	0.1	1.9	0.1	0.8	0.2	1.9	0.1	1.1	0.1	1.9	0.1	1.1	0.1
Strip 1	1.9	0.1	1.6	0.1	1.9	0.1	1.5	0.1	1.8	0.1	1.5	0.1	2.1	0.2	3.7	0.4
Strip 2	1.9	0.1	1.6	0.1	1.9	0.1	1.5	0.1	1.8	0.1	1.5	0.1	2.0	0.1	3.6	0.4
Strip 3	1.8	0.1	1.4	0.1	1.8	0.1	1.5	0.2	1.8	0.1	1.5	0.1	2.2	0.1	3.6	0.2
Avg	1.9	0.1	1.5	0.1	1.9	0.1	1.5	0.1	1.8	0.1	1.5	0.1	2.1	0.1	3.6	0.3
N-Pre	2.3	0.1	4.5	0.1	2.3	0.1	4.6	0.1	2.2	0.1	4.3	0.1	2.3	0.1	4.6	0.1
Strip 1	2.3	0.1	6.2	0.2	2.7	0.1	6.6	0.2	2.3	0.1	7.1	0.1	3.1	0.2	11.4	0.8
Strip 2	2.3	0.1	6.1	0.2	2.7	0.1	6.5	0.1	2.3	0.1	7.0	0.1	3.8	0.1	15.3	1.6
Strip 3	2.3	0.1	6.1	0.2	2.5	0.1	6.3	0.1	2.4	0.1	7.4	0.2	4.1	0.2	20.6	0.6
Avg	2.3	0.1	6.1	0.2	2.6	0.1	6.5	0.1	2.3	0.1	7.2	0.1	3.7	0.2	15.8	1.0
O-Pre	2.0	0.1	2.3	0.1	2.0	0.1	2.3	0.1	2.0	0.1	2.3	0.1	2.0	0.1	2.3	0.1
Strip 1	2.1	0.1	3.1	0.1	2.3	0.1	3.3	0.1	2.0	0.1	3.4	0.2	2.8	0.2	9.8	0.2
Strip 2	2.0	0.1	2.8	0.1	2.3	0.2	3.3	0.2	2.0	0.1	3.2	0.2	3.2	0.2	11.2	0.6
Strip 3	2.0	0.1	3.2	0.1	2.2	0.1	3.2	0.1	2.0	0.1	3.5	0.1	2.9	0.2	10.4	0.6
Avg	2.0	0.1	3.0	0.1	2.3	0.1	3.3	0.1	2.0	0.1	3.4	0.2	3.0	0.2	10.5	0.5
P-Pre	2.2	0.1	2.1	0.1	2.2	0.1	2.1	0.1	2.2	0.1	2.1	0.1	2.2	0.1	2.0	0.1
Strip 1	2.4	0.1	2.5	0.1	2.5	0.1	2.6	0.1	2.3	0.2	2.7	0.1	2.8	0.1	6.2	0.4
Strip 2	2.4	0.1	2.5	0.1	2.5	0.1	2.6	0.1	2.2	0.1	2.5	0.2	2.7	0.1	5.3	0.4
Strip 3	2.3	0.1	2.5	0.1	2.4	0.1	2.4	0.1	2.2	0.1	2.6	0.1	2.6	0.1	4.8	0.4
Avg	2.4	0.1	2.5	0.1	2.5	0.1	2.5	0.1	2.2	0.1	2.6	0.1	2.7	0.1	5.4	0.4
Q-Pre	2.0	0.1	2.5	0.1	2.0	0.1	2.5	0.1	2.0	0.1	2.5	0.1	2.0	0.1	2.5	0.1
Strip 1	2.2	0.1	3.2	0.1	2.4	0.1	3.6	0.1	2.1	0.1	3.6	0.1	2.8	0.2	8.8	0.2
Strip 2	2.2	0.1	2.9	0.2	2.6	0.1	3.5	0.1	2.1	0.1	3.3	0.2	2.5	0.2	5.9	0.4
Strip 3	2.1	0.1	2.9	0.2	2.5	0.1	3.4	0.1	2.0	0.1	3.2	0.2	2.6	0.1	6.6	0.4
Avg	2.2	0.1	3.0	0.2	2.5	0.1	3.5	0.1	2.1	0.1	3.4	0.2	2.6	0.2	7.1	0.3
R-Pre	2.8	0.1	1.2	0.1	2.8	0.1	1.2	0.1	2.8	0.1	1.2	0.1	2.8	0.1	1.2	0.1
Strip 1	2.9	0.1	1.5	0.1	3.3	0.1	1.7	0.1	3.0	0.1	1.6	0.1	2.8	0.1	2.4	0.2
Strip 2	3.0	0.1	1.5	0.1	3.3	0.1	1.7	0.1	2.9	0.1	1.5	0.1	2.8	0.1	2.7	0.2
Strip 3	2.9	0.1	1.4	0.1	3.3	0.1	1.7	0.1	2.9	0.1	1.5	0.1	2.7	0.1	1.9	0.2
Avg	2.9	0.1	1.5	0.1	3.3	0.1	1.7	0.1	2.9	0.1	1.5	0.1	2.8	0.1	2.3	0.2
S-Pre	2.2	0.1	1.7	0.1	2.2	0.1	1.8	0.1	2.2	0.1	1.8	0.1	2.2	0.1	1.8	0.1
Strip 1	2.3	0.1	2.6	0.2	2.4	0.1	2.7	0.2	2.3	0.1	2.8	0.1	2.3	0.1	3.4	0.2
Strip 2	2.3	0.1	2.5	0.2	2.3	0.2	2.8	0.1	2.3	0.1	2.9	0.1	2.5	0.1	4.4	0.2
Strip 3	2.3	0.1	2.5	0.1	2.3	0.2	2.8	0.2	2.2	0.1	3.0	0.1	2.5	0.1	4.8	0.2
Avg	2.3	0.1	2.5	0.2	2.3	0.2	2.8	0.2	2.3	0.1	2.9	0.1	2.4	0.1	4.2	0.2
T-Pre	1.9	0.1	1.2	0.1	1.9	0.1	1.2	0.1	1.9	0.1	1.2	0.1	1.9	0.1	1.2	0.1
Strip 1	2.0	0.1	1.9	0.1	2.2	0.1	1.9	0.1	1.9	0.1	2.1	0.1	2.1	0.1	3.6	0.4
Strip 2	2.0	0.1	1.9	0.1	2.0	0.1	1.8	0.1	1.9	0.1	1.9	0.1	2.1	0.1	3.1	0.2

