

VOLATILE ORGANIC COMPOUND (VOC) CONTENT TEST METHODOLOGY: PAST, PRESENT AND FUTURE

March 8, 2012

Uyên-Uyên T. Võ

Rule 1144: Metalworking Fluids and Direct-Contact Lubricants

Determination of VOC Content

by ASTM E 1868 - 10

ASTM E 1868-10 Loss-On-Drying by Thermogravimetry (TGA)

Parameter		Method A
Specimen Size		10 ± 1 µL
Specimen Holder	Dimensions	Shallow
	Composition	Platinum
Temperature Sensor Location (Sample vs. Furnace)		Sample
Atmosphere Control System	Gas Type	Nitrogen
	Sample Purge Flow	30 or 40 mL/min
	Balance Protection Flow	20 or 10 mL/min
	Total Flow	50 mL/min
Temperature Program		25 ± 2°C to 81°C @ 25°C/min Isothermal @ 81°C for 110 min
Experiment Termination		110 minutes from t ₀
Baseline Correction		Yes
Auto-sampler Use		No

Additional Requirements to ASTM E 1868 – 10

Equipment

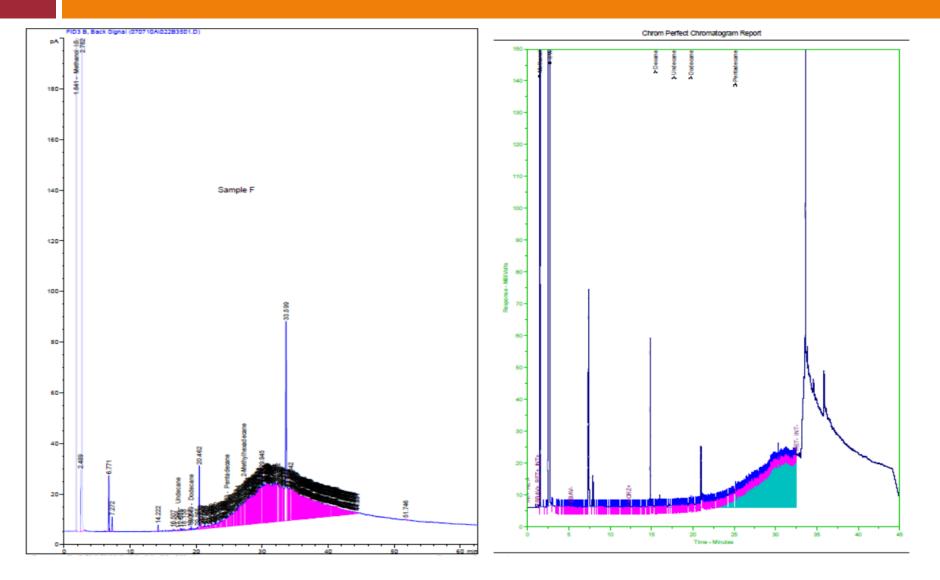
- Standards and Reagents
- Sampling, Sample Handling and Storage

Calibration

- Sample Holder Preparation
- Additional Analyses
- Procedure
- Calculations
- Quality Control

Test Method Development U.S. EPA Method 24

- Gravimetric analysis of VOCs in coatings and inks
- Imprecise for lubricants and metalworking fluids, especially those containing semi-volatile compounds


Sample	VOC (g/L) by M24	Number of Runs
40 SUS Naphthenic Oil	815 - 854	5
60 SUS Naphthenic Oil	374 - 465	5
100 SUS Naphthenic Oil	207 - 266	2
200 SUS Naphthenic Oil	119 - 119	2
Vegetable Based MWF	100 - 121	2
Vegetable Based MWF	104 - 171	3

Test Method Development GC SCAQMD Method 313-L

- Determination of VOCs in lubricants, oils and other metalworking fluids using direct injection gas chromatography/flame ionization detector method (GC/FID)
 - Modified from SCAQMD Method 313
- Complicated method
 - Integration parameters
 - Baseline placement
 - Endpoint retention time marker compound
- Not validated via ASTM E 691 05

