Metalworking Fluids \& VOC, Today and Tomorrow
A Joint Symposium by SCAQMD \& ILMA South Coast Air Quality Management District Diamond Bar, CA, USA March 8, 2012

Understanding \& Determining the Normal Boiling Point of a High Boiling Liquid

Presentation Outline

- Relationship of Vapor Pressure to Temperature
- Examples of VP/T Curves
- Calculation of Airborne Vapor Concentration

Binary Systems

- Relative Volatility as a function of Temperature
- GC Data and Volatility
- Everything Needs a Correlation
- Conclusions

Vapor Pressure Models
 (pure vapor over pure liquid)

Correlative:

- Clapeyron: $\log (P)=A / T+B$

Antoine: $\log (P)=A /(T-C)+B$
Riedel: $\log P=A / T+B+C l o g(T)+D T^{E}$

Predictive:

- ACD Group Additive Methods
- Riedel: $\operatorname{LogP} \underset{\text { coefficients defined, Reduced } T=T T \mathrm{c}}{\mathbf{A} / T}+\mathrm{Clog}(T)+D T^{E}$
- Variations: Frost-Kalkwarf-Thodos, etc.

Two Parameters: $\log (P)=A / T+B$

Vaporization as an activated process

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

$$
\begin{array}{cc}
\mathrm{K}=\left[\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})\right] /\left[\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})\right] & \Delta \mathrm{G}=-\mathrm{RT} \ln (\mathrm{~K})=-\mathrm{RT} \ln (\mathrm{P}) \\
{\left[\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})\right]=\text { partial } \mathrm{P}} & \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
{\left[\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})\right]=1(\text { pure liquid })} & \ln (\mathrm{P})=-\Delta \mathrm{G} / \mathrm{RT} \\
\mathrm{~K}=\mathrm{P} & \ln (\mathrm{P})=-\Delta \mathrm{H} / \mathrm{RT}+\Delta \mathrm{S} / \mathrm{R} \\
\ln (\mathrm{P})=\ln (\mathrm{K}) & \Delta \mathrm{S} / \mathrm{R}=\mathrm{B} \\
& \Delta \mathrm{H} / \mathrm{R}=-\mathrm{A}
\end{array}
$$

Vapor pressure Measurement: Direct versus Distillation

- Direct vapor pressure measurement (e.g., isoteniscope) requires pure material while distillation based determination can employ a middle cut with a relatively high purity. Distillation allows for extrapolation and/or interpolation of data to approximate VP.
- Direct vapor pressure measurement requires multiple freeze-thaw cycles to remove atmospheric gases while distillation (especially atmospheric distillation) purges atmospheric gases as part of the process.
- Direct measurement OK for "volatile materials" (normal BP < 100 ${ }^{\circ} \mathrm{C}$) but involved for "high boilers" (normal BP > $100^{\circ} \mathrm{C}$).

Two Parameters: $\log (P)=A / T+B$

DBAE (GMW = 173.30, CAS RN 102-81-8):

Below is a table of the literature data that we could find for the boiling point of DBAE versus pressure.

$\mathrm{BP}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{BP}\left({ }^{\circ} \mathrm{K}\right)$	P (torr)	$\mathrm{P}(\mathrm{KPa})$	Reference
230	503.15	760	101.3232	Bouilloux; Bull.Soc.Chim.Fr.; 1958; 1446.
227	500.15	738	98.3902	Burnett et al.; J.Amer.Chem.Soc.; 59; 1937; 2249.
118	391.15	17	2.2664	Leonard; Simet; J.Amer.Chem.Soc.; 77; 1955; 2855, 2857.
100	373.15	0.8	0.1067	Perrine; J.Org.Chem.; 18; 1953; 1356,1361.
85	358.15	3.5	0.46662	Hannig; Haendler; Arch.Pharm.(Weinheim Ger.); 290; 1957; 131,133.