Strip 3	2.0	0.1	1.9	0.1	2.1	0.1	1.8	0.1	1.9	0.1	1.9	0.1	2.1	0.1	3.2	0.1
Avg	2.0	0.1	1.9	0.1	2.1	0.1	1.8	0.1	1.9	0.1	2.0	0.1	2.1	0.1	3.3	0.2

Touch – Up

					Glos	s 85°					Gloss	- Visual R	ating	AQMD
	A1	A2	B1	B2	C1	C2	D1	D2	E1	E2	С	D	Е	Rating
J	3.3	3.9	3.6	3.3	4.3	3.7	3.6	3.7	3.5	4.1	10	10	10	10
Replicate 2	3.6	4.0	3.9	3.6	4.1	3.9	3.8	3.8	4.3	4.1	10	10	10	10
Replicate 3	3.4	3.9	3.6	3.3	3.8	3.7	3.5	3.4	3.6	3.4	10	10	10	10
Average	3.4	3.9	3.7	3.4	4.1	3.8	3.6	3.6	3.8	3.9	10	10	10	10
K	1.5	1.6	1.7	1.7	2.0	1.9	1.7	1.8	1.8	2.0	10	10	10	10
Replicate 2	1.7	1.9	1.7	1.6	2.1	2.0	1.9	1.9	2.5	2.0	10	10	10	10
Replicate 3	1.7	1.9	1.8	1.7	1.8	1.9	1.8	1.8	2.2	1.9	10	10	10	10
Average	1.6	1.8	1.7	1.7	2.0	1.9	1.8	1.8	2.2	2.0	10	10	10	10
L	2.3	2.7	2.5	2.6	2.5	2.6	2.5	2.6	2.4	2.3	10	10	10	10
Replicate 2	2.3	2.6	2.4	2.4	2.5	2.5	2.5	2.6	2.6	2.5	10	10	10	10
Replicate 3	2.5	2.6	2.5	2.5	2.7	2.6	2.4	2.5	2.4	2.3	10	10	10	10
Average	2.4	2.6	2.5	2.5	2.6	2.6	2.5	2.6	2.5	2.4	10	10	10	10
М	0.8	1.2	1.3	0.9	1.2	0.9	1.1	1.2	1.2	1.2	10	10	10	10
Replicate 2	0.9	1.0	1.2	0.9	1.3	0.9	1.2	1.2	1.3	1.1	10	10	10	10
Replicate 3	0.9	1.2	1.3	0.9	1.3	0.9	1.2	1.2	1.1	1.1	10	10	10	10
Average	0.9	1.1	1.3	0.9	1.3	0.9	1.2	1.2	1.2	1.1	10	10	10	10
Ν	2.8	3.5	3.1	3.0	3.9	3.3	3.6	3.4	4.1	4.1	10	10	10	10
Replicate 2	2.9	2.7	3.6	3.2	4.2	3.4	3.1	3.1	2.7	3.7	10	10	10	10
Replicate 3	2.7	3.5	3.4	3.1	3.9	3.3	3.7	3.6	3.7	4.0	10	10	10	10
Average	2.8	3.2	3.4	3.1	4.0	3.3	3.5	3.4	3.5	3.9	10	10	10	10
0	1.8	2.1	2.0	1.8	2.1	1.9	1.9	1.9	1.9	1.8	10	10	10	10
Replicate 2	1.7	2.2	1.9	1.8	2.2	1.9	2.1	1.9	2.0	2.0	10	10	10	10
Replicate 3	1.6	2.1	2.0	1.7	2.1	1.7	2.0	2.1	2.0	1.9	10	10	10	10
Average	1.7	2.1	2.0	1.8	2.1	1.8	2.0	2.0	2.0	1.9	10	10	10	10
Р	1.6	2.0	2.1	1.8	2.3	1.8	2.0	2.0	1.9	1.8	10	10	10	10
Replicate 2	1.7	2.0	2.0	1.8	2.3	1.6	2.1	2.2	2.2	2.0	10	10	10	10
Replicate 3	1.6	2.0	2.1	1.7	2.0	1.8	2.1	2.1	1.7	1.8	10	10	10	10
Average	1.6	2.0	2.1	1.8	2.2	1.7	2.1	2.1	1.9	1.9	10	10	10	10
Q	2.0	2.1	2.0	2.0	2.1	2.0	1.9	2.0	2.2	1.8	10	10	10	10
Replicate 2	1.8	2.3	2.2	1.9	2.5	1.9	2.2	2.2	1.9	1.8	10	10	10	10
Replicate 3	1.8	2.3	2.2	1.8	2.4	1.9	2.2	2.2	2.6	2.2	10	10	10	10
Average	1.9	2.2	2.1	1.9	2.3	1.9	2.1	2.1	2.2	1.9	10	10	10	10
R	1.1	1.3	1.2	1.1	1.6	1.1	1.2	1.1	0.8	0.9	10	10	10	10

