Advantages and Disadvantages of Low VOC Vegetable Based Metalworking Fluids

John Burke, CMFS STLE Fellow Global Director of Engineering Services

Alan Cross,

Senior Project Engineer

Houghton International Inc, Valley Forge Pennsylvania USA

Outline

- Metalworking Types
- Potential Areas for Use
- Advantages and Disadvantages
- Summary

Metalworking Fluids – Rule 1144

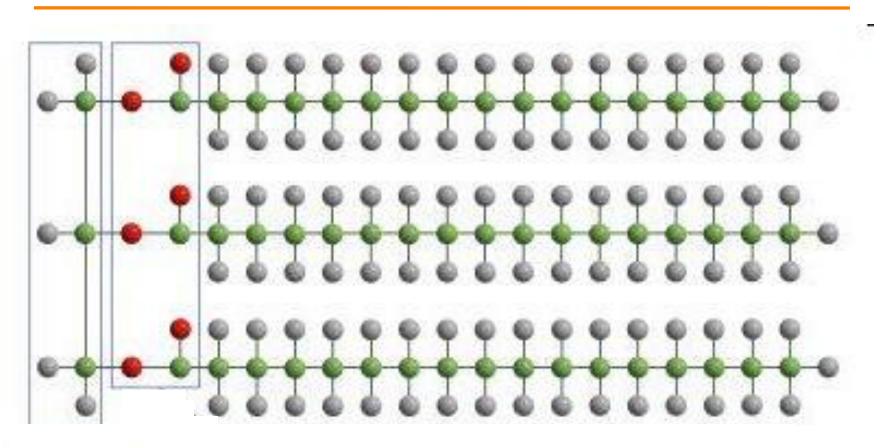
Are:

- Metal Removal Fluids
- Metal Protecting Fluids
- Metal Forming Fluids
- Metal Treating Fluids

Coolants, cutting oils Rust inhibitors Stamping, drawing, forging Quench oils

Are Not

Metal Cleaning Fluids


Parts washing soaps, detergents

Natural Vegetable Oils - Manufacturing

- Canola , Rapeseed
- Soybean
- Sunflower

Mostly triglycerides

Triglycerides

Glycerol

Three Fatty Acids

Mineral Oil / Petroleum Oil

- No fatty acids
- No glycerol
- Alkanes, cycloalkanes, and various aromatic hydrocarbons
- Contain nitrogen, oxygen, and sulfur, and trace amounts of metals such as iron, nickel, copper and vanadium
- Lubricating oil = 16 carbon atoms
- Paraffin wax = 25 carbon atoms
- Asphalt = 35++ carbon atoms

Structures are Different

- Vegetable
- Mineral

Therefore performance should be different

 AND IT IS – Each has advantages and disadvantages over each other

Vegetable oil applications

Metalworking

- Metal removal fluids emulsions, straight oils
- Metal protecting Low VOC Rust Protectors
- Metal forming wire drawing, stamping

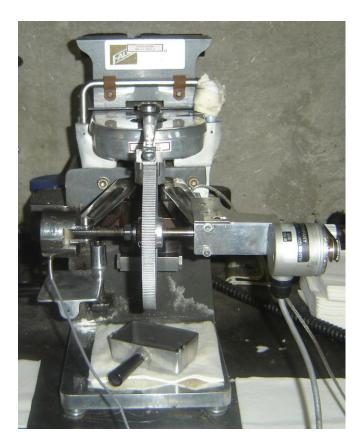
Other

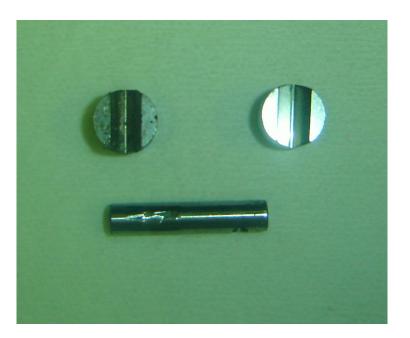
- Conventional and Fire resistant hydraulic oils
- Gear oils
- Way oils
- Spindle oils

Volatile Organic Compounds

VOC expressed as grams / liter Per ASTM E1868-10

Viscosity Grade cSt @ 40 Degrees C	Paraffinic Oil	Naphthenic Oil	Vegetable Oil - Canola
4.4	400	718	NA
9.6	50	130	NA
20.5	10	64	NA
39.0	<1*	5*	< 1**


