

## Proposed Rule (PR) 1147.2

#### NOx Reductions from Metal Melting and Heating Furnaces

Working Group Meeting #7 February 2, 2021

Zoom URL: https://scaqmd.zoom.us/j/96004625785 Dial-In: 1 (669) 900-6833 Meeting ID: 960 0462 5785

## Agenda



Stakeholder Comments

Proposed Implementation Approach

**Cost-Effectiveness Analysis Approach** 

Metal Melting Recalculation Costs

Metal Heating Assessment





Summary of **Previous Working Group** Meeting

## Summary of Previous Working Group Meeting

- Meeting focused on BARCT analysis for metal melting units
- Re-assess technological feasibility of burners for metal melting units
- Revised initial BARCT emission limits and recategorized metal melting units to be based on burner type rather than furnace type



\*BARCT analysis is conducted for each equipment category and fuel type



## Stakeholder Comments

## **Stakeholder Comments**

Initial BARCT emission limits should consider temperature Vendor emission guarantees should include temperature and turndown ratios

Response

Comment

- Metal melting did not exhibit a significant correlation between source test results and operating temperature when sub-categorized by burner type
- Metal heating has been sub-categorized by temperature
- Vendor emission guarantees are presented
  - All guarantees include a temperature condition and most contain an excess air condition

## **Stakeholder Comments**

Response

Comment

- Obtain costs for regenerative burner installation, as they could be much greater than cold-air burners and Rule 1146 is simply a burner swap
  - Staff applied the 3x multiple of cold-air burners that was used for equipment costs onto installation costs
    - Proposed Rule 1147.2 will evaluate requirements for cold-air burners and regenerative burners
    - Proposed Rule 1147.2 will not require transition from regenerative burners to cold-air burners (or vice-versa)



## Proposed Implementation Approach

## **Implementation Approach**

- Staff is proposing an implementation approach for RECLAIM and non-RECLAIM facilities, that is generally modeled after Rule 1147
- Two implementation schedules
  - All units, except low-emitting or near-limit units, must submit permit applications to meet the proposed NOx limit when the burner reaches 12 years
  - Low-emitting or near-limit units must submit permit applications to meet the proposed NOx limit when the burner reaches 32 years
- Regardless of the implementation schedule, the proposed NOx limit must be met if there is a combustion system modification, combustion system or burner replacement, unit relocation, or unit replacement
- Units that meet the proposed BARCT limit through a source test will not be required to replace their burner; however, operators may need to modify their permit to reflect the proposed BARCT limit

## Proposed Compliance for Units Subject to 12 Year Provisions

- Currently Rule 1147 requires that operators meet NOx emission limits when the "unit" reaches 15 years
- When the *burner* reaches 12 years, the operator must:
  - First: Submit a permit application to meet the proposed NOx limit (6 months to submit permit application)
  - Second: Meet proposed NOx limit 12 months after the permit to construct is issued
- Assuming an 18-month permit approval process, operators must meet the proposed NOx limit when the burner is about 15 years old – similar to the 15 years allowed under Rule 1147
- Basing this provision on burner age instead of unit age ensures that all units meet the proposed NOx limits
- The "two-step" implementation ensures that the operator has the full 12 months to meet the proposed NOx limit

## Proposed Compliance for Units Subject to 32 Year Provisions

- Currently Rule 1147 requires that operators with units < 1 lb/day meet NOx emission limits when the "unit" reaches 35 years
- PR 1147.2 expands this concept for low-emitting units to also include units that are near the proposed NOx limit referred to as "near-limit units"
- For low-emitting and near-limit units, when the *burner* reaches 32 years the operator must:
  - First: Submit a permit application to meet the proposed NOx limit (6 months to submit permit application)
  - Second: Meet proposed NOx limit 12 months after the permit to construct is issued
- Assuming an 18-month permit approval process, operators must meet the proposed NOx limit when the burner is about 35 years old – similar to the 35 years allowed under Rule 1147
- The "two-step" implementation ensures that the operator has the full 18 months to meet the proposed NOx limit