Replicate 2	1.1	1.3	1.2	1.1	1.5	1.4	1.1	1.1	0.9	0.9	10	10	10	10
Replicate 3	1.1	1.2	1.1	1.2	1.1	1.2	1.1	1.1	1.0	0.9	10	10	10	10
Average	1.1	1.3	1.2	1.1	1.4	1.2	1.1	1.1	0.9	0.9	10	10	10	10
S	1.2	1.4	1.5	1.2	1.2	1.1	1.5	1.5	1.6	1.4	10	10	10	10
Replicate 2	1.2	1.7	1.7	1.2	1.5	1.2	1.7	1.7	1.5	1.6	10	10	10	10
Replicate 3	1.2	1.7	1.5	1.2	1.4	1.1	1.5	1.5	1.5	1.6	10	10	10	10
Average	1.2	1.6	1.6	1.2	1.4	1.1	1.6	1.6	1.5	1.5	10	10	10	10
Т	1.0	1.3	1.2	0.9	1.2	1.0	1.0	1.2	1.0	1.5	10	10	10	10
Replicate 2	0.9	1.3	1.2	1.0	1.3	1.0	1.1	1.2	1.0	1.0	10	10	10	10
Replicate 3	0.9	1.3	1.3	1.0	1.4	1.1	1.1	1.2	1.2	1.0	10	10	10	10
Average	0.9	1.3	1.2	1.0	1.3	1.0	1.1	1.2	1.1	1.2	10	10	10	10

Tests for Exterior Flat Paints

Adhesion - Glass

	Cr	oss-Hatch A	Adhesion - Glass	AQMD
	Rating	Failure %	Failure Mechanism	Rating
А	4B	4	Adhesion	4
Replicate 2	3B	10	Adhesion	3
Replicate 3	3B	15	Adhesion	3
Average	3B	10	Adhesion	3
В	5B	0		5
Replicate 2	4B	2	Adhesion	4
Replicate 3	4B	3	Adhesion	4
Average	4B	2	Adhesion	4
С	2B	15	Adhesion	2
Replicate 2	2B	20	Adhesion	2
Replicate 3	3B	25	Adhesion	3
Average	2B	20	Adhesion	2
D	4B	3	Adhesion	4
Replicate 2	3B	5	Adhesion	3
Replicate 3	4B	4	Adhesion	4
Average	4B	4	Adhesion	4
E	4B	1	Adhesion	4
Replicate 2	5B	0		5
Replicate 3	5B	0		5
Average	5B	0	Adhesion	5
F	2B	20	Adhesion	2

Replicate 2	2B	15	Adhesion	2
Replicate 3	2B	20	Adhesion	2
Average	2B	18	Adhesion	2
G	2B	20	Adhesion	2
Replicate 2	3B	10	Adhesion	3
Replicate 3	2B	20	Adhesion	2
Average	2B	17	Adhesion	2
Н	4B	2	Adhesion	4
Replicate 2	4B	4	Adhesion	4
Replicate 3	4B	3	Adhesion	4
Average	4B	3	Adhesion	4
1	4B	1	Adhesion	4
Replicate 2	4B	1	Adhesion	4
Replicate 3	4B	1	Adhesion	4
Average	4B	1	Adhesion	4
S	2B	20	Adhesion	2
Replicate 2	2B	20	Adhesion	2
Replicate 3	2B	20	Adhesion	2
Average	2B	20	Adhesion	2
Т	3B	5	Adhesion	3
Replicate 2	3B	5	Adhesion	3
Replicate 3	3B	10	Adhesion	3
Average	3B	7	Adhesion	3