$\wedge \wedge \quad r^{2}=0.999942$
Apparent $\Delta \mathrm{H}_{\text {vaporization }}=55.86 \mathrm{KJ} /$ mole \& $\Delta \mathrm{S}_{\text {vaporization }}(1 \mathrm{Torr})=166.39 \mathrm{~J} /($ mole-K $)$

ODEA (GMW = 217.35, CAS RN 15520-05-5):

$\mathrm{BP}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{BP}\left({ }^{\circ} \mathrm{K}\right)$	P (torr)	$\mathrm{P}(\mathrm{KPa})$	Reference
175	448.15	4	0.5333	Bush; USPatent 2541088, 1946.
155	428.15	0.75	0.1000	King of Prussia data
144	417.15	0.3	0.0400	Zuniga, H.; Bartulin, J.; Ramirez, A.; Muller, H.; Taylor, T. R.; Mol. Cryst. Liq. Cryst., 1990, 185, 131-140.
130	403.15	0.075	0.0100	King of Prussia data

Vapor Pressure of Methyl Isothiocyanate (MITC; CAS RN $=556-61-6$) as a function of T:
-Haenssgen; Pohl; Chem.Ber. 1979, 112, 2798.
-Yanchuk, N. I.; Russ. J. Gen. Chem. 1996, 66(9), 1436-1441.
-Bauer,H.;Burschkies,K.; "Thermophysical data", Ber. Dtsch. Chem. Ges., 1935 68, 1243.

P in torr; Standard State $=1$ torr; T in K (absolute); $\mathrm{A}=4092 ; \mathrm{B}=16.956 ; \mathrm{R}=8.3144621$ $\Delta \mathrm{H}$ (vaporization) $=34 \mathrm{~kJ} /$ mole (assumed to be constant over range of T from $10^{\circ} \mathrm{C}-120^{\circ} \mathrm{C}$) $\Delta \mathrm{S}$ (vaporization) = $141 \mathrm{~J} /(\mathrm{K}-\mathrm{mole})$ @ 1 Torr (determined from value of B)
$\Delta \mathrm{S}$ (vaporization) = $87 \mathrm{~J} /(\mathrm{K}-\mathrm{mole}) @ 760$ Torr (determined as $\Delta \mathrm{H} / \mathrm{T}$ at the boiling point)

University of Maine
http://chemistry.umeche.maine.edu/~amar/spring2010/clausiusclapyeron.html

Clausius-Clapeyron plot for C6F6

Hexafluorobenzene: Normal BP $=82^{\circ} \mathrm{C}$

Compound	Enthalpy (kJ/mol)	Entropy (1 Torr; J/mol-K)	T Range $\left({ }^{\circ} \mathrm{C}\right)$	r^{2} value	Predicted Normal BP (${ }^{\circ} \mathrm{C}$)
Hexadecane I	≈ 61	≈ 164 (109 adjust to 1 atm) $\text { (109 by } \Delta H / B P)$	200-287	0.9968	285
Hexadecane II	≈ 64	≈ 170	100-287	0.9987	282
Hexadecane III	≈ 61	≈ 164	150-287	0.9984	285

Hexadecane is thermally stable up to the normal BP

BDEA	≈ 61	≈ 166 (111 adjust to 1 atm) $\text { (109 by } \Delta H / B P)$	80-170	0.9981	284
BDEA	≈ 70	≈ 185	100-280	0.9828	276

BDEA is thermally stable up to $\approx 180^{\circ} \mathrm{C}$
I) Camin D.L.; Forziati A.F.; Rossini F.D.; J. Phys. Chem. 1954 58, 440-442.
II) Myers H.S.; Fenske M.R.; Ind. Eng. Chem. 1955, 47(8), 1652-1658.
III) Krafft F., Ber.Dtsch.Chem.Ges., 15, 1687-1711, 1882
IV) Laboratory Data
V) Literature Data

Entropy of vaporization @ 1 atmosphere $\approx 85 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ with a range from $70 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$ to 120
J/K-mol for "average size" rigid molecules ; entropy of vaporization is higher for long "floppy" molecules. Predicted entropy of vaporization given by different formulas; $85+0.67(n-5) \approx 95$ $\mathrm{J} / \mathrm{mol-K}$ for hexadecane at normal BP;