- * Blended, two base stocks
- ** Food grade


Lubricity

- Determined by many standard lubricity tests
- Mineral oil = good
- Vegetable oils = better
- Note: Without additive vegetable oils will generally outperform mineral oil in standard lubricity tests
- Reference
 - Pin and V block
 - 4 ball
 - Tap torque
 - hydraulic pump/wear tests, such as ASTM D2882 and ASTM D2271

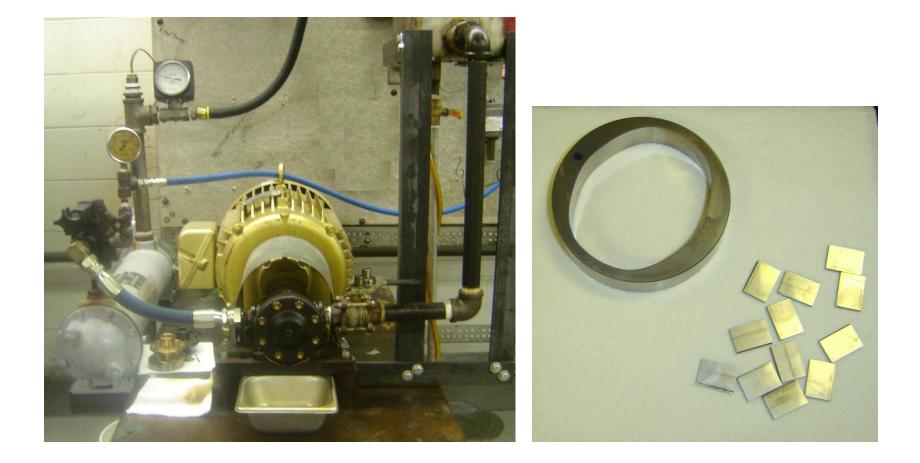
Pin and V Block

• V blocks are clamped around the spinning pin and pressure is increased until failure.

Four Ball

 One ball spins on top of three under pressure to scar the surface of the three.

Tapping Torque


 Measures the amount of torque required to thread a standardized part.

Hydraulic Pump/Wear Tests

• ASTM D-2882 – V104C pump test

Flash Point

- Mineral Oil = 300°F 400° F (typical 390°F)
- Canola Oil = 620°F 625°F
- Soybean = $605^{\circ}F 615^{\circ}F$

Method ASTM D92

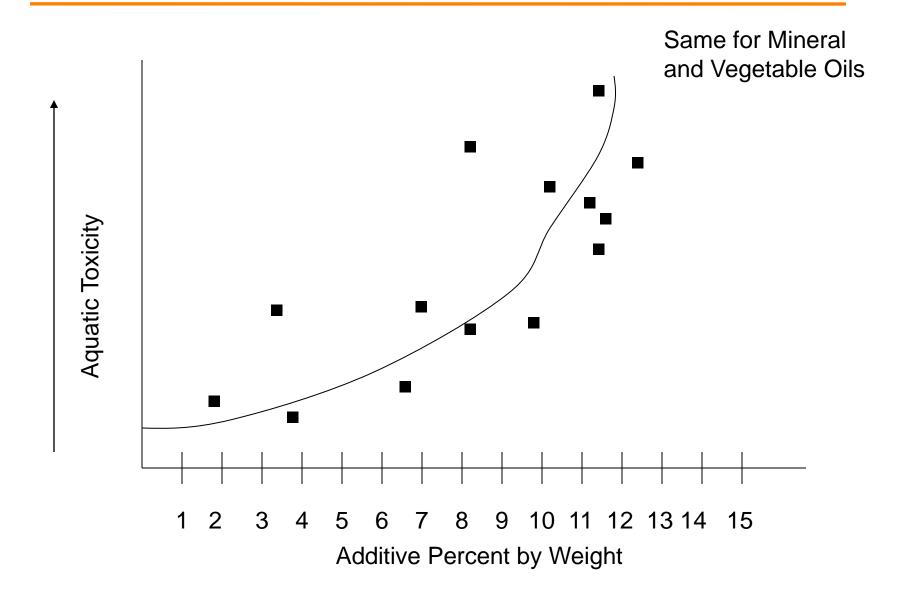
Biodegradability

Biodegradation is a process of chemical breakdown or transformation of a substance caused by micro-organisms (bacteria, fungi) or their enzymes.

