

Presentation at Biogas Technology Advisory Committee Meeting 10/29/2014 OTCQB: ENCR

October 2014

Legal Disclaimer

This presentation has been prepared by Ener-Core, Inc. (the "Company"). It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this presentation or any information, opinions or conclusions expressed in the course of this presentation.

This presentation is not a prospectus or other offering document under U.S. law or under any other law. It has been prepared for information purposes only. This presentation contains general summary information and does not take into account the investment objectives, financial situation and particular needs of any individual investor. It is not investment advice and prospective investors should obtain their own independent advice from qualified financial advisors regarding their own financial objectives, financial situation and needs.

This presentation and information, opinions or conclusions expressed in the course of this presentation contains forecasts and forward-looking information. Such statements are based on a number of estimates and assumptions that, while considered reasonable by management at the time, are subject to significant business, economic and competitive uncertainties. These forecasts, projections and information are not a guarantee of future performance or expected results and involve unknown risks and uncertainties. Actual results and developments will almost certainly differ materially from those expected by the Company (either expressed or implied in this presentation). There are a number of risks, both specific to the Company and of a general nature, which may affect the future operating and financial performance of the Company as well as the value of an investment in the Company, including and not limited to the following: economic conditions; stock market fluctuations; uncertainty of future revenues; limited operating history; uncertain market acceptance for our technology; potential difficulty in managing growth; costs of sales and materials; intellectual property protection; disclosure of trade secrets; rapid technological change among competitors; dependence on suppliers; risks of doing international business; state, federal and foreign legislative and regulatory initiatives, including costs of compliance with existing and future environmental requirements; costs and effects of legal and administrative proceedings, settlements, investigations and claims; the inherent risks associated with the operation and potential construction of power generation systems, including environmental, health, safety, regulatory and financial risks; the timing and extent of changes in commodity prices, interest rates and foreign currency exchange rates; unusual maintenance or repairs and electric transmission system constraints; the performance of electric generation facilities; and the need for and availability of future financing in order for the Company to carry out its business plan. The forward-looking information contained in this presentation are as of the date hereof and the Company does not expect to update the forward looking information contained in this presentation.

This presentation speaks as of November 2014. Neither the delivery of this presentation nor any further discussions by the Company or its representatives with any of the recipients shall, under any circumstances, create any implication that there has been no change in the affairs of the Company since such date. The Company does not intend, and does not assume any obligation, to update or correct any information included in this presentation.

Oxidation: A Natural Process

Oxidation occurs when a substance comes into contact with oxygen molecules almost everything, over time, reacts with oxygen...

However, in nature, oxidation is a very slow process.

How the Technology Works

The dilute gas (input) does not have a high enough energy content for combustion.

Combustion is a rapid reaction that happens in milliseconds and produces pollutants as part of output.

Ener-Core Oxidation is an exothermic chemical reaction. It has no flame, resulting in temperature that avoids the NOx formation temperature. It happens in seconds, it produces heat, and it removes the pollutants in the Incoming gas.

🖄 ENER-CORE

OTCQB: ENCR

Company Timeline

Ribbon Cutting Video

http://youtu.be/IFUWRoZ9bMA?list=UUrc1RqrzUktjFX A13reumbQ

250 kW Ener-Core Powerstation

FP250 (250 kW) Gas Energy Input: 3.6 MMBtu/hr (1042 kW) Electric Output: 250 kW Electrical Efficiency: 26% (LHV) Minimal Fuel Conditioning Siloxane Removal Not Required H2S tolerant (up to 6500 ppmv) NOx Emissions < 1 ppmv (no catalyst)

FP250 at Schinnen Landfill

Robust Reliable Dresser-Rand KG2-3G Gas Turbine

- All Radial; Single Shaft
- Cold End Drive
- Capacity: 2 MW ISO Shaft
- Efficiency : 25%

- KG2-3G Off Base Combustor
- Standard Configuration
- Flanges for Oxidizer Interface