Tannin Stain Resistance

	Ce	dar-Init	ial		Cec	lar		Visual	Le	neta-Ini	tial		Cec	lar	
	X	Υ	Z	X	Y	Z	ΔE	Ranking	Х	Υ	Z	Χ	Υ	Z	ΔE
Positive Standard	71.02	75.18	75.48	71.75	75.95	74.81	1.20		79.25	83.76	86.81	73.96	78.20	78.71	3.01
Replicate 2	70.18	74.37	74.50	71.65	75.89	74.53	1.40	5				71.46	75.62	74.82	4.55
Replicate 3	69.36	73.36	73.17	69.33	73.29	71.61	1.21					68.80	72.63	72.30	5.56
Replicate 4	71.20	75.26	75.13	71.82	75.94	74.75	0.89	5				71.95	76.00	76.03	4.04
Replicate 5	71.22	75.30	75.84	72.36	76.56	75.67	1.29					73.02	77.16	77.43	3.50
Replicate 6	67.86	71.61	71.31	70.01	74.02	72.35	1.65	5				68.76	72.52	70.75	6.19
Average	70.14	74.18	74.24	71.15	75.28	73.95	1.27	5				71.33	75.36	75.01	4.48
Negative Standard	69.67	73.29	68.49	70.37	73.98	68.73	0.49		74.44	78.07	72.60	68.29	71.89	66.66	2.96
Replicate 2	69.27	72.88	68.08	70.13	73.74	68.50	0.56	1				67.71	71.27	66.15	3.25
Replicate 3	67.82	71.35	66.62	69.25	72.81	67.71	0.76					66.84	70.33	65.77	3.74
Replicate 4	68.72	72.20	67.03	70.27	73.78	68.29	0.79	1				68.91	72.41	67.36	2.68
Replicate 5	70.17	73.75	68.65	71.20	74.76	69.18	0.63	1				70.40	73.99	68.27	1.95

	Replicate 6	70.16	73.74	68.54	71.68	75.28	69.71	0.78					70.20	73.77	68.40	2.03
	Average	69.30	72.87	67.90	70.48	74.06	68.69	0.67	1				68.73	72.28	67.10	2.77
А		74.23	78.49	79.49	75.51	79.77	79.83	0.95	10	84.64	89.57	91.98	75.53	79.77	80.07	4.44
	Replicate 2	73.43	77.72	77.81	75.88	80.26	79.61	1.30	9				75.77	80.13	79.58	4.51
	Replicate 3	73.50	77.60	78.70	75.86	80.08	80.46	1.27	9				76.04	80.27	80.75	4.19
	Average	73.72	77.94	78.67	75.75	80.04	79.97	1.17	9				75.78	80.06	80.13	4.38
В		77.04	81.62	79.76	77.62	82.03	79.28	0.80	3	85.52	90.55	93.66	77.62	82.01	79.36	5.42
	Replicate 2	76.64	81.05	79.24	78.69	83.10	80.93	0.97	3				78.57	82.98	80.91	4.81
	Replicate 3	78.80	83.46	81.79	79.55	84.06	81.85	0.61	3				79.42	83.92	81.80	4.57
	Average	77.49	82.04	80.26	78.62	83.06	80.69	0.79	3				78.54	82.97	80.69	4.93
С		74.54	79.13	78.79	75.98	80.50	79.53	0.85	4	84.89	89.87	92.20	76.20	80.71	79.71	4.52
	Replicate 2	74.02	78.52	77.60	75.80	80.29	78.92	0.90	4				75.85	80.33	78.79	4.87
	Replicate 3	76.25	80.90	80.58	78.14	82.80	82.19	0.90	4				78.62	83.30	82.61	3.45
	Average	74.94	79.52	78.99	76.64	81.20	80.21	0.88	4				76.89	81.45	80.37	4.28
D		77.16	81.69	79.22	77.46	81.78	78.65	0.67	2	84.76	89.70	92.14	77.56	81.87	78.78	5.15
	Replicate 2	76.49	80.86	78.75	78.16	82.53	80.32	0.76	2				77.43	81.71	79.21	4.87
	Replicate 3	77.28	81.79	79.95	79.03	83.44	80.87	1.00	2				79.06	83.47	81.01	4.33
	Average	76.98	81.45	79.31	78.22	82.58	79.95	0.81	2				78.02	82.35	79.67	4.78
Е		75.04	79.50	81.97	76.24	80.72	82.32	0.88	12	78.79	83.56	86.26	76.26	80.73	82.29	1.48
	Replicate 2	74.11	78.49	80.35	75.74	80.20	81.38	0.94	12				75.26	79.68	80.91	1.99
	Replicate 3	75.25	79.69	82.19	76.87	81.39	83.26	0.92	12				76.91	81.41	83.20	1.16
	Average	74.80	79.23	81.50	76.28	80.77	82.32	0.91	12				76.14	80.61	82.13	1.54
F		74.22	78.63	80.73	75.34	79.72	80.75	0.99	13	78.76	83.50	85.76	75.22	79.59	80.67	1.92
	Replicate 2	73.84	78.12	79.53	75.66	80.00	80.90	0.96	13				75.58	79.90	80.90	1.85
	Replicate 3	74.83	79.25	81.43	76.48	80.93	82.23	1.04	13				76.49	80.93	82.27	1.32
	Average	74.30	78.67	80.56	75.83	80.22	81.29	1.00	13				75.76	80.14	81.28	1.70
G		74.54	78.86	79.20	76.05	80.42	80.08	0.90	9	83.51	88.37	90.15	75.64	80.00	79.82	3.84
	Replicate 2	74.18	78.52	77.72	76.25	80.67	79.29	1.08	8				76.36	80.78	79.38	3.94
	Replicate 3	75.66	80.01	80.43	77.39	81.83	81.56	0.97	7				77.03	81.42	81.12	3.30
	Average	74.79	79.13	79.12	76.56	80.97	80.31	0.98	8				76.34	80.73	80.11	3.69
Н		78.45	83.04	83.46	79.64	84.19	83.97	0.73	8	85.37	90.34	92.72	79.83	84.39	84.20	3.04
	Replicate 2	75.21	79.43	79.77	77.20	81.49	81.56	0.95	11				77.57	81.88	82.08	3.88
	Replicate 3	78.85	83.39	83.82	80.82	85.44	85.67	0.90	10				81.07	85.67	85.65	2.53
	Average	77.50	81.95	82.35	79.22	83.71	83.73	0.86	10				79.49	83.98	83.98	3.15
		72.26	76.46	77.98	74.47	78.75	79.20	1.37	11	84.12	89.07	91.61	74.19	78.45	79.00	4.77
	Replicate 2	73.97	78.27	77.88	76.42	80.82	79.67	1.30	10				76.14	80.50	79.44	4.43
	Replicate 3	75.07	79.42	80.73	77.20	81.65	81.76	1.37	11				77.25	81.70	81.97	3.48
	Average	73.77	78.05	78.86	76.03	80.41	80.21	1.35	11				75.86	80.22	80.14	4.23
S		75.52	80.01	80.44	76.46	80.90	80.65	0.69	6	85.32	90.38	92.75	76.85	81.32	81.13	4.21
	Replicate 2	73.83	78.21	78.55	76.75	81.27	80.89	1.51	6				75.90	80.34	80.02	4.64