## Defining Low-Emitting and Near-Limit Units Subject to 32 Year Provision

- PR 1147.2 will use the same threshold as Rule 1147 for defining lowemitting units at < 1 lb/day</li>
- PR 1147.2 proposes that near-limit units have a permit limit that is within 10 ppm from the proposed NOx limit AND < 65 MMScf natural gas usage per year
  - Units that meet this criteria had an average cost-effectiveness of \$121,000 per ton of NOx reduced
  - This approach will address units with high cost-effectiveness values, but still requires that operators to meet the proposed NOx limit when the burner reaches 35 years

## **Implementation Timelines**



- \* Failure to submit permit application by appropriate deadline will require that unit to meet BARCT limit when the burner turns 15 or 35 years, as applicable for units < 40 MMBtu/hr, or by January 1, 2024 for units ≥ 40 MMBtu/hr</p>
- \*\* Permitting timeline subject to vary

13

## Implementation Approach for Non-RECLAIM and RECLAIM

14

| Applicability                                                                                                                                                                                                      | Implementation                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All Units<br>(Except Low-Emitting and Near Limit Units)                                                                                                                                                            | <ul> <li>Beginning July 1, 2021 and every July thereafter, when a burner reaches 12 years submit a permit application by January 1<sup>st</sup> of the following calendar year that the burner reaches 12 years</li> <li>Must meet proposed NOx limit 12 months after Permit to Construct is issued</li> </ul> |
| <u>Low-Emitting Units</u><br>All units with baseline emissions<br>< 1 lb/day NOx<br><u>Near-Limit Units</u><br>All units with a permit limit within 10 ppm<br>of proposed NOx limit and<br>< 65 MMScf/yr gas usage | <ul> <li>Beginning July 1, 2021 and every July thereafter, when a burner reaches 32 years submit a permit application by January 1<sup>st</sup> of the following calendar year that the burner reaches 32 years</li> <li>Must meet proposed NOx limit 12 months after Permit to Construct is issued</li> </ul> |
| All Units                                                                                                                                                                                                          | • Regardless of the implementation schedule above, operators must meet proposed NOx limit if there is a combustion system modification, combustion system or burner replacement, unit relocation, or unit replacement                                                                                          |



## **Cost-Effectiveness Analysis Approach**

### **Cost-Effectiveness Based Implementation Approach for Units < 40 MMBtu/hr**



## Approach for Units ≥ 40 MMBtu/hr

- For units ≥ 40 MMBtu/hr, staff is evaluating a proposed NOx limit that assumes a combination of low-NOx burners and SCR
- Since the proposed NOx limit assumes units would need to go beyond replacement of burners, staff conducted the cost-effectiveness for all units ≥ 40 MMBtu/hr that are above the proposed NOx limit
- Implementation schedule
  - Units submit applications by January 1, 2022
  - Units must meet proposed NOx limit 18 months after Permit to Construct is issued



## Metal Melting Recalculation of Costs

## **Updated Retrofit Costs**

- Based on requests, several stakeholders have provided quotes, invoices, or statements regarding metal furnace retrofits
- Five facilities provided retrofit data for 8 burner retrofits
  - 5 provided equipment and labor cost
  - 3 provided total cost (no breakdown of equipment and labor costs)
    - Applied ratio of equipment and labor costs based on 5 burner retrofits that provided information
- Vendor Data
  - 2 vendors provided 15 burner quotes over a span of heat input capacities
- Installation Costs
  - Staff retained Rule 1146 formula for installation cost

Installation Cost = \$1,700 \* (Heat Input Capacity) + \$25,800

## Updated Retrofit Costs (continued)

#### Cost Formulas

- Original: \$2,085 \* (Heat Input Capacity: HIC) + \$8,902
- Revised: \$4,015 \* (Heat Input Capacity: HIC) + \$21,280



## Cost-Effectiveness Analysis for Units ≥ 40 MMBtu/hr

- Consistent with Rule 1146, staff is recommending 40 MMBtu/hr as the size cutoff for a 15 ppm BARCT limit that assumes SCR installation and burner replacement as well as an 80% NOx reduction efficiency for SCR
  - Although the cost-effectiveness analysis assumes a combination of SCR and burner replacements to meet 15 ppm, some units may be able to achieve the proposed 15 ppm NOx limit with only SCR
- If units the cost-effectiveness is > \$50,000 per ton of NOx reduced when evaluating the 15 ppm NOx limit, staff will evaluate the cost-effectiveness to meet the NOx concentration limits representative of burner replacement only

