

Metalworking Fluids & VOC, Today and Tomorrow A Joint Symposium by SCAQMD & ILMA South Coast Air Quality Management District Diamond Bar, CA, USA March 8, 2012

Understanding & Determining the Normal Boiling Point of a High Boiling Liquid

Presentation Outline

- Relationship of Vapor Pressure to Temperature
- Examples of VP/T Curves
- **Calculation of Airborne Vapor Concentration**
- Binary Systems
- Relative Volatility as a function of Temperature
- GC Data and Volatility
- Everything Needs a Correlation
- Conclusions

Vapor Pressure Models

(pure vapor over pure liquid)

Correlative:

- Clapeyron: Log(P) = A/T + B
- Antoine: Log(P) = A/(T-C) + B
- Riedel: LogP = A/T + B + Clog(T) + DT^E

Predictive:

- ACD Group Additive Methods
- Riedel: $LogP = A/T + B + Clog(T) + DT^{E}$

Coefficients defined, Reduced T = T/Tc

Variations: Frost-Kalkwarf-Thodos, etc.

Two Parameters: Log(P) = A/T + B

Vaporization as an activated process

$$CH_3OH(I) \rightarrow CH_3OH(g)$$

 $K = [CH_{3}OH(g)]/[CH_{3}OH(I)]$ $[CH_{3}OH(g)] = partial P$ $[CH_{3}OH(I)] = 1 (pure liquid)$ K = PIn(P) = In(K)

 $\Delta G = -RTIn(K) = -RTIn(P)$ $\Delta G = \Delta H - T\Delta S$ $In(P) = -\Delta G/RT$ $In(P) = -\Delta H/RT + \Delta S/R$ $\Delta S/R = B$ $\Delta H/R = -A$

Vapor pressure Measurement: Direct versus Distillation

- Direct vapor pressure measurement (*e.g.*, isoteniscope) requires pure material while distillation based determination can employ a middle cut with a relatively high purity. Distillation allows for extrapolation and/or interpolation of data to approximate VP.
- Direct vapor pressure measurement requires multiple freeze-thaw cycles to remove atmospheric gases while distillation (especially atmospheric distillation) purges atmospheric gases as part of the process.
- Direct measurement OK for "volatile materials" (normal BP < 100 °C) but involved for "high boilers" (normal BP > 100 °C).

Condenser

Water in

Watero

Direct vapor pressure measurement can be more accurate, but distillation provides a reasonable approximation

Two Parameters: Log(P) = A/T + B

DBAE (GMW = 173.30, CAS RN 102-81-8):

Below is a table of the literature data that we could find for the boiling point of DBAE versus pressure.

BP (°C)	BP (°K)	P (torr)	P (KPa)	Reference
230	503.15	760	101.3232	Bouilloux; Bull.Soc.Chim.Fr.; 1958; 1446.
227	500.15	738	98.3902	Burnett et al.; J.Amer.Chem.Soc.; 59; 1937; 2249.
118	391.15	17	2.2664	Leonard; Simet; J.Amer.Chem.Soc.; 77; 1955; 2855, 2857.
100	373.15	0.8	0.1067	Perrine; J.Org.Chem.; 18; 1953; 1356,1361.
85	358.15	3.5	0.46662	Hannig; Haendler; Arch.Pharm.(Weinheim Ger.); 290; 1957; 131,133.

Apparent $\Delta H_{vaporization} = 55.86 \text{ KJ/mole } \Delta S_{vaporization} (1 \text{ Torr}) = 166.39 \text{ J/(mole-K)}$

ODEA (GMW = 217.35, CAS RN 15520-05-5):

BP (°C)	BP (°K)	P (torr)	P(KPa)	Reference
175	448.15	4	0.5333	Bush; US Patent 2541088, 1946 .
155	428.15	0.75	0.1000	King of Prussia data
144	417.15	0.3	0.0400	Zuniga, H.; Bartulin, J.; Ramirez, A.; Muller, H.; Taylor, T. R.; Mol.
				Cryst. Liq. Cryst., 1990, 185, 131-140.
130	403.15	0.075	0.0100	King of Prussia data

Vapor Pressure of Methyl Isothiocyanate (MITC; CAS RN = 556-61-6) as a function of T:

•Haenssgen; Pohl; Chem.Ber. 1979, 112, 2798.

•Yanchuk, N. I.; Russ. J. Gen. Chem. 1996, 66(9), 1436-1441.

•Bauer,H.;Burschkies,K.; "Thermophysical data", Ber. Dtsch. Chem. Ges., 1935 68, 1243.