T range of correlation from $T_{\text {low }}$ to $T_{\text {high }} ; \Delta T=T_{\text {high }}-T_{\text {low }}$
$\mathrm{T}_{\text {low }}=\mathrm{T}$ at which VP is equal to low set point (liquid); VP $=0.01$ Torr is convenient $\mathrm{T}_{\text {high }}=\mathrm{T}$ at which VP is equal to high set point (liquid); normal BP is convenient $\Delta \Delta H=$ decrease in Enthalpy from $T_{\text {low }}$ to $T_{\text {high }}$
Enthalpy change fairly linear over range of T where liquid has VP <0.1 Torr to the normal BP

$$
\begin{aligned}
& \ln (\mathrm{P})=\frac{\left\{\Delta \mathrm{H}_{\mathrm{T}_{\text {low }}}-\Delta \Delta \mathrm{H} \frac{\left(\mathrm{~T}-\mathrm{T}_{\text {low }}\right)}{(\Delta \mathrm{T})}\right\}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}}{\mathrm{R}} \\
& \ln (\mathrm{P})=\frac{\Delta \mathrm{H}_{\mathrm{T}_{\text {low }}}+\Delta \Delta \mathrm{H} \frac{\left(\mathrm{~T}_{\text {low }}\right)}{(\Delta \mathrm{T})}}{\mathrm{RT}}-\frac{\Delta \Delta \mathrm{H}}{\mathrm{R}(\Delta \mathrm{~T})}+\frac{\Delta \mathrm{S}}{\mathrm{R}}
\end{aligned}
$$

Vapor-Liquid
of Vaporization

$$
\begin{array}{l|l}
\ln (\mathrm{P})=\frac{\Delta \mathrm{H}_{\text {effective }}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}_{\text {effective }}}{\mathrm{R}} & \begin{array}{l}
\Delta \Delta \mathrm{H} \approx 4 \mathrm{~kJ} \text { from } 0{ }^{\circ} \mathrm{C}-100^{\circ} \mathrm{C} \\
\Delta \mathrm{H}_{\text {effective }}=43.3 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{H}_{\text {effective }}=\Delta \mathrm{H}_{\mathrm{T}_{\text {low }}}+\Delta \Delta \mathrm{H} \frac{\left(\mathrm{~T}_{\text {low }}\right)}{(\Delta \mathrm{T})}
\end{array} \\
\Delta \mathrm{H}_{\mathrm{T}_{\text {low }}}=54.2 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{~S}_{\text {effective }}=171.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K} \\
\Delta \mathrm{~S}_{\text {effective } @ 1 \mathrm{~atm}}=116.2 \mathrm{~J} / \mathrm{mol}-\mathrm{K}
\end{array}
$$

Marsh, K. N., Ed., Recommended Reference Materials for the Realization of Physicochemical Properties, Blackwell, Oxford, 1987.

Calculated \& Measured Vapor Pressure of MITC

Accounting for liquid composition

Raoult's Law

$$
P_{T}=x_{A} P_{A}+x_{B} P_{B}
$$

Raoult's Law Graph Constructed with Excel

$$
=10^{\wedge}((-2928 /(\mathrm{H} 2+273.15))+9.4834)^{*} \mathrm{E} 2 / \mathrm{G} 2
$$

$$
=10^{\wedge}((-4299 / \mathrm{A} 2)+10.05438)
$$

$$
=10^{\wedge}((-2928 / \mathrm{A} 2)+9.4834)
$$

Found with goal seek function; look for T at which:
VP $($ mixture $)=1$ atmosphere H \downarrow