## Updated Cost-Effectiveness Approach

#### Metal Melting

- Cost-effectiveness was re-calculated for metal melting due to revised burner costs
- Initial units included in cost-effectiveness analysis comprised of RECLAIM units
- RECLAIM units carved out that met filter criteria

#### **Cost-Effectiveness Analysis for Initial BARCT Limit of 40 PPM**

#### Metal Melting Cold-Air Burners < 40 MMBtu/hr



Proposed NOx BARCT limit for metal melting units < 40 MMBtu/hr with cold-air burners is 40 ppm @ 3% O2 Proposed maximum near-limit for this category is 50 ppm @ 3% O2



Proposed NOx BARCT limit for metal melting units < 40 MMBtu/hr with regenerative burners is 40 ppm @ 3% O2 Proposed maximum near-limit for this category is 50 ppm @ 3% O2

- The 2 RECLAIM units were analyzed to calculate the cost-effectiveness
- Both units have source tests ≤ 50 ppm and expected to use the near-limit provision

#### **Cost-Effectiveness Analysis for Initial BARCT Limit of 15 PPM**

Metal Melting ≥ 40 MMBtu/hr

- Submit application by January 1, 2022
- Unit must meet proposed NOx limit 18 months after Permit to Construct is issued
- 1 RECLAIM unit with cost-effectiveness of \$41,700 per ton of NOx reduced\*
  - No non-RECLAIM units

#### Proposed NOx BARCT limit for metal melting units ≥ 40 MMBtu/hr is 15 ppm @ 3% O2

\* Burners are regenerative burners (3x equipment and installation costs of cold-air burners); and assumes 80% efficiency for SCR for this application

#### Summary of Proposed BARCT Limit Metal Melting

#### **Metal Melting**

| Category         | Applicability                 | Rule 1147<br>Limit<br>(@ 3% O2) | Proposed BARCT<br>Limit<br>(@ 3% O2) | Near-Limit<br>Designation* | Baseline<br>Emissions<br>(TPD) | Emission Reductions<br>by 2024**<br>(TPD) |
|------------------|-------------------------------|---------------------------------|--------------------------------------|----------------------------|--------------------------------|-------------------------------------------|
| Metal<br>Melting | Cold-Air<br>< 40 MMBtu/hr     | 60 ppm                          | 40 ppm<br>(via Burner)               | > 40 to ≤ 50 ppm           | 0.15                           | 0.068<br>0.072 (final)                    |
|                  | Regenerative<br>< 40 MMBtu/hr | 60 ppm                          | 40 ppm<br>(via Burner)               | > 40 to ≤ 50 ppm           | 0.03                           | 0<br>0.01 (final)                         |
|                  | Cold-Air<br>≥ 40 MMBtu/hr     | 60 ppm                          | 15 ppm<br>(via SCR)                  | None                       | 0.013                          | 0.012                                     |

\* Corrected to 3% O2

\*\* Emission reductions are difference between permit level and BARCT level emissions

## Total NOx emission reductions (RECLAIM and non-RECLAIM): 0.08 TPD by 2024 and 0.095 TPD at final implementation



## Metal Heating Assessment

## **Re-Evaluation of Technology Assessment for Metal Heating**

 Due to comments received regarding forging differences and temperature considerations, staff re-evaluated the technical assessment and initial BARCT emission limits



## Reasons for Re-Evaluation of the Proposed NOx Emission Limit

- Initial BARCT emission limits for burners based on emissions performance from vendor literature and source test results
- During previous Working Group Meeting, staff was requested to have additional discussions with vendors
- Stakeholders suggested splitting metal heating into two separate categories: heat treating and heating/forging
- Staff agrees and will re-evaluate the proposed NOx emission limit based on the suggested two categories
  - Seeking stakeholder input on updated categorization and temperature cutoffs

## **New Metal Heating Categories**





## Metal HeatingAssessmentHeat Treating

## Re-Evaluation of Technology Assessment Overview

## For each new category



Re-evaluate Initial NOx BARCT Emission Limit

Calculate Cost-Effectiveness for Initial NOx Limit

#### Proposed NOx BARCT Limit

## Re-Evaluation of Technology Assessment

#### Heat Treating

- Emission guarantees from 2 vendors received for heating applications
- Emission guarantees given for general "metal heating" applications
  - Staff applied guarantees to both heating treating and heating/forging categories
- Compared source test results of units equipped with burners from vendors or models specified in emission guarantees
  - Source test results of all other units also compared