Expensive

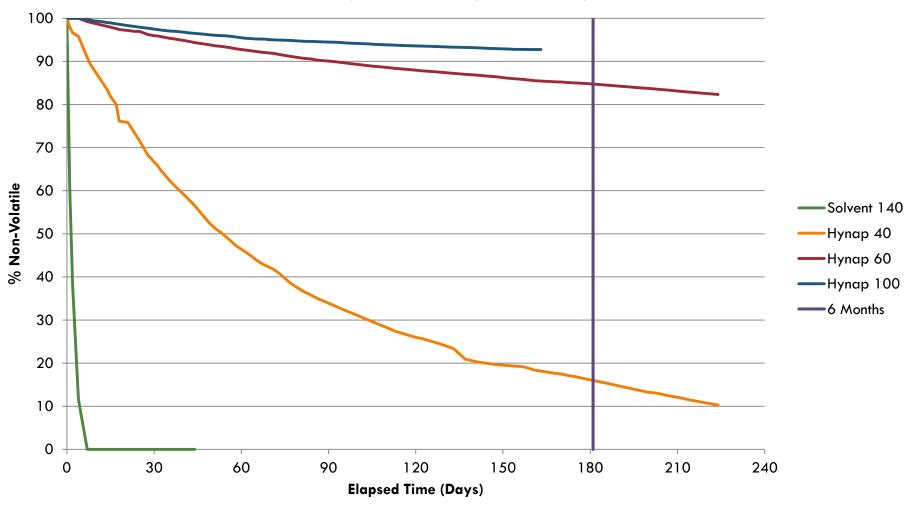
Test Method Development SCAQMD Method 313-L (cont.)

Test Method Development

TGA - California Dept of Pesticide Regulation (DPR)

- "Estimation of Volatile Emission Potential of Pesticides by Thermogravimetry"
 - 115°C until sample mass-loss rate is stabilized at 0.5% or less
 - If sample mass-loss rate is not reached after 80 minutes, then retest at 55°C for 11 hours
- Naphthenic oils
 - Failed to reach a stable endpoint at 115°C
 - Discrepancies between results at 115°C and 55°C
 - □ 55°C for 11 hours infeasible

Test Method Development W.S. Dodge Oil Six Month Evaporation Study

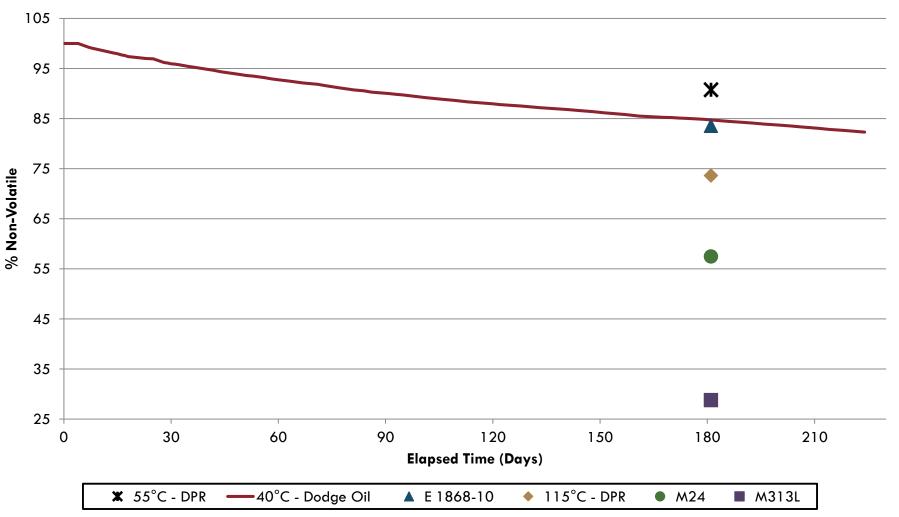

10

- □ W.S. Dodge Oil
- Blue-M Lab Oven
 - □ 40 ± 5°C
- 4 samples
 - □~20 g
 - 90 mm Petri Dish

Test Method Development W.S. Dodge Oil Six Month Evaporation Study (cont.)

11

Dodge Oil 40°C Evaporation Study


Test Method Development TGA Parameters

Houghton International

 Developed TGA parameters to simulate results from W.S. Dodge Oil Evaporation Study
81°C for 110 minutes

Test Method Development TGA Parameters (cont.)