Replicate 3	76.64	81.12	81.54	78.39	82.89	82.43	1.05	8				78.46	82.96	82.67	3.61
Average	75.33	79.78	80.18	77.20	81.69	81.32	1.08	7				77.07	81.54	81.27	4.15
Т	74.20	78.64	80.47	75.65	80.04	80.54	1.25	7	85.59	90.67	93.85	75.84	80.24	80.63	4.80
Replicate 2	73.27	77.64	78.79	74.44	78.75	78.72	1.09	7				73.84	78.10	78.05	5.81
Replicate 3	76.29	80.78	82.73	77.51	81.97	82.30	1.35	6				77.39	81.82	82.04	4.23
Average	74.59	79.02	80.66	75.87	80.25	80.52	1.23	7				75.69	80.05	80.24	4.95

<u>Alkalinity</u>

		0 Days			Day	/ 1			Day	y 2			Da	у З	
	X	Y	Z	Х	Y	Z	ΔE	Х	Υ	Z	ΔE	Х	Υ	Z	ΔE
Α	66.12	60.60	48.17	66.37	61.10	48.23	0.78	66.57	61.56	48.18	1.62	67.13	62.85	48.28	3.74
Replicate 2	65.60	60.03	47.44	65.83	60.92	47.36	1.90	65.98	61.41	47.12	2.96	66.91	63.32	47.67	5.70
Replicate 3	65.87	60.40	47.93	65.80	60.83	47.97	1.25	66.07	61.35	47.78	2.11	66.28	61.94	47.92	3.12
Average	65.86	60.34	47.85	66.00	60.95	47.85	1.31	66.21	61.44	47.69	2.23	66.77	62.70	47.96	4.19
В	68.24	62.88	51.24	68.09	63.10	51.25	0.86	67.69	62.72	50.56	1.01	67.88	63.14	50.99	1.48
Replicate 2	68.37	62.92	51.16	67.99	63.00	50.98	1.05	67.91	63.05	50.70	1.43	68.18	63.55	51.11	1.97
Replicate 3	68.24	62.92	51.33	68.14	63.23	51.40	0.95	67.57	62.80	50.63	1.32	68.12	63.56	51.23	1.86
Average	68.28	62.91	51.24	68.07	63.11	51.21	0.95	67.72	62.86	50.63	1.25	68.06	63.42	51.11	1.77
С	66.65	62.07	50.35	66.30	62.36	50.48	1.45	66.30	63.97	50.00	5.58	67.39	66.68	50.92	9.65
Replicate 2	68.14	63.03	50.87	67.73	62.88	50.71	0.58	67.75	63.71	50.60	2.58	67.06	63.37	50.32	3.29
Replicate 3	68.10	63.05	50.89	67.70	63.05	50.84	0.89	67.17	62.75	50.18	1.45	67.27	63.28	50.35	2.47
Average	67.63	62.72	50.70	67.24	62.76	50.68	0.97	67.07	63.48	50.26	3.20	67.24	64.44	50.53	5.14
D	68.07	62.53	51.09	67.50	62.15	50.75	0.44	66.81	61.59	50.13	0.81	67.07	61.88	50.48	0.79
Replicate 2	67.71	62.16	50.75	67.46	62.26	50.65	0.81	67.18	62.14	50.19	1.25	67.34	62.44	50.47	1.57
Replicate 3	67.62	62.19	50.94	67.42	62.29	50.87	0.72	67.25	62.24	50.54	1.05	67.29	62.56	50.55	1.76
Average	67.80	62.29	50.93	67.46	62.23	50.76	0.66	67.08	61.99	50.29	1.04	67.23	62.29	50.50	1.37
E	67.77	64.87	56.77	67.61	65.11	56.62	0.96	67.63	66.09	55.89	3.62	69.32	69.69	57.13	8.43
Replicate 2	67.24	64.38	56.24	67.46	65.06	56.47	1.11	67.34	65.68	55.78	3.20	67.78	66.85	56.13	5.00
Replicate 3	67.80	64.90	56.78	67.76	65.29	56.78	1.02	67.68	66.04	56.07	3.29	68.25	67.53	56.30	5.66
Average	67.60	64.72	56.60	67.61	65.15	56.62	1.03	67.55	65.94	55.91	3.37	68.45	68.02	56.52	6.36
F	65.55	62.07	53.52	66.88	64.35	54.20	2.85	66.98	65.42	53.67	5.47	68.51	68.48	54.87	9.38
Replicate 2	66.22	62.65	53.98	66.64	63.89	54.16	2.17	66.82	64.76	53.77	4.14	67.72	66.71	54.53	6.82
Replicate 3	66.35	62.73	53.98	66.54	63.44	54.14	1.32	66.74	64.16	53.93	2.81	68.63	68.55	54.89	9.37
Average	66.04	62.48	53.83	66.69	63.89	54.17	2.11	66.85	64.78	53.79	4.14	68.29	67.91	54.76	8.52
G	64.07	57.65	43.28	63.94	57.78	43.36	0.62	63.35	57.38	42.94	1.03	63.37	57.47	43.03	1.18
Replicate 2	64.65	58.07	43.56	64.71	59.08	43.69	2.50	65.12	60.42	43.60	5.16	66.63	63.79	44.38	10.31
Replicate 3	64.12	57.70	43.36	64.99	59.88	43.78	3.80	65.28	61.06	43.59	6.34	66.22	62.95	43.98	9.09
Average	64.28	57.81	43.40	64.55	58.91	43.61	2.31	64.58	59.62	43.38	4.18	65.41	61.40	43.80	6.86
Н	67.64	62.58	50.52	67.42	62.90	50.64	1.23	67.44	63.20	50.36	2.02	67.75	64.12	50.45	3.65