## Re-Evaluation of Technology Assessment

#### Heat Treating

| Vendor          | Emission Guarantee<br>(ppm @ 3% O2)                                                                                                                           | Source Test Results<br>(ppm @ 3% O2)<br>400-1,300 °F                               | Source Test Results<br>(ppm @ 3% O2)<br>2,200-2,300 °F |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------|
| Vendor A        | <b>30 ppm</b><br>(All Temperatures)                                                                                                                           | <u>8 units: 5-37 ppm</u><br>7 of 8 units: < 30 ppm                                 | <u>0 units</u>                                         |
| Vendor B        | <u>Cold-Air Burners</u><br>40-42 ppm (≤ 2,000 °F)*<br>50 ppm (≤ 2,000 °F)**<br><u>Regenerative Burners</u><br>50 ppm (≤ 2,000 °F)*<br>57 ppm (2000-2,200 °F)* | <u>3 units: 35-40 ppm</u><br>All 3 units: 30-40 ppm                                | <u>1 unit: 35 ppm</u><br>1 unit: 30-40 ppm             |
| Remaining Units |                                                                                                                                                               | <u>39 units: 12-77 ppm</u><br>18 of 39 units: < 30 ppm<br>9 of 39 units: 30-40 ppm | <u>4 units: 26-109 ppm</u><br>1 of 4 units: < 30 ppm   |

#### Re-Evaluation of Technology Assessment

- Vendor guarantees range from 30 to 57 ppm
  - Partially dependent upon operating temperature
- Source tests confirm
   30 ppm and 40 ppm
   limits achievable
  - 30 ppm: 25 of 50 units
  - 40 ppm: 3 of 5 units

Initial BARCT Emission Limit: 30 ppm (≤ 1,500 °F) 40 ppm (> 1,500 °F)

\* 5 to 10% Excess Air
 \*\* > 10% Excess Air

34

## **Updated BARCT Analysis**

#### Heat Treating

|                                             | South Coast<br>AQMD<br>Regulatory<br>Requirements | Existing Units<br>(Source Testing)                  | Other<br>California Air<br>Districts | Technology<br>Assessment                 | Initial BARCT<br>Emission Limit          |
|---------------------------------------------|---------------------------------------------------|-----------------------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|
| Previous<br>Metal Heating<br>BARCT Analysis | 60 ppm                                            | 5-115 ppm<br>59 (33%) ≤ 30 ppm<br>31 (17%) ≤ 20 ppm | 60 ppm                               | 15 ppm<br>(SCR)<br>20-30 ppm<br>(Burner) | 15 ppm<br>(SCR)<br>20-30 ppm<br>(Burner) |

| Revised<br>Heat Treating<br>BARCT Analysis | <u>55 Units:</u><br><u>5-109 ppm</u> *<br>26 (47%) < 30 ppm<br>14 (25%) 30-40 ppm | 60 ppm | 15 ppm (SCR)<br>≤ 1,500 °F: 30 ppm<br>> 1,500 °F: 40 ppm<br>(Burner) | 15 ppm (SCR)<br>≤ 1,500 °F: 30 ppm<br>> 1,500 °F: 40 ppm<br>(Burner) |
|--------------------------------------------|-----------------------------------------------------------------------------------|--------|----------------------------------------------------------------------|----------------------------------------------------------------------|
|--------------------------------------------|-----------------------------------------------------------------------------------|--------|----------------------------------------------------------------------|----------------------------------------------------------------------|

\* Source test data has been updated since Technology Assessment originally presented during Working Group Meeting #3

## **Revised Initial BARCT Emission Limits**

#### Heat Treating



## **Cost-Effectiveness Analysis for Initial BARCT Limit of 30 PPM**

#### Heat Treating Units ≤ 1,500 °F < 40 MMBtu/hr



Proposed NOx BARCT limit for metal heat treating units < 40 MMBtu/hr, ≤ 1,500 °F is 30 ppm @ 3% O2 Proposed maximum near-limit for this category is 40 ppm @ 3% O2