Temperature (K)	Temperature (0C)	VP (MEA - Torr)	VP (TEA - Tori)	MF (MEA)	MF (TEA)	VP (mixture)	BP (mixture)	Vapor Fraction (MEA)	Vapor fraction (TEA)
373.15	100	43.32011111	0.034162046	1	0	759.9999999	170.3125795	1	0
374.15	101	45.46337365	0.03667211	0.99	0.01	760.0001986	170.6050493	0.999969395	$3.06048 \mathrm{E}-05$
375.15	102	47.70039235	0.039351724	0.98	0.02	760.0000032	170.9008472	0.999937874	$6.21259 \mathrm{E}-05$
376.15	103	50.0347032	0.042211305	0.97	0.03	759.9999734	171.2000678	0.999905402	$9.45983 \mathrm{E}-05$
377.15	104	52.46995263	0.045261844	0.96	0.04	759.9995709	171.5027654	0.999871942	0.000128058
378.15	105	55.00990017	0.048514933	0.95	0.05	760.0000002	171.8090644	0.999837455	0.000162545
379.15	106	57.6584211	0.051982795	0.94	0.06	760.0000011	172.1189962	0.999801902	0.000198098
380.15	107	60.41950922	0.055678312	0.93	0.07	760.0000037	172.4326605	0.999765241	0.000234759
381.15	108	63.2972796	0.059615061	0.92	0.08	760.0000103	172.7501431	0.999727426	0.000272574

$$
=10^{\wedge}((-2928 /(\mathrm{H} 2+273.15))+9.4834)^{*} \mathrm{E} 2+10^{\wedge}((-4299 /(\mathrm{H} 2+273.15))+10.05438) * \mathrm{~F} 2
$$

$$
10^{\wedge}((-4299 /(\mathrm{H} 2+273.15))+10.05438) * \mathrm{~F} 2 / \mathrm{G} 2
$$

Raoult's Law (TEA/MEA)

Phase Diagram Ideal BAE/Water System

The Impact of Water?

Phase Diagram Ideal TEA/Water System

Why don't we just distill it at Atmospheric Pressure?

Continuous decomposition is the problem!

Distilling Triethanolamine (TEA) at 1 bar?

Triethanolamine

N -(2-hydroxyethyl)morpholine

TEA: normal $\mathrm{BP}=335^{\circ} \mathrm{C}$
NHEM: normal BP $=224^{\circ} \mathrm{C}$

A temperature gradient sets up in the neck of the distillation!

Relative Volatility Changes with Temperature

Theoretical VP Functions

$\boldsymbol{\operatorname { L o g }}(\mathbf{P})=\mathbf{A} / \mathbf{T}+\mathbf{B}$

Theoretical VP Functions

Duhring's Approximation $\log (\mathbf{P})=\mathbf{A} / \mathbf{T}+\mathbf{B}$

Va =un Theoretical VP Functions

Parameter

C Nielsen, B Hogh and $\mathrm{EWallströ}$
VOC or not: boiling point limits
A screening of the literature ${ }^{\text {i/ }}$ for experimental values of the boiling point temperatures and vapour pressures at $23^{\circ} \mathrm{C}$ gave the following:
m no organic solvents boiling below $170^{\circ} \mathrm{C}$ have a vapour pressure below 10 Pa at $23^{\circ} \mathrm{C}$

- all solvents boiling above $260^{\circ} \mathrm{C}$ have a vapour pressure which is below 10 Pa at $23^{\circ} \mathrm{C}$
a only three solvents, two ethers and a chlorinated compound, were found to have a vapour pressure above 10 Pa in the boiling point range $235-260^{\circ} \mathrm{C}$
\pm for common organic solvents such as linear hydrocarbons, alcohols and polyols the boiling point is below $220^{\circ} \mathrm{C}$ before the solvents become a VOC according to their vapour pressure at room temperature.

$\log (\mathbf{P})=\mathbf{A} / \mathbf{T}+\mathbf{B}$

登

[^0]1/T

Real Relative Volatility

Measure as close to the use temperature as is possible

Log P versus 1000/T Correlations (real data for 5 different molecules)

Derivative Weight Loss as a function of Temperature

Exemplary Derivative Weight Loss Ratios

What about GC Rt as an assessment of volatility?

Correlations of GC Rt with volatility are sometimes OK for homologous series of molecules.