- Mineral Oil = Considered to be slow to biodegrade
- Canola, Soy = Considered readily biodegradable
- Reference: OECD 301 B (Organization for Economic Cooperation and Development)
 ASTM D-5864
 CEC EC-L-33-A-94 (Coordinating European Council)

Biodegradable – both good and bad

- Triglyceride Breaks down into free fatty acids
- Fatty acids + Calcium + oil + alkali = grease
 - Especially problematic in wastewater treatment using Acid Alum treatment
- Can be so thick that it can be unpumpable
- Grease has no reclaimable potential!


Aquatic Toxicity

- Daphnia
- Fat head minnow
 - LC50 > 100 mg/L "Practically Non-toxic"
 - LC50 > 1,000 mg/L "Relatively Harmless"

• Note: Additive make or break toxic properties of fluids

Comment on Additives

Oil and Grease Measurement

• EPA method 1664 and Standard Methods 5520B, F are used to determine oil and grease and hydrocarbons in wastewater – (hexane extraction, silica gel)

Product Type	Dose mg/L	Response 5520B mg/L	Recovery %	Hydrocarbon 5520F mg/L
Mineral Oil 20.5 cSt Naphthenic	109	95	87.2	79
Canola Oil 39 cSt Food Grade	105	100	95.8	6

Visible Sheen

- Mineral oil = Yes
- Vegetable oil = Yes

Renewable Resource

- Mineral Oil = no
- All vegetable oils = yes

Competes with existing food crops

- Mineral oil = no
- Vegetable oils = yes

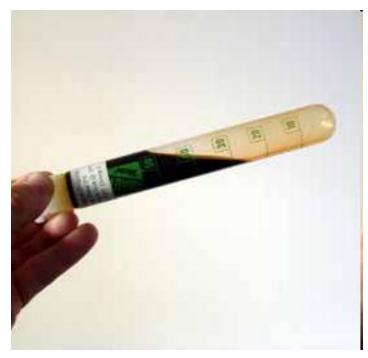
Oxidative Stability

 Low oxidative stability: oil will oxidize rather during use, becoming thick and polymerizing to a plastic-like or tar-like consistency

- Mineral Oil = Good
- Vegetable oil = Poor

Residue on Machines

- No standard tests
- Mineral oil = low residue, cleanable
- Vegetable oils = poor oxidative stability may form very sticky residues and be very hard to clean
- Some vegetable oils are more stable than others
 - As measured by iodine value
 - Monounsaturated based oils are better (75% or higher)


Hydrolytic Stability

Stability when exposed to water

- Mineral = Good may for invert emulsions
- Vegetable oil = poor, breaks down to release acids

Pour Point

- Cold weather stability
 - Not really applicable to metalworking fluids
- Mineral Oil = minus 30 F
- Vegetable oils = +5 +25F

Viscosity Index

- Maintains Viscosity at high temperature
- Viscosity Index (VI); for example, 223 for soybean oil vs. 90 to 100 for mineral oil
 - Higher number is better

- Mineral oil = fair
- Vegetable oil = very good

Misting from Machining Operations

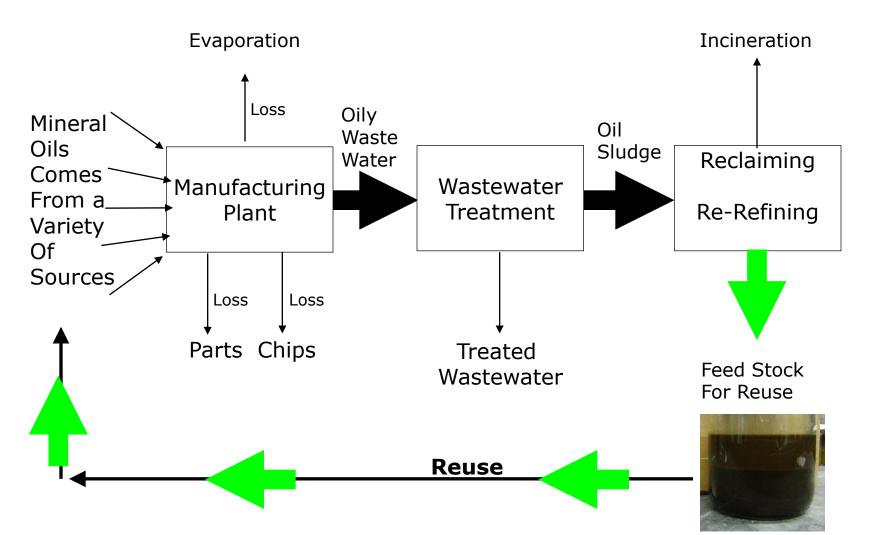
- Mineral Oil = Medium
- Vegetable oil = low