## **Cost-Effectiveness Analysis for Initial BARCT Limit of 40 PPM**

#### Heat Treating Units > 1,500 °F < 40 MMBtu/hr



Proposed NOx BARCT limit for metal heat treating units < 40 MMBtu/hr, > 1,500 °F is 40 ppm @ 3% O2 Proposed maximum near-limit for this category is 50 ppm @ 3% O2

### **Cost-Effectiveness Analysis for Initial BARCT Limit of 15 PPM**

Heat Treating ≥ 40 MMBtu/hr

- Submit applications by January 1, 2022
- Units must meet proposed NOx limit 18 months after Permit to Construct is issued
- 2 RECLAIM units\* with average cost-effectiveness of \$20,100 per ton of NOx reduced
  - No non-RECLAIM units

Proposed NOx BARCT limit for metal heat treating units ≥ 40 MMBtu/hr is 15 ppm @ 3% O2

#### Summary of Proposed BARCT Limit Metal Heat Treating

#### **Heat Treating**

| Category         | Applicability                 | Rule 1147<br>Limit<br>(@ 3% O2) | Proposed BARCT<br>Limit<br>(@ 3% O2) | Near-Limit<br>Designation* | Baseline<br>Emissions<br>(TPD) | Emission Reductions<br>by 2024**<br>(TPD) |
|------------------|-------------------------------|---------------------------------|--------------------------------------|----------------------------|--------------------------------|-------------------------------------------|
|                  | < 40 MMBtu/hr<br>(≤ 1,500 °F) | 60 ppm                          | 30 ppm                               | > 30 to ≤ 40 ppm           | 0.09                           | 0.0006<br>(0.07 final)                    |
| Heat<br>Treating | < 40 MMBtu/hr<br>(> 1,500 °F) | 60 ppm                          | 40 ppm                               | > 40 to ≤ 50 ppm           | 0.04                           | 0.004<br>(0.01 final)                     |
|                  | ≥ 40 MMBtu/hr                 | 60 ppm                          | 15 ppm                               | Not Applicable             | 0.08                           | 0.07                                      |

\* Corrected to 3% O2

\*\* Emission reductions are difference between permit level and BARCT level emissions

Total NOx emission reductions (RECLAIM and non-RECLAIM): 0.06 TPD by 2024 and 0.14 TPD at final implementation



# Metal HeatingAssessmentHeating/Forging

## Re-Evaluation of Technology Assessment

#### Heating/Forging

- Emission guarantees from 3 vendors received for forging applications
- Compared source test results of units equipped with burners from vendors or models specified in emission guarantees
  - Source test results of all other units also compared
- Temperature cutoff for heating/forging furnaces established at 2,000 °F based on multiple vendors' feedback

## Re-Evaluation of Technology Assessment

#### Heating/Forging

| Vendor       | Emission Guarantee<br>(ppm @ 3% O2)                                                                                                                                                    | Source Test Results<br>(ppm @ 3% O2)<br>800-2,000 °F                           | Source Test Results<br>(ppm @ 3% O2)<br>2,200-2,300 °F                            |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Vendor A     | <b>30 ppm</b><br>(All Temperatures)                                                                                                                                                    | 23 units: 7-46 ppm<br>17 of 23 units: < 30 ppm<br>5 of 23 units: 30-40 ppm     | <u>0 units</u>                                                                    |
| Vendor B     | <u>Cold-Air Burners</u><br><b>40 ppm</b> (≤ 2,000 °F)*<br><b>50 ppm</b> (≤ 2,000 °F)**<br><u>Regenerative Burners</u><br><b>50 ppm</b> (≤ 2,000 °F)*<br><b>57 ppm</b> (2000-2,200 °F)* | 8 units: 25-45 ppm<br>2 of 8 units: < 30 ppm<br>4 of 8 units: 30-40 ppm        | <u>4 units: 35-48 ppm</u><br>1 of 4 units: 30-40 ppm                              |
| Vendor C     | 20 ppm (1,500-1,800 °F)<br>30 ppm (1,800-2,100 °F)<br>40-45 ppm (2,100-2,350 °F)                                                                                                       | <u>9 units: 18-70 ppm</u><br>1 of 9 units: < 30 ppm<br>0 of 9 units: 30-40 ppm | 2 units: 49 and 85 ppm                                                            |
|              | Remaining Units                                                                                                                                                                        | 61 units: 11-87 ppm<br>10 of 87 units: < 30 ppm<br>11 of 87 units: 30-40 ppm   | <u>26 units: 18-54 ppm</u><br>7 of 26 units: < 30 ppm<br>7 of 26 units: 30-40 ppm |
| * 5 to 10% F | cress Air                                                                                                                                                                              |                                                                                |                                                                                   |