							1								
Replicate 2	68.29	63.08	50.84	68.01	63.14	50.80	0.74	67.71	63.16	50.36	1.57	68.10	64.00	50.52	2.79
Replicate 3	68.07	63.00	50.96	67.95	63.49	50.94	1.46	67.80	63.56	50.50	2.10	68.45	65.02	50.82	4.32
Average	68.00	62.89	50.77	67.79	63.18	50.79	1.14	67.65	63.31	50.41	1.90	68.10	64.38	50.60	3.59
1	66.18	60.62	46.23	66.15	61.06	46.35	1.15	66.26	61.84	46.15	2.97	67.25	63.63	46.69	5.30
Replicate 2	66.30	60.79	46.46	66.05	61.02	46.46	1.12	66.26	61.77	46.38	2.61	67.14	63.59	46.74	5.28
Replicate 3	66.17	60.71	46.44	66.33	61.55	46.56	1.79	66.74	62.67	46.53	3.80	67.77	64.76	46.85	6.87
Average	66.22	60.71	46.38	66.18	61.21	46.46	1.35	66.42	62.09	46.35	3.13	67.39	63.99	46.76	5.82
S	67.73	62.39	50.33	67.52	62.51	50.55	0.76	68.13	64.30	50.37	3.96	71.04	70.29	52.10	12.07
Replicate 2	67.08	61.82	49.81	67.01	62.04	50.11	0.67	66.82	62.28	49.16	1.97	68.79	66.14	50.84	6.94
Replicate 3	67.68	62.44	50.43	67.91	63.08	50.63	1.08	67.96	63.55	50.15	2.39	69.60	67.05	51.19	7.34
Average	67.50	62.22	50.19	67.48	62.54	50.43	0.84	67.64	63.38	49.89	2.77	69.81	67.83	51.38	8.78
Т	66.46	60.53	47.17	66.94	61.65	47.40	1.83	67.89	64.44	47.41	6.96	70.76	70.42	49.26	15.01
Replicate 2	66.47	60.21	46.49	66.01	60.17	46.44	0.93	66.89	62.22	46.51	4.28	71.12	71.10	48.87	16.58
Replicate 3	66.71	60.62	47.08	66.88	61.65	47.27	2.20	68.05	64.24	47.36	6.39	71.64	72.08	49.45	17.31
Average	66.55	60.45	46.91	66.61	61.16	47.04	1.65	67.61	63.63	47.09	5.88	71.17	71.20	49.19	16.30