Volatility Profile of Hynap N60HT

Test Method Development ASTM E 691 - 05

- E 691 05: Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
 - Relative Standard Deviation (RSD)

<10% or 20 g/L

- - 8 laboratories
 - 4 samples, 5 runs/sample
- Research Report E37-1039

Test Method Development ASTM E 1868 - 10

- ASTM E 1868 10: Standard Test Method for Loss-On-Drying by Thermogravimetry
- Incorporate
 - Test temperature and time parameters
 - Requirements specific to SCAQMD Rule 1144
 - Interlaboratory study results

Final Outcome

- A VOC test method for metalworking fluids and direct-contact lubricants
 - Repeatable
 - Simple
 - Efficient
 - Cost effective

ASTM E 1868 - 10

For Metalworking Fluids and Direct-Contact Lubricants

ASTM E 1868 – 10 AQMD's Experiences

Overall

- Reproducible
- Uncomplicated
- Instrument / Equipment
 - Sensitivity
 - Specimen Holders
 - Cool down time
- Samples

 - Highly volatile

ASTM E 1868 – 10 Other Laboratories' Experiences

- Lack of standard
 - Round Robin Samples
- Specimen holders
 - Emphasize importance of parameters
- Temperature ramp
 - 25°C/min overshoots 81°C
- Water content
 - Always an issue with evaporative methods
- Relative standard deviation (RSD)
 - Why RSD for VOC Content

ASTM E 1868 – 10 Future Work

- Water content
 - Karl Fischer
 - GC/TCD
 - □ M313L
- Additional Requirements
- Other Studies

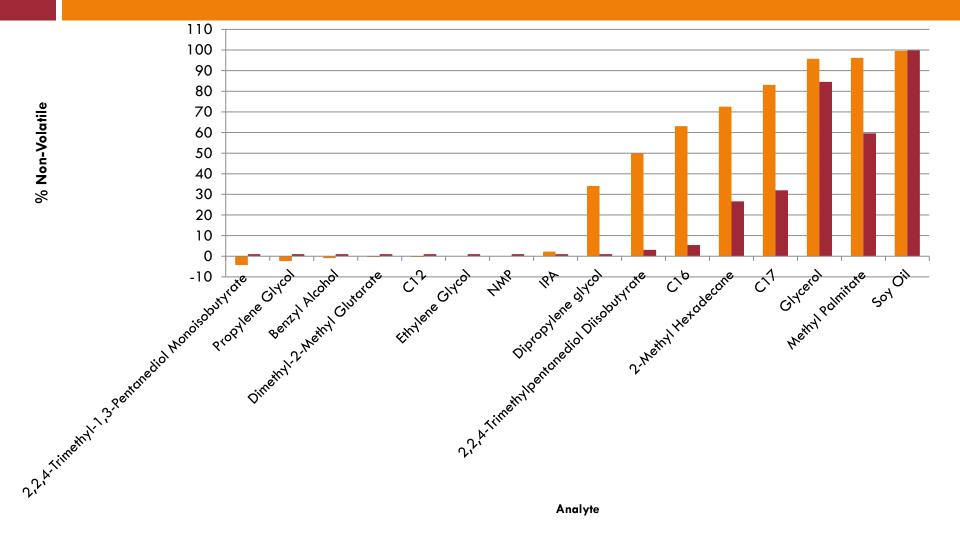
Relative Volatility of Pure Compounds

By Various Test Methods

Relative Volatility of Pure Compounds Why was this study conducted?

- Expand on W.S. Dodge Oil's Evaporation Study
- Study behavior under ambient settings
- Investigate VOC reference material
- Explore semi-volatiles used in other VOC containing products

Relative Volatility of Pure Compounds Methods Explored


- □ Gas Chromatography (GC) by SCAQMD M313
- □ TGA by ASMT E 1868-10
- U.S. EPA Method 24
- Ambient Evaporation

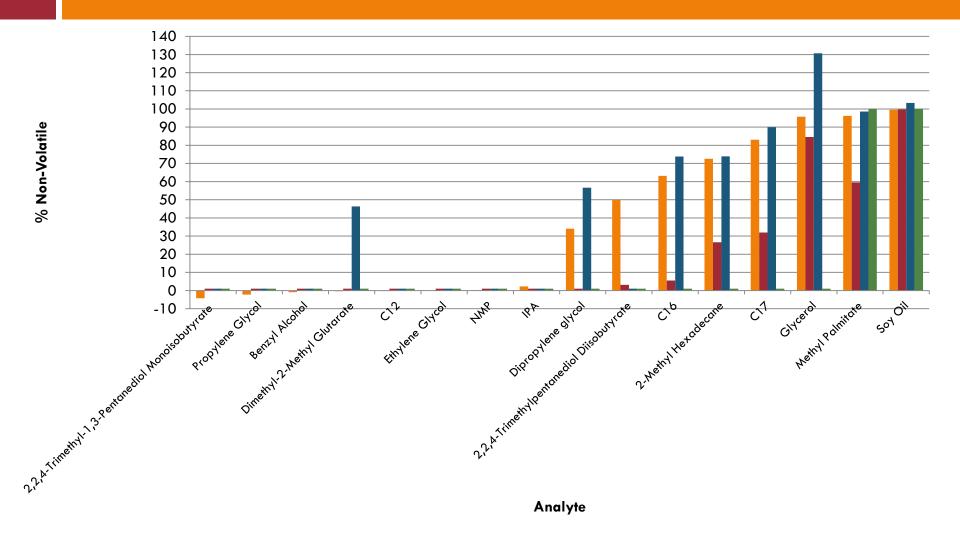
Relative Volatility of Pure Compounds Results