43

\*\* > 10% Excess Air

#### Re-Evaluation of Technology Assessment

- Vendor guarantees range from 20 to 57 ppm
  - Partially dependent upon operating temperature
- Source tests confirm
   30 ppm and 40 ppm
   limits achievable
  - 30 ppm: 30 of 101 units
  - 40 ppm: 15 of 32 units

Initial BARCT Emission Limit: 30 ppm (≤ 2,000 °F) 40 ppm (> 2,000 °F)

## **Updated BARCT Analysis**

44

#### Heating/Forging

|                                             | South Coast<br>AQMD<br>Regulatory<br>Requirements | Existing Units<br>(Source Testing)                  | Other<br>California Air<br>Districts | Technology<br>Assessment            | Initial BARCT<br>Emission Limit     |
|---------------------------------------------|---------------------------------------------------|-----------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|
| Previous<br>Metal Heating<br>BARCT Analysis | 60 ppm                                            | 5-115 ppm<br>59 (33%) ≤ 30 ppm<br>31 (17%) ≤ 20 ppm | 60 ppm                               | SCR: 15 ppm<br>Burner:<br>20-30 ppm | SCR: 15 ppm<br>Burner:<br>20-30 ppm |

| Revised<br>Heating/Forging<br>BARCT Analysis | 60 ppm | <u>133 Units:</u><br><u>7-87 ppm</u> *<br>37 (28%) < 30 ppm<br>28 (21%) 30-40 ppm | 60 ppm | 15 ppm (SCR)<br>≤ 2,000 °F: 30 ppm<br>> 2,000 °F: 40 ppm<br>(Burner) | 15 ppm (SCR)<br>≤ 2,000 °F: 30 ppm<br>> 2,000 °F: 40 ppm<br>(Burner) |
|----------------------------------------------|--------|-----------------------------------------------------------------------------------|--------|----------------------------------------------------------------------|----------------------------------------------------------------------|
|----------------------------------------------|--------|-----------------------------------------------------------------------------------|--------|----------------------------------------------------------------------|----------------------------------------------------------------------|

\* Source test data has been updated since Technology Assessment originally presented during Working Group Meeting #3

## **Revised Initial BARCT Emission Limits**

#### Heating/Forging



Cost-Effectiveness Analysis Conducted Using Same Approach for Metal Melting and Metal Heat Treating

## **Cost-Effectiveness Analysis for Initial BARCT Limit of 30 PPM**

#### Heating/Forging Units ≤ 2,000 °F < 40 MMBtu/hr



Proposed NOx BARCT limit for metal heating/forging units < 40 MMBtu/hr, ≤ 2,000 °F is 30 ppm @ 3% O2 Proposed maximum near-limit for this category is 40 ppm @ 3% O2

## **Cost-Effectiveness Analysis for Initial BARCT Limit of 40 PPM**

#### Heating/Forging Units > 2,000 °F < 40 MMBtu/hr



Proposed NOx BARCT limit for metal heating/forging units < 40 MMBtu/hr, > 2,000 °F is 40 ppm @ 3% O2 Proposed maximum near-limit for this category is 50 ppm @ 3% O2

## **Cost-Effectiveness Analysis for Initial BARCT Limit of 15 PPM**

Heating/Forging ≥ 40 MMBtu/hr

- Submit applications by January 1, 2022
- Units must meet proposed NOx limit 18 months after Permit to Construct is issued
- 3 RECLAIM units\* with average cost-effectiveness of \$8,600 per ton of NOx reduced\*\*
  - No non-RECLAIM units