		Da	y 4			Da	у 5			Da	y 6			Da	y 7	
	X	Y	Z	ΔE	X	Y	Z	ΔE	Х	Y	Ζ	ΔE	Х	Υ	Ζ	ΔE
А	67.88	64.38	48.59	5.95	68.28	65.32	48.59	7.52	68.68	66.33	48.68	9.17	69.11	67.22	48.83	10.42
Replicate 2	68.06	65.22	48.26	7.96	67.70	65.57	47.92	9.61	68.89	67.63	48.51	12.04	69.20	68.23	48.59	12.86
Replicate 3	66.72	62.86	48.07	4.52	66.64	63.08	47.95	5.28	66.85	63.45	48.00	5.76	67.16	64.00	47.97	6.57
Average	67.55	64.15	48.31	6.14	67.54	64.66	48.15	7.47	68.14	65.80	48.40	8.99	68.49	66.48	48.46	9.95
В	67.97	63.56	50.93	2.36	67.90	63.56	50.79	2.55	67.82	63.47	50.82	2.48	67.78	63.50	50.71	2.66
Replicate 2	68.32	63.92	51.17	2.58	68.28	64.28	50.99	3.62	68.11	64.02	50.85	3.35	67.87	63.91	50.62	3.67
Replicate 3	67.94	63.53	51.06	2.19	68.03	63.84	51.05	2.80	68.05	63.96	51.03	3.07	67.74	63.66	50.75	3.06
Average	68.08	63.67	51.05	2.38	68.07	63.89	50.94	2.99	67.99	63.82	50.90	2.97	67.80	63.69	50.69	3.13
С	68.84	69.51	51.94	13.17	68.44	69.10	51.53	13.11	69.10	69.50	51.67	12.76	68.66	68.87	51.36	12.24
Replicate 2	67.45	64.63	50.34	5.56	67.88	65.64	50.78	7.00	68.17	66.58	51.01	8.60	67.96	66.61	50.77	9.20
Replicate 3	67.23	63.36	50.31	2.77	67.07	63.33	50.17	3.07	66.61	63.20	49.61	3.91	66.71	63.42	49.85	4.16
Average	67.84	65.83	50.86	7.17	67.80	66.02	50.83	7.73	67.96	66.43	50.76	8.42	67.78	66.30	50.66	8.53
D	67.00	61.92	50.52	1.02	66.66	61.62	50.20	1.14	66.96	61.88	50.45	1.02	66.91	61.91	50.35	1.21
Replicate 2	67.53	62.93	50.54	2.36	67.49	63.01	50.46	2.69	67.65	63.34	50.52	3.16	67.19	62.96	50.06	3.33
Replicate 3	67.60	63.11	50.72	2.43	67.33	63.14	50.39	3.19	67.32	63.12	50.38	3.17	67.31	63.35	50.21	3.84
Average	67.38	62.65	50.59	1.94	67.16	62.59	50.35	2.34	67.31	62.78	50.45	2.45	67.14	62.74	50.21	2.79
E	70.91	72.97	58.67	12.38	71.60	75.07	59.23	15.60	71.79	75.62	59.37	16.41	71.62	75.82	59.12	17.25
Replicate 2	68.98	69.30	57.16	8.12	69.34	69.97	57.49	8.88	69.04	69.93	57.15	8.78	69.64	70.80	57.56	10.21
Replicate 3	69.32	69.71	57.10	8.45	69.87	71.02	57.63	10.23	69.59	70.19	57.66	8.84	69.79	71.25	57.45	10.98
Average	69.74	70.66	57.64	9.65	70.27	72.02	58.12	11.57	70.14	71.91	58.06	11.34	70.35	72.62	58.04	12.81
F	70.26	72.70	56.45	15.19	70.42	73.48	56.51	16.62	70.25	73.11	56.23	16.23	70.43	74.18	56.32	18.26
Replicate 2	68.68	68.87	55.23	9.83	68.30	68.16	54.96	8.98	69.43	71.20	55.60	13.69	68.25	68.76	54.77	10.56

Replicate 3	69.65	70.92	55.82	12.59	70.29	72.73	56.28	15.35	70.69	74.01	56.63	17.34	70.62	74.11	56.57	17.72
Average	69.53	70.83	55.83	12.54	69.67	71.46	55.92	13.65	70.12	72.77	56.15	15.75	69.77	72.35	55.89	15.51
G	63.54	57.70	43.05	1.38	63.10	57.41	42.64	1.73	63.16	57.71	42.76	2.31	62.79	57.29	42.39	2.19
Replicate 2	68.60	67.63	45.41	15.40	69.42	69.64	45.74	18.42	70.06	70.96	46.17	20.13	70.12	71.66	45.88	21.74
Replicate 3	66.78	64.63	44.43	11.93	68.18	67.19	45.07	15.16	68.26	67.71	45.08	16.24	68.36	68.06	45.10	16.86
Average	66.31	63.32	44.30	9.57	66.90	64.75	44.48	11.77	67.16	65.46	44.67	12.89	67.09	65.67	44.46	13.60
Н	69.07	66.73	51.14	7.19	69.93	68.92	51.46	10.62	70.03	69.10	51.46	10.86	70.42	69.82	51.55	11.78
Replicate 2	68.81	65.32	50.86	4.52	69.37	66.72	51.01	6.77	69.49	67.70	50.99	7.41	69.76	68.11	50.93	9.41
Replicate 3	69.46	67.11	51.38	7.22	69.77	68.36	51.10	9.73	70.37	69.40	51.82	10.72	70.51	70.31	51.42	12.77
Average	69.11	66.39	51.13	6.31	69.69	68.00	51.19	9.04	69.96	68.73	51.42	9.66	70.23	69.41	51.30	11.32
1	69.46	68.42	48.11	12.04	70.82	72.31	49.08	18.08	71.15	73.16	49.35	19.29	71.22	73.58	49.17	20.18
Replicate 2	68.11	65.29	47.29	7.38	69.30	66.01	47.32	8.73	68.82	67.50	47.70	11.15	69.24	68.22	47.73	12.05
Replicate 3	68.91	66.92	47.57	9.61	69.88	69.95	48.12	14.68	70.08	69.94	48.07	14.32	69.92	70.01	47.97	14.82
Average	68.83	66.88	47.66	9.68	70.00	69.42	48.17	13.83	70.02	70.20	48.37	14.92	70.13	70.60	48.29	15.68
S	73.69	76.25	53.91	19.92	74.81	79.01	54.59	23.62	75.19	79.85	54.77	24.65	74.85	79.65	54.30	25.01
Replicate 2	70.17	68.80	51.68	10.34	72.96	75.78	53.47	20.34	73.77	76.92	54.01	21.17	73.49	77.48	53.57	23.06
Replicate 3	70.83	69.68	52.09	10.88	71.58	71.65	52.37	13.94	71.53	71.42	52.45	13.45	71.30	71.42	51.95	14.10
Average	71.56	71.58	52.56	13.71	73.12	75.48	53.48	19.30	73.50	76.06	53.74	19.76	73.21	76.18	53.27	20.72
Т	72.40	73.62	50.38	18.83	73.45	76.80	51.01	23.65	73.77	77.69	51.10	24.97	73.45	77.77	50.85	25.82
Replicate 2	73.76	76.38	50.44	22.97	74.86	78.92	51.00	26.26	75.00	79.66	50.96	27.61	74.55	79.55	50.51	28.34
Replicate 3	74.13	77.55	51.05	24.28	74.54	78.80	51.08	26.22	75.39	79.88	51.52	26.85	74.69	80.08	51.25	28.59
Average	73.43	75.85	50.62	22.03	74.28	78.17	51.03	25.38	74.72	79.08	51.19	26.48	74.23	79.13	50.87	27.58