Dermal Sensitivity

Likelihood to cause Dermatitis

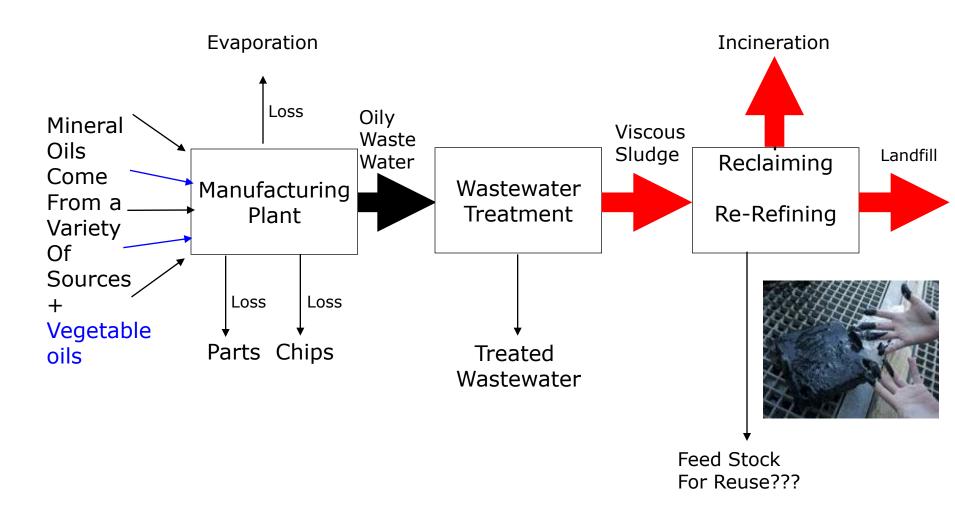
- Mineral oil = known to cause dermatitis
- Vegetable oil = minimal dermal issues
- Again Additives can be irritants

Carcinogenicity Potential


Likelihood to cause cancer

 Mineral Oil = low if solvent refined and severely hydro treated

• Vegetable oil = naturally low


Can be recycled

Waste Infrastructure – Mineral Oil

Can be recycled – Maybe not

Waste Infrastructure – Mineral Oil + vegetable oil

What about cost

- Base stock cost for vegetable oils generally track crude oil pricing
- Vegetable oils are generally more expensive
 - Mineral oil require multiple refining steps
 - Naphthenic oils are in limited supply, thus more costly
- Always exceptions to the rule
- Depending on the application and additive level, finished good price will vary

Summary – Vegetable Oils

- Vegetable Oils compete favorably with mineral oil
 VOC, Lubricity, Dermal Sensitivity
- Additives needed to correct for
 - Pour point, oxidative stability, hydrolytic stability
 - Additives increase toxicity
 - Additive can increase dermal sensitivity
- May not be readily recycled

Comparison Chart

Attributes	Vegetable	Mineral			
VOC				Good	
Lubricity				Fair	
Flash Point				Poor	
Biodegradable					
Aquatic Toxicity					
Oil and Grease				SCORE	
Petroleum Hydrocarbons				Vegeteble	
Visible Sheen			Good	Vegetable	Mineral 6
Renewable Resource			Fair	4	7
Food Crop - Compete			Poor	5	5
Oxidative Stability					J
Machine / Part Residue					
Hydrolytic Stability					
Pour Point					
Viscosity Index					
Misting					
Dermal Sensitivity					
Carcinogenic Potential					
Can Be Recycled					

Summary

- Vegetable oils are in use right now
- Can meet manufacturing demands
- Disposal of residuals needs research
- Costs are generally higher for vegetable oils than mineral oils

Thank You

John BurkeOffice610 – 666- 4000 x 6169EmailJburke@houghtonintl.com

Alan CrossOffice610 666-4000 x 4124Emailacross@houghtonintl.com