#### Proposed NOx BARCT limit for metal heating/forging units ≥ 40 MMBtu/hr is 15 ppm @ 3% O2

\* 1 unit already equipped with SCR

\*\* Burners are regenerative burners (3x equipment and installation costs of cold-air burners); and assumes 80% efficiency for SCR for this application

#### Summary of Proposed BARCT Limit Metal Heating/Forging

#### Heating/Forging

| Category            | Applicability                 | Rule 1147<br>Limit<br>(@ 3% O2) | Proposed BARCT<br>Limit<br>(@ 3% O2) | Near-Limit<br>Designation* | Baseline<br>Emissions<br>(TPD) | Emission Reductions<br>by 2024**<br>(TPD) |
|---------------------|-------------------------------|---------------------------------|--------------------------------------|----------------------------|--------------------------------|-------------------------------------------|
|                     | < 40 MMBtu/hr<br>(≤ 2,000 °F) | 60 ppm                          | 30 ppm                               | > 30 to ≤ 40 ppm           | 0.13                           | 0.03<br>(0.1 final)                       |
| Heating/<br>Forging | < 40 MMBtu/hr<br>(> 2,000 °F) | 60 ppm                          | 40 ppm                               | > 40 to ≤ 50 ppm           | 0.1                            | 0.03<br>(0.06 final)                      |
|                     | ≥ 40 MMBtu/hr                 | 60 ppm                          | 15 ppm                               | Not Applicable             | 0.62                           | 0.57                                      |

\* Corrected to 3% O2

\*\* Emission reductions are difference between permit level and BARCT level emissions

Total NOx emission reductions (RECLAIM and non-RECLAIM): 0.63 TPD by 2024 and 0.73 TPD at final implementation

## **BARCT Limit Summary**

| Category                 | Applicability                           | Proposed BARCT Limit at<br>3% O2 | Proposed Maximum<br>Near-Limit at 3% O2 |
|--------------------------|-----------------------------------------|----------------------------------|-----------------------------------------|
|                          | < 40 MMBtu/hr<br>(Cold-Air Burners)     | 40 ppm                           | 50 ppm                                  |
| Metal Melting            | < 40 MMBtu/hr<br>(Regenerative Burners) | 40 ppm                           | 50 ppm                                  |
|                          | ≥ 40 MMBtu/hr                           | 15 ppm                           | Not Applicable                          |
| Metal Heat Treating      | < 40 MMBtu/hr<br>(≤ 1,500 °F)           | 30 ppm                           | 40 ppm                                  |
|                          | < 40 MMBtu/hr<br>(> 1,500 °F)           | 40 ppm                           | 50 ppm                                  |
|                          | ≥ 40 MMBtu/hr                           | 15 ppm                           | Not Applicable                          |
| Metal<br>Heating/Forging | < 40 MMBtu/hr<br>(≤ 2,000 °F)           | 30 ppm                           | 40 ppm                                  |
|                          | < 40 MMBtu/hr<br>(> 2,000 °F)           | 40 ppm                           | 50 ppm                                  |
|                          | ≥ 40 MMBtu/hr                           | 15 ppm                           | Not Applicable                          |



## **Next Steps**

## **Next Steps**



## Contacts

| PR 1147.2                                                                      | PAR 1147                                                                             | <b>RECLAIM</b> Questions                                                  | General Questions                                                                                    |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| James McCreary<br>Air Quality Specialist<br>jmccreary@aqmd.gov<br>909-396-2451 | <b>Shawn Wang</b><br>Air Quality Specialist<br><u>swang@aqmd.gov</u><br>909-396-3319 | Gary Quinn, P.E.<br>Program Supervisor<br>gquinn@aqmd.gov<br>909-396-3121 | Susan Nakamura<br>Assistant<br>Deputy Executive Officer<br><u>snakamura@aqmd.gov</u><br>909-396-3105 |
| Rodolfo Chacon<br>Air Quality Specialist                                       | Gary Quinn, P.E.<br>Program Supervisor                                               |                                                                           | 909-390-3102                                                                                         |
| (909)396-2726                                                                  | 909-396-3121                                                                         |                                                                           |                                                                                                      |
| Planning and Rules Manager<br><u>mmorris@aqmd.gov</u><br>909-396-3282          | Planning and Rules Manager<br><u>mkrause@aqmd.gov</u><br>909-396-2706                |                                                                           |                                                                                                      |