P in torr; Standard State = 1 torr; T in K (absolute); A = 4092; B = 16.956; R = 8.3144621 Δ H (vaporization) = 34 kJ/mole (assumed to be constant over range of T from 10 °C – 120 °C) Δ S (vaporization) = 141 J/(K-mole) @ 1 Torr (determined from value of B) Δ S (vaporization) = 87 J/(K-mole) @ 760 Torr (determined as Δ H/T at the boiling point)

University of Maine

http://chemistry.umeche.maine.edu/~amar/spring2010/clausiusclapyeron.html

Hexafluorobenzene: Normal $BP = 82 \text{ }^{\circ}C$

					\sim		
Compound	Enthalpy	Entropy	T Range	r ² value	Predicted Normal BP		
	(KJ/MOI)	(1 IOIT; J/MOI-K)	(°C)		(°C)		
Hexadecane I ≈ 61		 ≈ 164 (109 adjust to 1 atm) 200 - 287 (109 by △H/BP) 		0.9968	285		
Hexadecane II	≈ 64	≈ 170	100 – 287	0.9987	282		
Hexadecane III	≈ 61	≈ 164	150 – 287	0.9984	285		
	Hex	adecane is thermally stable	e up to the nor	mal BP			
BDEA	≈61	≈ 166 (111 adjust to 1 atm) (109 by ∆H/BP)	80 – 170	0.9981	284		
BDEA	≈ 70	≈ 185	100 – 280	0.9828	276		
BDEA is thermally stable up to $\approx 180 ^{\circ}\text{C}$							
 I) Camin D.L.; Forziati A.F.; Rossini F.D.; <i>J. Phys. Chem.</i> 1954 <i>58</i>, 440-442. II) Myers H.S.; Fenske M.R.; <i>Ind. Eng. Chem.</i> 1955, <i>47(8)</i>, 1652-1658. III) Krafft F., Ber.Dtsch.Chem.Ges., 15, 1687-1711, 1882 IV) Laboratory Data V) Literature Data 							

Entropy of vaporization @ 1 atmosphere ≈ 85 J/mol-K with a range from 70 J/K-mol to 120 J/K-mol for "average size" rigid molecules ; entropy of vaporization is higher for long "floppy" molecules. Predicted entropy of vaporization given by different formulas; $85 + 0.67(n-5) \approx 95$ J/mol-K for hexadecane at normal BP;

T range of correlation from T_{low} to T_{high} ; $\Delta T = T_{high} - T_{low}$

 T_{low} = T at which VP is equal to low set point (liquid); VP = 0.01 Torr is convenient

- T_{high} = T at which VP is equal to high set point (liquid); normal BP is convenient
- $\Delta \Delta H$ = decrease in Enthalpy from T_{low} to T_{high}

Enthalpy change fairly linear over range of \tilde{T} where liquid has VP < 0.1 Torr to the normal BP

Calculated & Measured Vapor Pressure of MITC

Accounting for liquid composition

Raoult's Law

$P_T = x_A P_A + x_B P_B$

Raoult's Law Graph Constructed with Excel

=10^((-2928/(H2+273.15))+9.4834)*E2/G2

=10^((-4299/A2)+10.05438)

F

=10^((-2928/A2) + 9.4834)

Found with goal seek function; look for T at which: VP (mixture) = 1 atmosphere

Α
Α

Temperature (K)	Temperature (oC)	VP (MEA - Torr)	VP (TEA - Torr)	MF (MEA)	MF (TEA)	VP (mixture)	BP(mixture)	Vapor Fraction (MEA)	Vapor fraction (TEA)
373.15	100	43.32011111	0.034162046	1	0	759.9999999	170.3125795	1	0
374.15	101	45.46337365	0.03667211	0.99	0.01	760.0001986	170.6050493	0.999969395	3.06048E-05
375.15	102	47.70039235	0.039351724	0.98	0.02	760.0000032	170.9008472	0.999937874	6.21259E-05
376.15	103	50.0347032	0.042211305	0.97	0.03	759.9999734	171.2000678	0.999905402	9.45983E-05
377.15	104	52.46995263	0.045261844	0.96	0.04	759.9995709	171.5027654	0.999871942	0.000128058
378.15	105	55.00990017	0.048514933	0.95	0.05	760.0000002	171.8090644	0.999837455	0.000162545
379.15	106	57.6584211	0.051982795	0.94	0.06	760.0000011	172.1189962	0.999801902	0.000198098
380.15	107	60.41950922	0.055678312	0.93	0.07	760.0000037	172.4326605	0.999765241	0.000234759
381.15	108	63.2972796	0.059615061	0.92	0.08	760.0000103	172.7501431	0.999727426	0.000272574

G

=10^((-2928/(H2+273.15))+9.4834)*E2+10^((-4299/(H2+273.15))+10.05438)*F2

10^((-4299/(H2+273.15))+10.05438)*F2/G2

Raoult's Law (TEA/MEA)

Mole Fraction TEA in Liquid

Phase Diagram Ideal BAE/Water System

The Impact of Water?

Phase Diagram Ideal TEA/Water System

Why don't we just distill it at Atmospheric Pressure?

Continuous decomposition is the problem!

A temperature gradient sets up in the neck of the distillation!

Relative Volatility Changes with Temperature

Theoretical VP Functions

Log(P) = A/T + B

Theoretical VP Functions

1/T

Real Relative Volatility

Measure as close to the use temperature as is possible

Derivative Weight Loss as a function of Temperature

Exemplary Derivative Weight Loss Ratios

What about GC Rt as an assessment of volatility?