	X	Υ	Ζ	ΔE	Visual
А	68.03	65.98	48.01	9.83	0
Replicate 2	68.19	67.06	47.89	12.29	0
Replicate 3	65.79	61.84	47.29	4.14	0
Average	67.34	64.96	47.73	8.75	0
В	67.70	63.33	50.48	2.51	2
Replicate 2	67.47	63.62	50.04	3.98	0
Replicate 3	67.27	63.20	50.20	3.11	0
Average	67.48	63.38	50.24	3.20	1
С	68.32	68.29	50.73	11.78	0
Replicate 2	67.88	66.72	50.45	9.72	0
Replicate 3	66.42	63.37	49.24	4.87	0
Average	67.54	66.13	50.14	8.79	0
D	66.27	61.38	49.80	1.51	4
Replicate 2	66.72	62.21	49.72	2.54	0
Replicate 3	66.19	61.99	49.14	3.20	0
Average	66.39	61.86	49.55	2.42	1

70.56	74.46	58.14	16.55	0
69.43	71.15	57.23	11.52	0
69.29	70.61	56.86	10.69	0
69.76	72.07	57.41	12.92	0
69.61	72.93	55.37	17.34	0
67.93	68.61	54.22	11.05	0
70.00	73.38	55.71	17.57	0
69.18	71.64	55.10	15.32	0
61.65	56.51	41.54	3.04	2
69.39	70.43	45.08	20.64	0
68.30	68.69	44.64	18.69	0
66.45	65.21	43.75	14.12	1
70.00	70.05	51.13	13.26	0
70.08	69.23	51.17	11.32	0
69.54	68.61	50.49	11.04	0
69.87	69.30	50.93	11.87	0
70.77	73.35	48.75	20.66	0
69.13	68.45	47.66	12.82	0
68.25	66.93	46.50	11.38	0
69.38	69.58	47.64	14.95	0
74.35	79.17	54.10	24.95	0
72.21	75.51	52.87	21.34	0
71.79	72.93	52.03	16.60	0
72.78	75.87	53.00	20.96	0
72.98	76.76	50.43	24.66	0
74.59	79.33	50.00	28.05	0
74.99	79.34	50.64	26.78	0
74.19	78.48	50.36	26.50	0
	69.43 69.29 69.76 69.71 67.93 70.00 69.18 61.65 69.39 68.30 66.45 70.00 70.8 69.54 69.87 70.77 69.13 68.25 69.38 74.35 72.21 71.79 72.98 74.59 74.59 74.99	69.4371.1569.2970.61 69.7672.07 69.6172.9367.9368.6170.0073.38 69.1871.64 61.6556.5169.3970.4368.3068.69 66.4565.21 70.0070.0570.0869.2369.5468.61 69.8769.30 70.7773.3569.1368.4568.2566.93 69.3869.58 74.3579.1772.2175.5171.7972.93 72.7876.76 74.5979.3374.9979.34	69.4371.1557.2369.2970.6156.86 69.7672.0757.41 69.6172.9355.3767.9368.6154.2270.0073.3855.71 69.1871.6455.10 61.6556.5141.5469.3970.4345.0868.3068.6944.64 66.4565.2143.75 70.0070.0551.1370.0869.2351.1769.5468.6150.49 69.8769.3050.93 70.7773.3548.7569.1368.4547.6668.2566.9346.50 69.3869.5847.64 74.3579.1754.1072.2175.5152.8771.7972.9352.0372.9876.7650.4374.5979.3350.0074.9979.3450.64	69.4371.1557.2311.5269.2970.6156.8610.6969.7672.0757.4112.9269.6172.9355.3717.3467.9368.6154.2211.0570.0073.3855.7117.5769.1871.6455.1015.3261.6556.5141.543.0469.3970.4345.0820.6468.3068.6944.6418.6966.4565.2143.7514.1270.0070.0551.1313.2670.0869.2351.1711.3269.5468.6150.4911.0469.5468.6150.4911.0469.5468.6150.4911.0469.5468.6150.4911.3269.5468.6150.4911.3869.5869.3046.5011.3869.3869.5847.6414.9574.3579.1754.1024.9572.2175.5152.8721.3471.7972.9352.0316.6072.9876.7650.4324.6674.5979.3350.0028.0574.9979.3450.6426.78