Retention Time (minutes)
2:16
2:97
3:87
11:73
13:92
26:00
26:04
26:21
26:77
26:97
27:22
28:73, 28:82
29:69
30:18
30:18
30:44
30:48
31:48
32:81
33:76
34:59
35:86
∞

G C

Relative Volatility of Pure Compounds Results (cont.)

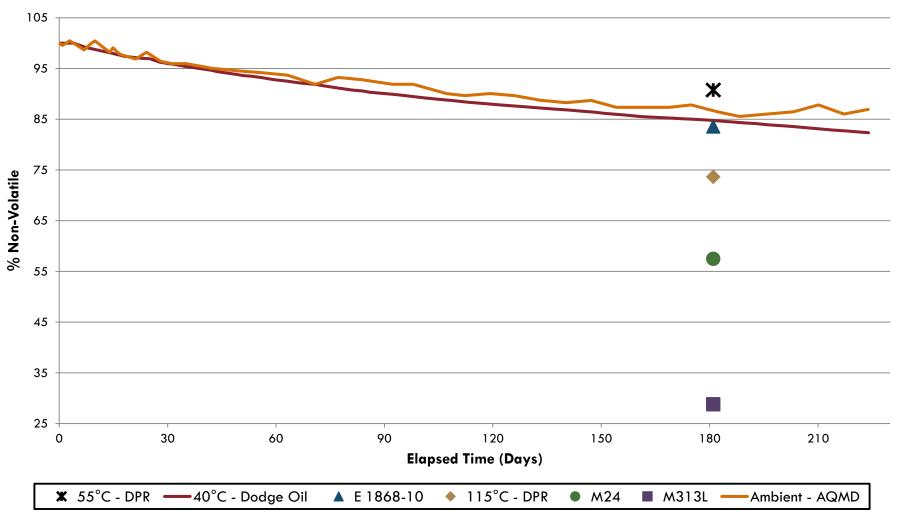
Relative Volatility of Pure Compounds Results (cont.)


A	Analyte	Time to 100% Evaporation (Days)
	IPA	1.9
M	Hydrotreated Light Distillate (C9-C16)	1.9
В	Ethyl Lactate	1.9
D	NMP	10
1	Benzyl Alcohol	14
_	C12	16
E	Propylene Glycol	63
N_	Ethylene Glycol	126
	2,2,4-Trimethylpentanediol Diisobutyrate	147
Т	2,2,4-Trimethyl-1,3-Pentanediol Monoisobutyrate	154

Relative Volatility of Pure Compounds Results (cont.)

27

A	Analyte	Percent Non-Volatile @ 6 Months (%)
	C15	40.0
M	Dimethyl-2-Methyl Glutarate	46.3
D	Dipropylene Glycol	56.6
B	2-Methyl Hexadecane	73.9
I	C16	73.8
	Naphthenic Oil (Hynap N60HT)	86.5
E	C17	89.9
N	Methyl Palmitate	98.6
	Soy Oil	103
Т	Glycerol	131


Relative Volatility of Pure Compounds Method Comparisons

■ E 1868 ■ M24 ■ Ambient ■ GC

Relative Volatility of Pure Compounds Method Comparisons

Volatility Profile of Hynap N60HT

29

Relative Volatility of Pure Compounds Future Work

- Additional studies under consideration
 - Formulated products
 - Spiked samples
- Encourage others to duplicate efforts
- Correlate to other VOC test methods
 - **GC** endpoint marker
 - Semi-volatiles
 - Anomalous compounds
 - glycerol

Questions? Comments?

Uyên-Uyên T. Võ

Air Quality Chemist

South Coast Air Quality Management District

(909) 396-2238

uvo@aqmd.gov