Correlations of GC Rt with volatility are sometimes OK for homologous series of molecules.

Relationship not good across different types of molecules

Isothermal GC experiments used like BP versus absolute P, but the method needs an anchor

The GC Conundrum: 1/Rt does not really match volatility

HP-5 (apolar)				
Compound	boiling point	RT		
	047	- TIIN		
ivietnyidietnanolamine	247	5.70		
2-amino 2-ethyl 1,3 propaandiol	259	6.20		
Butyldiethanolamine	283	7.30		
Diethyladipate	251	8.50		
Tetradecane	253	8.53		
Triethanolamine	335	8.60		
BisDMAPA-PO	290	10.30		
Tris-DMAPA	285	11.10		

HP-Innowax (polar)				
Compoun d	boiling point °C	RT min		
Tetradecane	253	7.94		
Butyldiethanolamine	283	9.45		
Diethyladipate	251	11.05		
Tris-DMAPA	285	11.35		
Methyldiethanolamine	247	11.50		
BisDMAPA-PO	290	11.70		
2-amino 2-ethyl 1,3 propaandiol	259	12.53		
Triethanolamine	335	17.70		

DB-1301 (apolar)				
Compound	boiling point	RT		
	-0	min		
Methyldiethanolamine	247	8.58		
2-amino 2-ethyl 1,3 propaandiol	259	9.04		
Tetradecane	253	10.00		
Diethyladipate	251	10.40		
Butyldiethanolamine	283	10.52		
Triethanolamine	335	11.91		
BisDMAPA-PO	290	12.55		
Tris-DMAPA	285	13.42		
Methyl palmitate	333	16.10		

DB-17 (semi-polar)				
Compound	boiling point °C	RT min		
Methyldiethanolamine	247	7.80		
2-amino 2-ethyl 1,3 propaandiol	259	8.65		
Butyldiethanolamine	283	9.05		
Tetradecane	253	9.55		
Diethyladipate	251	12.95		
Triethanolamine	335	15.15		
BisDMAPA-PO	290	15.25		
Tris-DMAPA	285	16.50		

GC ramp integrates differential ΔVP over large T range

GC Rt data must be isothermal and must be anchored

Thermal Analysis Methods

TGA DTA/TGA DSC Hybrid Methods

DTA/TGA of Vantex-T

STAR^e SW 8.10

Derivative Weight Loss versus Temperature

Compound	d₩/dt	dW/dt	dW/dt
	@150°C	തെ.ംവെ °്	രവവംനം
Methyl Palmitate	ND	0.005	0.11
	0.005	>180 min 0.005	(12 min) 0.01
TEA	180 min	150 min	60 min
Glycerol	0.005	0.02	0.14
	180 min	37 min	6 min
BDEA	0.005	0.08	0.46
	180 min	14 min	2 min
2-methyl hexadecane	0.007	0.10	0.64
	130 minutes	11.5 min	2 min
H exa de cane	0.01	0.10	0.62
	120 min	14 min	2 min
TXIB	0.01	0.16	0.80
	80 min	6 min	1 min
AEPD	0.03	0.18	0.73
	40 min	6 min	1.7 min
DBAE	0.1 5	0.94	3.7
	8 min	1.3 min	0.33 min
TBA	0.3	2.1	6.8
	3 min	0.6 min	0.2 min
MEA	0.40	2.4	7.4
	3 min	0.5 min	0.2 min
AMP	0.76	3.2	9.5
	1.6 min	0.4 min	0.1 min

The derivative weight loss (% weight loss per minute) of 12 compounds at different temperatures after 1.25% (\approx 40 mg total weight, 0.5 mg weight loss) of material evaporated with nitrogen purge. The time in minutes at which the derivative weight loss was taken is given below the weight loss value.

Glycerol							
T (°C)	Т (К)	1/T(K)	dW/dT	log(dW/dT)			
50	323.15	0.003095	0.005	-2.301029996			
80	353.15	0.002832	0.02	-1.698970004			
110	383.15	0.00261	0.14	-0.853871964			
	BDEA						
T (°C)	Т (К)	1/T(K)	dW/dT	log(dW/dT)			
50	323.15	0.003095	0.005	-2.301029996			
80	353.15	0.002832	0.08	-1.096910013			
110	383.15	0.00261	0.46	-0.337242168			
	TXIB						
T (°C)	Т (К)	1/T(K)	dW/dT	log(dW/dT)			
50	323.15	0.003095	0.01	-2			
80	353.15	0.002832	0.1	-1			
110	383.15	0.00261	0.62	-0.207608311			

1/T(K)

Conclusions

- The normal boiling point of a "high boiling" material can be determined several ways. Various methods should track and be approximately equivalent, but they do not all yield exactly the same value.
 - Real **relative** volatility changes with temperature.
- Continuous decomposition can impact the accuracy of normal boiling point determination.
- GC retention time comparisons are more prone to deviation from "real volatility" than are normal boiling points.