KG2-3G/GO Configurations: Simple Cycle and Recuperated

Minimal Fuel Conditioning; No Siloxane Removal Required; H2S up to 15,000 ppmv

OTCQB: ENCR

Fueling Strategies

Two Product Configurations for Site Gas Use Solution

OTCQB: ENCR

© 2014 Ener-Core, Inf0¹⁰

Fort Benning 3rd Party Emissions Test Summary

Stationary Source Sampling Report Flex PowerstationTM, Fort Benning, GA Report Date: November 7, 2012 Integrity Air Project No. 12-070

2.0 RESULTS

This section presents the sampling results in tabular form. Detailed sampling results and example calculations for the test program can be found in Appendix 1.

2.1 Summary of Results

Table 3 presents a summary of the results from the sampling performed at the Flex Powerstation[™] inlet and exhaust on October 17, 2012.

Run	l 0757-0856		2 0916-1015		3 1034-1133		Avg.	
Time								
Sample Location	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet
Sulfur Dioxide ppmvd lbs/hr		0.61 0.023		0.17 0.007		0.06		0.28
Nitrogen Oxide ppmvd lbs/hr		0.019 0.00052		0.019		0.019 0.00052		0.019
Carbon Monoxide ppmvd lbs/hr		4.51		4.53		4.40 0.074		4.48
TRS ppmvd lbs/hr		0.316		0.209		0.105 0.004		0.210
Total Particulate Matter lbs/hr	1000.004	0.043		0.030		0.036		0.036
NMOC as Carbon† lbs/hr	12.7	0.054	10.8	0.052	11.4	0.044	11.6	0.050
NMOC as Carbon DE‡, %		99.6		99.5		99.6		99.6

† NMOC = VOC minus methane.
‡ DRE = ((inlet lbs/hr – outlet lbs/hr) / inlet lbs/hr) * 100.

- <u>Test Date</u>: October 17, 2012
- <u>Emission Tester</u>: Integrity Air who was selected by Southern Research Institute
- <u>Configuration</u>: Aspirated configuration where gas is sprayed into inlet of gas turbine.
- <u>Results Summary</u>: Low NOx achieved. CO and NMOC levels were impacted by leakage flow which bypasses oxidizer.
- <u>Leakage flow:</u> Originates in compressor then flows to the turbine seals. It is not processed by oxidizer, thus raising CO and NMOC emissions.

Ft Benning Landfill Low Btu - Aspirated

Certified Test Data Summary from Ft Benning Project

Ultra-Low Btu Test for Oil & Gas Customer

• Customer is interested in utilizing Ener-Core's Oxidation technology to generate clean power from a casing gas emitted during a proprietary in-situ combustion oil extraction process

• The purpose of the project was to test a simulated low BTU fuel (~75 BTU/scf) with the Ener-Core test unit

	1 st Condition	2 nd Condition
Methane (CH4)	7.75%	5.80%
Nitrogen (N2)	84.20%	91.15%
Carbon Dioxide (CO2)	8.00%	3.00%
LHV (Btu/scf)	71	53
Steady run time (hr)	5.5	3

Ener-Core Test Machine at UC Irvine Campus

Ultra-Low Btu Test Emissions Sampling Results

OTCQB: ENCR

Attero Landfill – Schinnen, Netherlands

- Closed landfill with below 30% methane; past problems with reciprocating engines running inconsistently and unable to run on gas
- First Commercially sold unit
- 250kW oxidizer powerstation was successfully installed and is currently operating continuously
- 250 kW oxidizer powerstation generates about 50% more electricity (kWhs) per week than reciprocating engine it replaced
- Has accrued over 1500 hours since commissioning in 2014

FP250 at Schinnen Landfill

OTCQB: ENCR

Watch our Whiteboard video explaining the gradual oxidation process and its applications

https://www.youtube.com/watch?v=YIwJNOF-SQU