Relationship not good across different types of molecules
Isothermal GC experiments used like BP versus absolute \mathbf{P}, but the method needs an anchor

The GC Conundrum: 1/Rt does not really match volatility

HP-5 (apolar)		
Compound	boiling point	RT
	${ }^{\circ} \mathrm{C}$	min
Methyldiethanolamine	247	5.70
2-amino 2-ethyl 1,3 propaandiol	259	6.20
Butyldiethanolamine	283	7.30
Diethyladipate	$\mathbf{2 5 1}$	$\mathbf{8 . 5 0}$
Tetradecane	$\mathbf{2 5 3}$	$\mathbf{8 . 5 3}$
Triethanolamine	335	8.60
BisDMAPA-PO	290	10.30
Tris-DMAPA	285	11.10

HP-Innowax (polar)		
Compound	boiling poirt	RT
	${ }^{\circ} \mathrm{C}$	min
Tetradecane	$\mathbf{2 5 3}$	7.94
Butyldiethanolamine	283	9.45
Diethyladipate	$\mathbf{2 5 1}$	$\mathbf{1 1 . 0 5}$
Tris-DMAPA	285	11.35
Methyldiethanolamine	247	11.50
BisDMAPA-PO	290	11.70
2-amino 2-ethyl 1,3 propaandiol	259	12.53
Triethanolamine	335	17.70

DB-1301 (apolar)		
Compound	boiling	
	poirt $^{\circ}$	RT
	${ }^{\circ} \mathrm{C}$	min
Methyldiethanolamine	247	8.58
2-amino 2-ethyl 1,3 propaandiol	259	9.04
Tetradecane	$\mathbf{2 5 3}$	$\mathbf{1 0 . 0 0}$
Diethyladipate	$\mathbf{2 5 1}$	$\mathbf{1 0 . 4 0}$
Butyldiethanolamine	283	10.52
Triethanolamine	335	11.91
BisDMAPA-PO	290	12.55
Tris-DMAPA	285	13.42
Methyl palmitate	333	16.10

DB-17 (semi-polar)				
Compound	boiling			
	poirt	RT		
	${ }^{\circ} \mathrm{C}$	min		
Methyldiethanolamine	247	7.80		
2-amino 2-ethyl 1,3 propaandiol	259	8.65		
Butyldiethanolamine	283	9.05		
Tetradecane	$\mathbf{2 5 3}$	$\mathbf{9 . 5 5}$		
Diethyladipate	$\mathbf{2 5 1}$	$\mathbf{1 2 . 9 5}$		
Triethanolamine	335	15.15		
BisDMAPA-PO	290	15.25		
Tris-DMAPA	285	16.50		

GC ramp integrates differential $\Delta V P$ over large T range

GC Rt data must be isothermal and must be anchored

Thermal Analysis Methods

TGA
DTA/TGA
DSC
Hybrid Methods

DTA/TGA of Vantex-T

${ }^{n}$ exo

Derivative Weight Loss versus Temperature

Compound	$\mathrm{dW} / \mathrm{dt}$ (c) $50^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{dW} / \mathrm{ctt} \\ \text { (2) } 80^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{d} W / \mathrm{dt}$ (c) $110^{\circ} \mathrm{C}$
Methyl Palmitate	ND	$\begin{gathered} 0.005 \\ >180 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.11 \\ (12 \mathrm{~min}) \end{gathered}$
TEA	$\begin{gathered} 0.005 \\ 180 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.005 \\ 150 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.01 \\ 60 \mathrm{~min} \end{gathered}$
Glycerol	$\begin{gathered} 0.005 \\ 180 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.02 \\ 37 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.14 \\ 6 \mathrm{~min} \end{gathered}$
BDEA	$\begin{gathered} 0.005 \\ 180 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.08 \\ 14 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.46 \\ 2 \mathrm{~min} \end{gathered}$
2-methyl hexadecane	$\begin{gathered} 0.007 \\ 130 \text { minutes } \end{gathered}$	$\begin{gathered} 0.10 \\ 11.5 \mathrm{~min} \end{gathered}$	$\begin{gathered} \hline 0.64 \\ 2 \mathrm{~min} \\ \hline \end{gathered}$
Hexadecane	$\begin{gathered} 0.01 \\ 120 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.10 \\ 14 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.62 \\ 2 \mathrm{~min} \end{gathered}$
TXIB	$\begin{gathered} 0.01 \\ 80 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.16 \\ 6 \mathrm{~min} \end{gathered}$	$\begin{aligned} & 0.80 \\ & 1 \mathrm{~min} \end{aligned}$
AEPD	$\begin{gathered} 0.03 \\ 40 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.18 \\ 6 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.73 \\ 1.7 \mathrm{~min} \end{gathered}$
DBAE	$\begin{gathered} 0.15 \\ 8 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.94 \\ 1.3 \mathrm{~min} \end{gathered}$	$\begin{gathered} 3.7 \\ 0.33 \mathrm{~min} \end{gathered}$
TBA	$\begin{gathered} 0.3 \\ 3 \mathrm{~min} \end{gathered}$	$\begin{gathered} 2.1 \\ 0.6 \mathrm{~min} \end{gathered}$	$\begin{gathered} 6.8 \\ 0.2 \mathrm{~min} \end{gathered}$
MEA	$\begin{gathered} 0.40 \\ 3 \mathrm{~min} \end{gathered}$	$\begin{gathered} 2.4 \\ 0.5 \mathrm{~min} \end{gathered}$	$\begin{gathered} 7.4 \\ 0.2 \mathrm{~min} \end{gathered}$
AMP	$\begin{gathered} 0.76 \\ 1.6 \mathrm{~min} \end{gathered}$	$\begin{gathered} 3.2 \\ 0.4 \mathrm{~min} \end{gathered}$	$\begin{gathered} 9.5 \\ 0.1 \mathrm{~min} \end{gathered}$

The derivative weight loss ($\%$ weight loss per minute) of 12 compounds at different temperatures after 1.25% ($\approx 40 \mathrm{mg}$ total weight, 0.5 mg weight loss) of material evaporated with nitrogen purge. The time in minutes at which the derivative weight loss was taken is given below the weight loss value.

Glycerol

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}(\mathrm{K})$	$1 / \mathrm{T}(\mathrm{K})$	$\mathrm{dW} / \mathrm{dT}$	$\log (\mathrm{dW} / \mathrm{dT})$
50	323.15	0.003095	0.005	-2.301029996
80	353.15	0.002832	0.02	-1.698970004
110	383.15	0.00261	0.14	-0.853871964
BDEA				
$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}(\mathrm{K})$	$1 / \mathrm{T}(\mathrm{K})$	$\mathrm{dW} / \mathrm{dT}$	$\log (\mathrm{dW} / \mathrm{dT})$
50	323.15	0.003095	0.005	-2.301029996
80	353.15	0.002832	0.08	-1.096910013
110	383.15	0.00261	0.46	-0.337242168

TXIB

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}(\mathrm{K})$	$1 / \mathrm{T}(\mathrm{K})$	$\mathrm{dW} / \mathrm{dT}$	$\log (\mathrm{dW} / \mathrm{dT})$
50	323.15	0.003095	0.01	-2
80	353.15	0.002832	0.1	-1
110	383.15	0.00261	0.62	-0.207608311

1/T(K)

Conclusions

- The normal boiling point of a "high boiling" material can be determined several ways. Various methods should track and be approximately equivalent, but they do not all yield exactly the same value.
- Real relative volatility changes with temperature.
- Continuous decomposition can impact the accuracy of normal boiling point determination.
- GC retention time comparisons are more prone to deviation from "real volatility" than are normal boiling points.

[^0]: 0.0000
 0.0003
 $\begin{array}{llll}0.0006 & 0.0009 & 0.0012 & 0.0015\end{array}$
 0.0018
 0.0021
 0.0024
 0.0027
 0.003
 0.00330 .0036

